Advertisement

Use of Bone Biomarkers After Weight Loss: Example of Bariatric Surgery

  • Maria F. G. BiagioniEmail author
  • Adriana L. MendesEmail author
  • Sergio A. R. PaivaEmail author
  • Glaucia M. F. S. MazetoEmail author
Reference work entry
  • 830 Downloads
Part of the Biomarkers in Disease: Methods, Discoveries and Applications book series (BDMDA)

Abstract

The prevalence of obesity has increased around the world, and the frequency of bariatric surgery, one of the therapeutic alternatives for specific cases, has also increased progressively. Despite the beneficial effects of bariatric surgery on various obesity-related comorbidities, the most significant postoperative weight losses have been associated with negative skeletal repercussions. In this context, serum bone health markers could provide early warning to the higher skeletal risk. In this chapter we will discuss the mechanisms involved in the relationship between obesity, its treatment with bariatric surgery, and bone metabolism, in addition to how changes in this relationship influence the main bone biomarkers.

Keywords

Obesity Bariatric surgery Biological markers Bone remodeling 

List of Abbreviations

ALP

Total alkaline phosphatase

BSAP

Bone-specific alkaline phosphatase

BMD

Bone mineral density

BMI

Body mass index

BMP

Bone morphogenetic proteins

BTM

Bone turnover markers

CTX

Collagen-type I C-telopeptide

DAN

Differential screening-selected gene aberrative in neuroblastoma

ICTP

Carboxy-terminal telopeptide of type I collagen

IGF-1

Insulin growth factor 1

LRP5

Low-density lipoprotein receptor-related protein 5

LRP6

Low-density lipoprotein receptor-related protein 6

NIH

National Institutes of Health

NTX

Collagen-type I N-telopeptide

OPG

Osteoprotegerin

PTH

Parathyroid hormone

PICP

Carboxy-terminal procollagen propeptides of collagen type I

PINP

Procollagen type I amino-terminal propeptide

PIIINP

Amino-terminal procollagen propeptides of collagen type III

RANK

Receptor that activates the nuclear factor kappa B

RANKL

RANK ligand

RYGB

Gastroplasty with Roux-en-Y gastric bypass

TPH1

1-Tryptophan hydroxylase

TRAP5b

Tartrate-resistant acid phosphatase isoenzyme 5b

WHO

World Health Organization

1,25OHD

1,25-Hydroxy-vitamin D

25OHD

25-Hydroxy-vitamin D

References

  1. Aguirre L, Napoli N, Waters D, Qualls C, Villareal DT, Armamento-Villareal R. Increasing adiposity is associated with higher adipokine levels and lower bone mineral density in obese older adults. J Clin Endocrinol Metab. 2014;99:3290–9.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Armamento-Villareal R, Sadler C, Napoli N, et al. Weight loss in obese older adults increases serum sclerostin and impairs hip geometry but both are prevented by exercise training. J Bone Miner Res. 2012;27:1215–21.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Armstrong ME, Cairns BJ, Banks E, et al. Different effects of age, adiposity and physical activity on the risk of ankle, wrist and hip fractures in postmenopausal women. Bone. 2012;50:1394–400.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Arterburn DE, Courcoulas AP. Bariatric surgery for obesity and metabolic conditions in adults. BMJ. 2014;349:g3961. doi: 10.1136/bmj.g3961.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Balemans W, Ebeling M, Patel N, et al. Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet. 2001;10:537–43.CrossRefPubMedGoogle Scholar
  6. Bellido T, Ali AA, Gubrij I, et al. Chronic elevation of parathyroid hormone in mice reduces expression of sclerostin by osteocytes: a novel mechanism for hormonal control of osteoblastogenesis. Endocrinology. 2005;146:4577–83.CrossRefPubMedGoogle Scholar
  7. Bezerra MC, Carvalho JF, Prokopowitsch AS, Pereira RM. RANK, RANKL and osteoprotegerin in arthritic bone loss. Braz J Med Biol Res. 2005;38:161–70.CrossRefPubMedGoogle Scholar
  8. Biagioni MF, Mendes AL, Nogueira CR, Paiva SA, Leite CV, Mazeto GM. Weight-reducing gastroplasty with Roux-en-Y gastric bypass: impact on vitamin D status and bone remodeling markers. Metab Syndr Relat Disord. 2014;12:11–5.CrossRefPubMedGoogle Scholar
  9. Bloomberg RD, Fleishman A, Nalle JE, Herron DM, Kini S. Nutritional deficiencies following bariatric surgery: what have we learned? Obes Surg. 2005;15:145–54.CrossRefPubMedGoogle Scholar
  10. Bloomfield SA. Disuse osteopenia. Curr Osteoporos Rep. 2010;8:91–7.CrossRefPubMedGoogle Scholar
  11. Bonewald LF, Johnson ML. Osteocytes, mechanosensing and Wnt signaling. Bone. 2008;42:606–15.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bonjour JP, Kohrt W, Levasseur R, Warren M, Whiting S, Kraenzlin M. Biochemical markers for assessment of calcium economy and bone metabolism: application in clinical trials from pharmaceutical agents to nutritional products. Nutr Res Rev. 2014;27:252–67.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Brunkow ME, Gardner JC, Van Ness J, et al. Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am J Hum Genet. 2001;68:577–89.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Bruno C, Fulford AD, Potts JR, et al. Serum markers of bone turnover are increased at six and 18 months after Roux-en-Y bariatric surgery: correlation with the reduction in leptin. J Clin Endocrinol Metab. 2010;95:159–66.CrossRefPubMedGoogle Scholar
  15. Brzozowska MM, Sainsbury A, Eisman JA, Baldock PA, Center JR. Bariatric surgery, bone loss, obesity and possible mechanisms. Obes Rev. 2013;14:52–67.CrossRefPubMedGoogle Scholar
  16. Buchwald H, Oien DM. Metabolic/bariatric surgery worldwide 2011. Obes Surg. 2013;23:427–36.CrossRefPubMedGoogle Scholar
  17. Burger EH, Klein-Nulend J. Mechanotransduction in bone-role of the lacuna-canalicular network. FASEB J. 1999;13:S101–12.PubMedGoogle Scholar
  18. Cao JJ. Effects of obesity on bone metabolism. J Orthop Surg Res. 2011;6:30. doi: 10.1186/1749-799X-6-30.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Capella JF, Capella RF. The weight reduction operation of choice: vertical banded gastroplasty or gastric bypass? Am J Surg. 1996;171:74–9.CrossRefPubMedGoogle Scholar
  20. Carlin AM, Rao DS, Yager KM, Genaw JA, Parikh NJ, Szymanski W. Effect of gastric bypass surgery on vitamin D nutritional status. Surg Obes Relat Dis. 2006;2:638–42.CrossRefPubMedGoogle Scholar
  21. Casagrande DS, Repetto G, Mottin CC, et al. Changes in bone mineral density in women following 1-year gastric bypass surgery. Obes Surg. 2012;22:1287–92.CrossRefPubMedGoogle Scholar
  22. Coates PS, Fernstrom JD, Fernstrom MH, Schauer PR, Greenspan SL. Gastric bypass surgery for morbid obesity leads to an increase in bone turnover and a decrease in bone mass. J Clin Endocrinol Metab. 2004;89:1061–5.CrossRefPubMedGoogle Scholar
  23. Collazo-Clavell ML, Jimenez A, Hodgson SF, Sarr MG. Osteomalacia after Roux-en-Y gastric bypass. Endocr Pract. 2004;10:195–8.CrossRefPubMedGoogle Scholar
  24. Compston JE, Watts NB, Chapurlat R, et al. Obesity is not protective against fracture in postmenopausal women: GLOW. Am J Med. 2011;124:1043–50.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Eghbali-Fatourechi G, Khosla S, Sanyal A, Boyle WJ, Lacey DL, Riggs BL. Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. J Clin Invest. 2003;111:1221–30.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Elias E, Casselbrant A, Werling M, et al. Bone mineral density and expression of vitamin D receptor-dependent calcium uptake mechanisms in the proximal small intestine after bariatric surgery. Br J Surg. 2014;101:1566–75.CrossRefPubMedGoogle Scholar
  27. Ferrer Cañabate J, Tovar I, Martínez P. Osteoprotegrin and RANKL/RANK system: is it the future of bone metabolism? An Med Interna. 2002;19:385–8.PubMedGoogle Scholar
  28. Fleischer J, Stein EM, Bessler M, et al. The decline in hip bone density after gastric bypass surgery is associated with extent of weight loss. J Clin Endocrinol Metab. 2008;93:3735–40.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Frost HM. Bone “mass” and the “mechanostat”: a proposal. Anat Rec. 1987;219:1–9.CrossRefPubMedGoogle Scholar
  30. Gannagé-Yared MH, Yaghi C, Habre B, et al. Osteoprotegerin in relation to body weight, lipid parameters insulin sensitivity, adipocytokines, and C-reactive protein in obese and non-obese young individuals: results from both cross-sectional and interventional study. Eur J Endocrinol. 2008;158:353–9.CrossRefPubMedGoogle Scholar
  31. Giusti V, Gasteyger C, Suter M, Heraief E, Gaillard RC, Burckhardt P. Gastric banding induces negative bone remodelling in the absence of secondary hyperparathyroidism: potential role of serum C telopeptides for follow up. Int J Obes (Lond). 2005;29:1429–35.CrossRefGoogle Scholar
  32. Goode LR, Brolin RE, Chowdhury HA, Shapses SA. Bone and gastric bypass surgery: effects of dietary calcium and vitamin D. Obes Res. 2004;12:40–7.CrossRefPubMedGoogle Scholar
  33. Gortmaker SL, Swinburn BA, Levy D, et al. Changing the future of obesity: science, policy, and action. Lancet. 2011;378:838–47.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Grethen E, Hill KM, Jones R, et al. Serum leptin, parathyroid hormone, 1,25-dihydroxyvitamin d, fibroblast growth factor 23, bone alkaline phosphatase, and sclerostin relationships in obesity. J Clin Endocrinol Metab. 2012;97:1655–62.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Guney E, Kisakol G, Ozgen G, Yilmaz C, Yilmaz R, Kabalak T. Effect of weight loss on bone metabolism: comparison of vertical banded gastroplasty and medical intervention. Obes Surg. 2003;13:383–8.CrossRefPubMedGoogle Scholar
  36. Hage MP, El-Hajj Fuleihan G. Bone and mineral metabolism in patients undergoing Roux-en Y gastric bypass. Osteoporos Int. 2014;25:423–39.CrossRefPubMedGoogle Scholar
  37. Holick MF, Chen TC. Vitamin D deficiency: a worldwide problem with health consequences. Am J Clin Nutr. 2008;87:1080S–6.PubMedGoogle Scholar
  38. Jensen MD, Ryan DH, Apovian CM, et al. 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society. J Am Coll Cardiol. 2014;63:2985–3023.CrossRefPubMedGoogle Scholar
  39. Johnson JM, Maher JW, DeMaria EJ, Downs RW, Wolfe LG, Kellum JM. The long-term effects of gastric bypass on vitamin D metabolism. Ann Surg. 2006;243:701–4.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kearns AE, Khosla S, Kostenuik PJ. Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr Rev. 2008;29:155–92.CrossRefPubMedGoogle Scholar
  41. Keller H, Kneissel M. SOST is a target gene for PTH in bone. Bone. 2005;37:148–58.CrossRefPubMedGoogle Scholar
  42. Kirchengast S, Peterson B, Hauser G, Knogler W. Body composition characteristics are associated with the bone density of the proximal femur end in middle- and old-aged women and men. Maturitas. 2001;39:133–45.CrossRefPubMedGoogle Scholar
  43. Knoke JD, Barrett-Connor E. Weight loss: a determinant of hip bone loss in older men and women. The Rancho Bernardo Study. Am J Epidemiol. 2003;158:1132–8.CrossRefPubMedGoogle Scholar
  44. Lewiecki EM. Sclerostin: a novel target for intervention in the treatment of osteoporosis. Discov Med. 2011;12:263–73.PubMedGoogle Scholar
  45. Li J, Sarosi I, Yan XQ, et al. Rank is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc Natl Acad Sci U S A. 2000;97:1566–71.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Liu H, Zhang R, Ko SY, et al. Microtubule assembly affects bone mass by regulating both osteoblast and osteoclast functions: stathmin deficiency produces an osteopenic phenotype in mice. J Bone Miner Res. 2011;26:2052–67.CrossRefPubMedGoogle Scholar
  47. Liu C, Wu D, Zhang JF, et al. Changes in bone metabolism in morbidly obese patients after bariatric surgery: a meta-analysis. Obes Surg. 2015. http://link.springer.com/article/10.1007/s11695-015-1724-5
  48. Martins MVDC. Why Roux-em-Y gastric bypass is nowadays the best surgery to treat obesity. Rev bras videocir. 2005;3:102–4.Google Scholar
  49. Mason EE. Bone disease from duodenal exclusion. Obes Surg. 2000;10:585–6.CrossRefPubMedGoogle Scholar
  50. Mechanick JI, Garber AJ, Handelsman Y, Garvey WT. American Association of Clinical Endocrinologists’ position paper on obesity and obesity medicine. Endocr Pract. 2012;18:642–8.CrossRefPubMedGoogle Scholar
  51. Mechanick JI, Youdim A, Jones DB, et al. Clinical practice guidelines for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient–2013 update: cosponsored by American Association of Clinical Endocrinologists, the Obesity Society, and American Society for Metabolic & Bariatric Surgery. Endocr Pract. 2013;19:337–72.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Miyazaki T, Matsunaga T, Miyazaki S, Hokari S, Komoda T. Changes in receptor activator of nuclear factor-kappaB, and its ligand, osteoprotegerin, bone-type alkaline phosphatase, and tartrate-resistant acid phosphatase in ovariectomized rats. J Cell Biochem. 2004;93:503–12.CrossRefPubMedGoogle Scholar
  53. Moester MJ, Papapoulos SE, Löwik CW, van Bezooijen RL. Sclerostin: current knowledge and future perspectives. Calcif Tissue Int. 2010;87:99–107.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Molina PE. Glândulas paratireoides e regulação do Ca2+ e do PO-4. In: Molina PE, editor. Fisiologia endócrina. 1st ed. São Paulo: McGraw-Hill Interamericana do Brasil; 2007. p. 95–121.Google Scholar
  55. Monteiro Júnior FD, Silva Júnior WS, Salgado Filho N, et al. Effects of weight loss induced by bariatric surgery on the prevalence of metabolic syndrome. Arq Bras Cardiol. 2009;92:452–6.CrossRefGoogle Scholar
  56. Muschitz C, Kocijan R, Marterer C, et al. Sclerostin levels and changes in bone metabolism after bariatric surgery. J Clin Endocrinol Metab. 2015;100:891–901.CrossRefPubMedGoogle Scholar
  57. Ng M, Fleming T, Robinson M, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014;384:766–81.CrossRefPubMedPubMedCentralGoogle Scholar
  58. NIH – National Institute Health conference. Gastrointestinal surgery for severe obesity. Consensus Development Conference Panel. Ann Intern Med. 1991;115:956–61.CrossRefGoogle Scholar
  59. Novack DV, Teitelbaum SL. The osteoclast: friend or foe? Annu Rev Pathol. 2008;3:457–84.CrossRefPubMedGoogle Scholar
  60. Nusse R. Wnt signaling in disease and in development. Cell Res. 2005;15:28–32.CrossRefPubMedGoogle Scholar
  61. Papapietro K, Massardo T, Riffo A, et al. Bone mineral density disminution post Roux-Y bypass surgery. Nutr Hosp. 2013;28:631–6.PubMedGoogle Scholar
  62. Pérez-Castrillón JL, Riancho JA, de Luis D, et al. Effect of two types of bariatric surgery (gastrojejunal bypass and sleeve gastroplasty) on gene expression of bone remodeling markers in goto-kakizaki rats. Obes Surg. 2014;24:37–41.CrossRefPubMedGoogle Scholar
  63. Pugnale N, Giusti V, Suter M, et al. Bone metabolism and risk of secondary hyperparathyroidism 12 months after gastric banding in obese premenopausal women. Int J Obes Relat Metab Disord. 2003;27:110–6.CrossRefPubMedGoogle Scholar
  64. Reid IR. Obesity and osteoporosis. Ann Endocrinol (Paris). 2006;67:125–9.CrossRefGoogle Scholar
  65. Ricci TA, Heymsfield SB, Pierson Jr RN, et al. Moderate energy restriction increases bone resorption in obese postmenopausal women. Am J Clin Nutr. 2001;73:347–52.PubMedGoogle Scholar
  66. Robling AG, Niziolek PJ, Baldridge LA, et al. Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem. 2008;283:5866–75.CrossRefPubMedGoogle Scholar
  67. Rodríguez-Carmona Y, López-Alavez FJ, González-Garay AG, Solís-Galicia C, Meléndez G, Serralde-Zúñiga AE. Bone mineral density after bariatric surgery. A systematic review. Int J Surg. 2014;12:976–82.CrossRefPubMedGoogle Scholar
  68. Ryan DH, Johnson WD, Myers VH, et al. Nonsurgical weight loss for extreme obesity in primary care settings: results of the Louisiana Obese Subjects Study. Arch Intern Med. 2010;170:146–54.CrossRefPubMedGoogle Scholar
  69. Salamone LM, Cauley JA, Black DM, et al. Effect of a lifestyle intervention on bone mineral density in premenopausal women: a randomized trial. Am J Clin Nutr. 1999;70:97–103.PubMedGoogle Scholar
  70. Santos MT, Souza FI, Fonseca FL, Lazaretti-Castro M, Sarni RO. Changes in bone metabolism markers in women after Roux-en-Y gastric bypass. Arq Bras Endocrinol Metabol. 2012;56:376–82.CrossRefPubMedGoogle Scholar
  71. Schoenau E. Bone mass increase in puberty: what makes it happen? Horm Res. 2006;65:S2–10.CrossRefGoogle Scholar
  72. Slater GH, Ren CJ, Siegel N, et al. Serum fat soluble vitamin deficiency and abnormal calcium metabolism after malabsorptive bariatric surgery. J Gastrointest Surg. 2004;8:48–55.CrossRefPubMedGoogle Scholar
  73. Sousa CP, Dias IR, Lopez-Peña M, et al. Bone turnover markers for early detection of fracture healing disturbances: a review of the scientific literature. An Acad Bras Cienc. 2015;87:1049–61.CrossRefPubMedGoogle Scholar
  74. Swinburn BA, Sacks G, Hall KD, et al. The global obesity pandemic: shaped by global drivers and local environments. Lancet. 2011;378:804–14.CrossRefPubMedGoogle Scholar
  75. ten Dijke P, Krause C, de Gorter DJ, Löwik CW, van Bezooijen RL. Osteocyte-derived sclerostin inhibits bone formation: its role in bone morphogenetic protein and Wnt signaling. J Bone Joint Surg Am. 2008;90:31–5.CrossRefPubMedGoogle Scholar
  76. Trémollières F, Pouilles JM, Ribot C. Effect of long-term administration of progestogen on post-menopausal bone loss: result of a two year, controlled randomized study. Clin Endocrinol (Oxf). 1993;38:627–31.CrossRefGoogle Scholar
  77. Tsiftsis DD, Mylonas P, Mead N, Kalfarentzos F, Alexandrides TK. Bone mass decreases in morbidly obese women after long limb-biliopancreatic diversion and marked weight loss without secondary hyperparathyroidism. A physiological adaptation to weight loss? Obes Surg. 2009;19:1497–503.CrossRefPubMedGoogle Scholar
  78. van Bezooijen RL, Roelen BA, Visser A, et al. Sclerostin is an osteocyte expressed negative regulator of bone formation, but not a classical BMP antagonist. J Exp Med. 2004;199:805–14.CrossRefPubMedPubMedCentralGoogle Scholar
  79. van Bezooijen RL, Svensson JP, Eefting D, et al. Wnt but not BMP signaling is involved in the inhibitory action of sclerostin on BMP-stimulated bone formation. J Bone Miner Res. 2007;22:19–28.CrossRefPubMedGoogle Scholar
  80. Vasconcelos RS, Viégas M, Marques TF, et al. Factors associated with secondary hyperparathyroidism in premenopausal women undergoing Roux-en-Y gastric bypass for the treatment of obesity. Arq Bras Endocrinol Metabol. 2010;54:233–8.CrossRefPubMedGoogle Scholar
  81. Viégas M, Vasconcelos RS, Neves AP, Diniz ET, Bandeira F. Bariatric surgery and bone metabolism: a systematic review. Arq Bras Endocrinol Metabol. 2010;54:158–63.CrossRefPubMedGoogle Scholar
  82. Vilarrasa N, Gómez JM, Elio I, et al. Evaluation of bone disease in morbidly obese women after gastric bypass and risk factors implicated in bone loss. Obes Surg. 2009;19:860–6.CrossRefPubMedGoogle Scholar
  83. WHO – World Health Organization. Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser. 2000;894:1–253.Google Scholar
  84. WHO – World Health Organization. Global action plan for the prevention and control of noncommunicable diseases. 2013–2020. http://apps.who.int/iris/bitstream/10665/94384/1/9789241506236_eng.pdf?ua=1. Accessed 16 Mar 2015.
  85. Yadav VK, Ryu JH, Suda N, et al. Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum: an entero-bone endocrine axis. Cell. 2008;135:825–37.CrossRefPubMedPubMedCentralGoogle Scholar
  86. Yamauchi M, Sugimoto T, Yamaguchi T, et al. Plasma leptin concentrations are associated with bone mineral density and the presence of vertebral fractures in postmenopausal women. Clin Endocrinol (Oxf). 2001;55:341–7.CrossRefGoogle Scholar
  87. Youssef Y, Richards WO, Sekhar N, et al. Risk of secondary hyperparathyroidism after laparoscopic gastric bypass surgery in obese women. Surg Endosc. 2007;21:1393–6.CrossRefPubMedGoogle Scholar
  88. Yu EW. Bone metabolism after bariatric surgery. J Bone Miner Res. 2014;29:1507–18.CrossRefPubMedPubMedCentralGoogle Scholar
  89. Yu EW, Bouxsein ML, Roy AE, et al. Bone loss after bariatric surgery: discordant results between DXA and QCT bone density. J Bone Miner Res. 2014;29:542–50.CrossRefPubMedPubMedCentralGoogle Scholar
  90. Zhang R, Oyajobi BO, Harris SE, et al. Wnt/β-catenin signaling activates bone morphogenetic protein 2 expression in osteoblasts. Bone. 2013;52:145–56.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Internal Medicine DepartmentBotucatu Medical School, UnespBotucatuBrazil

Personalised recommendations