Differentiation Biomarkers of Osteoarthritis Determined by Glycoblotting

  • Shin-Ichiro NishimuraEmail author
  • Takeshi IshiharaEmail author
  • Norimasa IwasakiEmail author
Reference work entry
Part of the Biomarkers in Disease: Methods, Discoveries and Applications book series (BDMDA)


Drastic structural alteration of the cell surface glycans during cell differentiation can provide clinically potential biomarkers. Recently, there have been substantial advances in our understanding of the importance of the posttranslational protein glycosylations in various biological systems. However, we still do not fully understand the significance and mechanism of the glycoform changes during cellular proliferation and/or malignant alterations detected widely in many human diseases progress due to the difficulty of the structural analysis of highly complicated glycan structures. Moreover, the general and conventional procedures for the glycan analysis need extremely tedious and time-consuming multiple processes to enrich whole glycans directly from heterogeneous biological samples such as blood, body fluids, cultured cells, tissue/organ, and so on. As a result, the therapeutic/diagnostic potential of the dynamic disease-specific alterations in the posttranslational glycosylations has not been well exploited with a few notable exceptions. This chapter describes the advantage of the use of a key technology for the glycan-specific enrichment protocol, namely a “glycoblotting method,” in the discovery research of new class of human osteoarthritis cartilage-related biomarkers indicating the initiation of chondrocyte cell differentiation in the early stage of the cartilage degradation.


Glycomics Glycoblotting method Glycoform-focused reverse proteomics and genomics Cell surface glycoproteins Osteoarthritis Chondrocyte differentiation Cartilage degradation 

List of Abbreviations






Chinese hamster ovary


Concanavalin A




Ectonucleotide pyrophosphatase/phosphodiesterase-1


Embryonic stem cells


Induced pluripotent stem cells


Matrix-assisted laser desorption ionization


Mass spectrometry


Mesenchymal stem cells


Nuclear magnetic resonance




Polymerase chain reaction

PNGase F

Peptide N-glycosidase F


  1. Alley WR, Mechref Y, Novotny MV. Use of activated graphitized carbon chips for liquid chromatography/mass spectrometric and tandem mass spectrometric analysis of tryptic peptides. Rapid Commun Mass Spectrom. 2009;23:495–505.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Amano M, Yamaguchi M, Takegawa Y, Yamashita T, Terashima M, Furukawa J-i, Miura Y, Shinohara Y, Iwasaki N, Minami A, Nishimura S-I. Threshold in stage-specific embryonic glycotypes uncovered by a full portrait of dynamic N-glycan expression during cell proliferation. Mol Cell Proteomics. 2010;9:523–37.CrossRefPubMedGoogle Scholar
  3. Clouet J, Vinatier C, Merceron C, Pot-vaucel M, Maugars Y, Weiss P, Grimandi G, Guicheux J. From osteoarthritis treatments to future regenerative therapies for cartilage. Drug Discov Today. 2009;14:913–25.CrossRefPubMedGoogle Scholar
  4. Dai Z, Zhou J, Qiu S-J, Liu Y-K, Fan J. Lectin-based glycoproteomics to explore and analyze hepatocellular carcinoma-related glycoprotein biomarkers. Electrophoresis. 2009;30:2957–66.CrossRefPubMedGoogle Scholar
  5. Dube DH, Bertozzi CR. Glycans in cancer and inflammation: potential for therapeutics and diagnostics. Nat Rev Drug Discov. 2005;4:477–88.CrossRefPubMedGoogle Scholar
  6. Gizaw ST, Koda T, Amano M, Kamimura K, Ohashi T, Hinou H, Nishimura S-I. A comprehensive glycome profiling of Huntington’s disease transgenic mice. Biochim Biophys Acta. 2015;1850:1704–18.CrossRefPubMedGoogle Scholar
  7. Gizaw ST, Ohashi T, Tanaka M, Hinou H, Nishimura S-I. Glycoblotting method allows for rapid and efficient glycome profiling of human Alzheimer’s disease brain, serum and cerebrospinal fluid towards potential biomarker discovery. Biochim Biophys Acta. 2016;1860:1716–27.Google Scholar
  8. Halim A, Brinkmalm G, Ruetschi U, et al. Site-specific characterization of threonine, serine, and tyrosine glycosylations of amyloid precursor protein/amyloid beta-peptides in human cerebrospinal fluid. Proc Natl Acad Sci U S A. 2011;108:11848–53.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Haltiwanger RS, Lowe JB. Role of glycosylation in development. Annu Rev Biochem. 2004;73:491–537.CrossRefPubMedGoogle Scholar
  10. Hatakeyama S, Amano M, Tobisawa Y, Yoneyama T, Tsuchiya N, Habuchi T, Nishimura S-I, Ohyama C. Serum N-glycan alteration associated with renal cell carcinoma detected by high-throughput glycan analysis. J Urol. 2014;191:805–13.CrossRefPubMedGoogle Scholar
  11. Hirose K, Amano M, Hashimoto R, Lee YC, Nishimura S-I. Insight into glycan diversity and evolutionary lineage based on comparative avio-N-glycomics and sialic acid analysis of 88 egg whites of Gallonaserae. Biochemistry. 2011;50:4757–74.CrossRefPubMedGoogle Scholar
  12. Hunter DJ. Pharmacologic therapy for osteoarthritis-the era of disease modification. Nat Rev Rheumatol. 2011;7:13–22.CrossRefPubMedGoogle Scholar
  13. Inafuku S, Noda K, Amano M, Murata M, Saito W, Ohashi T, Kanda A, Nishimura S-I, Ishida S. Alteration of N-glycan profiles in diabetic retinopathy. Invest Ophthalmol Vis Sci. 2015;56:5316–22.CrossRefPubMedGoogle Scholar
  14. Inafuku S, Noda K, Amano M, Nishimura S-I, Ishida S. Increase of sialylated N-glycans in eyes with neovascular glaucoma secondary to proliferative diabetic retinopathy. Curr Eye Res. 2016;41:721–24.Google Scholar
  15. Ishibashi Y, Tobisawa Y, Hatakeyama S, Ohashi T, Tanaka M, Narita S, Koike T, Habuchi T, Nishimra S-I, Oyama C, Yoneyama T. Serum tri- and tetra-antennary N-glycan is a potential predictive biomarker for castration-resistant prostate cancer. Prostate. 2014;74:1521–9.CrossRefPubMedGoogle Scholar
  16. Ishihara T, Kakiya K, Takahashi K, Miwa H, Rokushima M, Yoshinaga T, Tanaka T, Togame T, Takemoto H, Amano M, Iwasaki N, Minami A, Nishimura S-I. Discovery of novel differentiation markers in the early stage of chondrogenesis by glycoform-focused reverse proteomics and genomics. Biochim Biophys Acta. 2014;1840:645–55.CrossRefPubMedGoogle Scholar
  17. Johnson K, Vaingankar S, Chen Y, Moffa A, Goldring MB, Sano K, Jin-Hua P, Sali A, Goding J, Terkeltaub R. Differential mechanisms of inorganic pyrophosphate production by plasma cell membrane glycoprotein-1 and B10 in chondrocytes. Arthritis Rheum. 1999;42:1986–97.CrossRefPubMedGoogle Scholar
  18. Kamiyama T, Yokoo H, Furukawa JI, Kurogochi M, Togashi T, Miura N, Nakanishi K, Kamachi H, Kakisaka T, Tsuruga Y, Taketomi A, Nishimura S-I, Todo S. Identification of novel serum biomarkers of hepatocellular carcinoma using glycomic analysis. Hepatology. 2013;57:2314–25.CrossRefPubMedGoogle Scholar
  19. Kobata A, Endo T. Immobilized lectin columns: useful tools for the fractionation and structural analysis of oligosaccharides. J Chromatogr. 1992;597:111–22.CrossRefPubMedGoogle Scholar
  20. Liang HT, Feng XC, Ma TH. Water channel activity of plasma membrane affects chondrocyte migration and adhesion. Clin Exp Pharmacol Physiol. 2008;35:7–10.CrossRefPubMedGoogle Scholar
  21. Liu Y-C, Yen H-Y, Chen C-Y, Wong C-H, et al. Sialylation and fucosylation of epidermal growth factor suppress its dimerization and activation in lung cancer cells. Proc Natl Acad Sci U S A. 2011;108:11332–7.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Matsuhashi T, Iwasaki N, Nakagawa H, Hato M, Kurogochi M, Majima T, Minami A, Nishimura S-I. Alteration of N-glycans related to articular cartilage deterioration after anterior cruciate ligament transection in rabbits. Osteoarthr Cart. 2008;16:772–8.CrossRefGoogle Scholar
  23. Miura Y, Hato M, Shinohara Y, Kuramoto H, Furukawa J-i, Kurogochi M, Shimaoka H, Tada M, Nakanishi K, Ozaki M, Todo S, Nishimura S-I. BlotGlycoABC™, an integrated glycoblotting technique for rapid and large scale clinical glycomics. Mol Cell Proteomics. 2008;7:370–7.CrossRefPubMedGoogle Scholar
  24. Miyahara K, Nouso K, Saito S, Hiraoka S, Harada K, Takahashi S, Morimoto Y, Kobayashi S, Ikeda F, Miyake Y, Shiraha H, Takaki A, Amano M, Nishimura S-I, Yamamoto K. Serum glycan markers for evaluation of disease activity and prediction of clinical course in patients with ulcerative colitis. PLoS One. 2013;8:e74861.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Miyahara K, Nouso K, Miyake Y, Nakamura S, Obi S, Amano M, Hirose K, Nishimura S-I, Yamamoto K. Serum glycan as a prognostic marker in patients with advanced hepatocellular carcinoma treated with sorafenib. Hepatology. 2014;59:355–6.CrossRefPubMedGoogle Scholar
  26. Nishimura S-I. Toward automated glycan analysis. Adv Carbohydr Chem Biochem. 2011;65:219–71.CrossRefPubMedGoogle Scholar
  27. Nishimura S-I, Niikura K, Kurogochi M, Matsushita T, Fumoto M, Hinou H, Kamitani M, Nakagawa H, Deguchi K, Miura N, Monde K, Kondo H. High-throughput protein glycomics: combined use of chemoselective glycoblotting and MALDI-TOF/TOF mass spectroscopy. Angew Chem Int Ed. 2005;44:91–6.CrossRefGoogle Scholar
  28. Nöth U, Steinert AF, Tuan RS. Technology insight: adult mesenchymal stem cells for osteoarthritis therapy. Nat Clin Pract Rheumatol. 2008;4:371–80.PubMedGoogle Scholar
  29. Nouso K, Amano M, Miyahara K, Ito MI, Morimoto Y, Kato H, Tsutsumi K, Tomoda T, Yamamoto N, Nakamura S, Kobayashi S, Kuwaki K, Hagihara H, Onishi H, Miyake Y, Ikeda F, Shiraha H, Takaki A, Nakahara T, Nishimura S-I, Yamamoto K. Clinical utility of high-throughput glycome analysis in patients with pancreatic cancer. J Gastroenterol. 2013;48:1171–9.CrossRefPubMedGoogle Scholar
  30. Ohtsubo K, Marth JD. Glycosylation in cellular mechanisms of health and disease. Cell. 2006;126:855–67.CrossRefPubMedGoogle Scholar
  31. Przyborski SA, Knowles BB, Ackerman SL. Embryonic phenotype of Unc5h3 mutant mice suggests chemorepulsion during the formation of the rostral cerebellar boundary. Development. 1998;125:41–50.PubMedGoogle Scholar
  32. Rangappa S, Artigas G, Miyoshi R, Yokoi Y, Hayakawa S, Garcia-Martin F, Hinou H, Nishimura S-I. Effect of multiple O-glycosylation states on antibody recognition of the immunodominant motif in MUC1 extracellular tandem repeats. Med Chem Commun. 2016;7:1102–22.Google Scholar
  33. Rehan I, Ueda K, Mitani T, Amano M, Hinou H, Ohashi T, Kondo S, Nishimura S-I. Large-scale glycomics of livestock: discovery of highly sensitive serum biomarkers indicating an environmental stress affecting immune responses and productivity of Holstein dairy cows. J Agr Food Chem. 2015;63:10578–90.CrossRefGoogle Scholar
  34. Sakaguchi Y, Sekiya I, Yagishita K, Muneta T. Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum. 2005;52:2521–9.CrossRefPubMedGoogle Scholar
  35. Terashima M, Amano M, Onodera T, Nishimura S-I, Iwasaki N. Quantitative glycomics monitoring of induced pluripotent- and embryonic stem cells during neuronal differentiation. Stem Cell Res. 2014;13:454–64.CrossRefPubMedGoogle Scholar
  36. Uematsu R, Shinohara Y, Furukawa J-i, Nakagawa H,tpdel Shimaoka H, Deguchi K, Monde K, Nishimura S-I. High throughput quantitative glycomics and glycoform-focused proteomics of murine dermis and epidermis. Mol Cell Proteomics. 2005;4:1977–89.Google Scholar
  37. Uematsu R, Shinohara Y, Nakagawa H, Kurogochi M, Furukawa J-i, Miura Y, Akiyama M, Shimizu H, Nishimura S-I. Glycosylation specific for adhesion molecules in epidermis and its receptor revealed by glycoform-focused reverse genomics. Mol Cell Proteomics. 2009;8:232–44.CrossRefPubMedGoogle Scholar
  38. Urita A, Matsuhashi T, Onodera T, Nakagawa H, Hato M, Amano M, Seito N, Minami A, Nishimura S-I, Iwasaki N. Alterations of high-mannose type N-glycosylation in human and mouse osteoarthritis cartilage. Arthritis Rheumatol. 2011;63:3428–38.CrossRefGoogle Scholar
  39. Wieland HA, Michaelis M, Kirschbaum BJ, Rudolphi KA. Osteoarthritis – an untreatable disease? Nat Rev Drug Discov. 2005;4:331–44.CrossRefPubMedGoogle Scholar
  40. Yamasaki Y, Nouso K, Miyahara K, Wada N, Dohi C, Morimoto Y, Takeuchi Y, Yasunaka T, Kuwaki K, Onishi H, Ikeda F, Miyake Y, Nakamura S, Shiraha H, Takaki A, Amano M, Nishimura S-I, Yamamoto K. Use of noninvasive serum glycan markers to distinguish nonalcoholic steatohepatitis from simple steatosis. J Gastoentol Hepatol. 2015;30:528–34.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Field of Drug Discovery Research, Faculty of Advanced Life ScienceHokkaido UniversitySapporoJapan
  2. 2.Shionogi Pharmaceutical Research CenterShionogi & Co. Ltd., ToyonakaOsakaJapan
  3. 3.Department of Orthopedic SurgeryHokkaido University School of Medicine, Kita-kuSapporoJapan

Personalised recommendations