Determining Skeletal Geometry

  • Vera ZymbalEmail author
  • Fátima BaptistaEmail author
  • Paulo FernandesEmail author
  • Kathleen F. JanzEmail author
Reference work entry
Part of the Biomarkers in Disease: Methods, Discoveries and Applications book series (BDMDA)


Areal bone mineral density (aBMD), assessed by dual-energy x-ray absorptiometry (DXA), at the lumbar spine, total hip, or femoral neck is the single most important criterion for the diagnosis of osteoporosis, i.e., bone fragility, in postmenopausal women and in men aged 50 years old. However, technological and scientific advances during the last two decades have led to the realization that bone fragility and the associated risk of fracture are not solely determined by the aBMD. In response, the International Society for Clinical Densitometry has recently published a position paper on the relevance of the use of geometric bone measurements to estimate the risk of fracture using DXA and quantitative computed tomography (QCT).

The geometry of the skeleton is determined by the bone shape and size and can be quantified using measures that include (a) cross-sectional measures – areas, moments of inertia, radii, circumferences, and cortical thickness – and (b) other specific measures of proximal femur including hip axis length (HAL), neck-shaft angle (NSA), and femoral neck width (FNW). In general larger cross-sectional measures are associated with a smaller risk of bone fracture, while the larger specific measures of the proximal femur are associated with a greater risk of bone fracture. The current evidence concerning the geometry of the skeleton and risk of fracture is not equally conclusive for all measures. At this time, only HAL, derived from DXA, is recommended for evaluation of hip fracture risk in postmenopausal women. Cross-sectional measures or other specific measures of hip geometry parameters should not be used to assess fracture risk.

The risk of bone fracture is conditioned by the biomechanical characteristics of the bone structure in relation to forces resulting from axial mechanical loads, bending, and torsion. Bone fracture can be described as a structural failure due to a force higher than bone’s mechanical resistance. However loads applied during everyday movements, i.e., physical activity within physiological limits, are key determinant for the optimization of bone geometry even without improvements in aBMD. This is particularly the case during the years of growth. Other determinants of bone geometry include interethnic differences, age, and gender. Because these latter determinants are nonmodifiable, they have little potential for intervention at the level of skeletal phenotype.


Bone geometry, bone strength, and dual-energy x-ray absorptiometry (DXA) Finite element analysis (FEA) Fracture risk Hip axis length (HAL) Mechanical loading Neck-shaft angle (NSA) Quantitative computed tomography (QCT) 

List of Abbreviations


Areal bone mineral density


Advanced hip assessment


Cross-sectional area


Cross-sectional moment of inertia


Dual-energy x-ray absorptiometry


Finite element analysis


Femoral neck axis length


Femoral neck length


Femoral neck width


Hip axis length


Hip structural analysis


International Society for Clinical Densitometry


Neck-shaft angle


Polar moment of inertia


Peripheral quantitative computed tomography


Quantitative computed tomography


Volumetric bone mineral density


Section modulus


  1. Ahlborg HG, Nguyen ND, Nguyen TV, Center JR, Eisman JA. Contribution of hip strength indices to hip fracture risk in elderly men and women. J Bone Miner Res. 2005;20(10):1820–7.CrossRefPubMedGoogle Scholar
  2. Alonso CG, Curiel MD, Carranza FH, Cano RP, Perez AD. Femoral bone mineral density, neck-shaft angle and mean femoral neck width as predictors of hip fracture in men and women. Multicenter project for research in osteoporosis. Osteoporos Int. 2000;11(8):714–20.CrossRefPubMedGoogle Scholar
  3. Anderson JY, Trinkaus E. Patterns of sexual, bilateral and interpopulational variation in human femoral neck-shaft angles. J Anat. 1998;192(Pt 2):279–85.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Ashby RL, Ward KA, Roberts SA, Edwards L, Mughal MZ, Adams JE. A reference database for the Stratec XCT-2000 peripheral quantitative computed tomography (pQCT) scanner in healthy children and young adults aged 6–19 years. Osteoporos Int. 2009;20(8):1337–46.CrossRefPubMedGoogle Scholar
  5. Augat P, Reeb H, Claes LE. Prediction of fracture load at different skeletal sites by geometric properties of the cortical shell. J Bone Miner Res. 1996;11(9):1356–63.CrossRefPubMedGoogle Scholar
  6. Beck TJ, Broy SB. Measurement of hip geometry-technical background. J Clin Densitom. 2015;18(3):331–7.CrossRefPubMedGoogle Scholar
  7. Bergot C, Bousson V, Meunier A, Laval-Jeantet M, Laredo JD. Hip fracture risk and proximal femur geometry from DXA scans. Osteoporos Int. 2002;13(7):542–50.CrossRefPubMedGoogle Scholar
  8. Biggemann M, Hilweg D, Brinckmann P. Prediction of the compressive strength of vertebral bodies of the lumbar spine by quantitative computed tomography. Skeletal Radiol. 1988;17(4):264–9.CrossRefPubMedGoogle Scholar
  9. Black DM, Bouxsein ML, Marshall LM, Cummings SR, Lang TF, Cauley JA, Ensrud KE, Nielson CM, Orwoll ES. Proximal femoral structure and the prediction of hip fracture in men: a large prospective study using QCT. J Bone Miner Res. 2008;23(8):1326–33.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bousson V, Le Le Bras A, Roqueplan F, Kang Y, Mitton D, Kolta S, Bergot C, Skalli W, Vicaut E, Kalender W, Engelke K, Laredo JD. Volumetric quantitative computed tomography of the proximal femur: relationships linking geometric and densitometric variables to bone strength. Role for compact bone. Osteoporos Int. 2006;17(6):855–64.CrossRefPubMedGoogle Scholar
  11. Bousson VD, Adams J, Engelke K, Aout M, Cohen-Solal M, Bergot C, Haguenauer D, Goldberg D, Champion K, Aksouh R, Vicaut E, Laredo J-D. In vivo discrimination of hip fracture with quantitative computed tomography: results from the prospective European femur fracture study (EFFECT). J Bone Miner Res. 2011;26(4):881–93.CrossRefPubMedGoogle Scholar
  12. Bouxsein ML. Determinants of skeletal fragility. Best Pract Res Clin Rheumatol. 2005;19(6):897–911.CrossRefPubMedGoogle Scholar
  13. Bouxsein ML, Karasik D. Bone geometry and skeletal fragility. Curr Osteoporos Rep. 2006;4(2):49–56.CrossRefPubMedGoogle Scholar
  14. Bradney M, Pearce G, Naughton G, Sullivan C, Bass S, Beck T, Carlson J, Seeman E. Moderate exercise during growth in prepubertal boys: changes in bone mass, size, volumetric density, and bone strength: a controlled prospective study. J Bone Miner Res. 1998;13(12):1814–21.CrossRefPubMedGoogle Scholar
  15. Brinckmann P, Biggemann M, Hilweg D. Prediction of the compressive strength of human lumbar vertebrae. Clin Biomech. 1989;4 Suppl 2:iii–27.CrossRefGoogle Scholar
  16. Broy SB, Cauley JA, Lewiecki ME, Schousboe JT, Shepherd JA, Leslie WD. Fracture risk prediction by non-BMD DXA measures: the 2015 ISCD official positions part 1: hip geometry. J Clin Densitom. 2015;18(3):287–308.CrossRefPubMedGoogle Scholar
  17. Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res. 2007;22(3):465–75.CrossRefPubMedGoogle Scholar
  18. Burnham JM, Shults J, Petit MA, Semeao E, Beck TJ, Zemel BS, Leonard MB. Alterations in proximal femur geometry in children treated with glucocorticoids for Crohn disease or nephrotic syndrome: impact of the underlying disease. J Bone Miner Res. 2007;22(4):551–9.CrossRefPubMedGoogle Scholar
  19. Carpenter RD. Finite element analysis of the hip and spine based on quantitative computed tomography. Curr Osteoporos Rep. 2013;11(2):156–62.CrossRefPubMedGoogle Scholar
  20. Cheng XG, Nicholson PHF, Boonen S, Lowet G, Brys P, Aerssens J, van der Perre G, Dequeker J. Prediction of vertebral strength in vitro by spinal bone densitometry and calcaneal ultrasound. J Bone Miner Res. 1997;12(10):1721–8.CrossRefPubMedGoogle Scholar
  21. Choi YJ. Dual-energy x-ray absorptiometry: beyond bone mineral density determination. Endocrinol Metab. 2016;31(1):25–30.CrossRefGoogle Scholar
  22. Cummings SR, Cauley JA, Palermo L, Ross PD, Wasnich RD, Black D, Faulkner KG. Racial differences in hip axis lengths might explain racial differences in rates of hip fracture. Study of Osteoporotic Fractures research group. Osteoporos Int. 1994;4(4):226–9.CrossRefPubMedGoogle Scholar
  23. Cummings SR, Bates D, Black DM. Clinical use of bone densitometry: scientific review. JAMA. 2002;288(15):1889–97.CrossRefPubMedGoogle Scholar
  24. Danielson ME, Beck TJ, Lian Y, Karlamangla AS, Greendale GA, Ruppert K, Lo J, Greenspan S, Vuga M, Cauley JA. Ethnic variability in bone geometry as assessed by hip structure analysis: findings from the hip strength across the menopausal transition study. J Bone Miner Res. 2013;28(4):771–9.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Duan Y, Beck TJ, Wang XF, Seeman E. Structural and biomechanical basis of sexual dimorphism in femoral neck fragility has its origins in growth and aging. J Bone Miner Res. 2003;18(10):1766–74.CrossRefPubMedGoogle Scholar
  26. Faulkner KG, Wacker WK, Barden HS, Simonelli C, Burke PK, Ragi S, Del Rio L. Femur strength index predicts hip fracture independent of bone density and hip axis length. Osteoporos Int. 2006;17(4):593–9.CrossRefPubMedGoogle Scholar
  27. Fernandes P, Rodrigues H, Jacobs C. A model of bone adaptation using a global optimisation criterion based on the trajectorial theory of Wolff. Comput Methods Biomech Biomed Engin. 1999;2(2):125–38.CrossRefPubMedGoogle Scholar
  28. Flicker L, Faulkner KG, Hopper JL, Green RM, Kaymakci B, Nowson CA, Young D, Wark JD. Determinants of hip axis length in women aged 10–89 years: a twin study. Bone. 1996;18(1):41–5.CrossRefPubMedGoogle Scholar
  29. Folgado J, Fernandes PR, Jacobs CR, Pellegrini VD. Influence of femoral stem geometry, material and extent of porous coating on bone ingrowth and atrophy in cementless total hip arthroplasty: an iterative finite element model. Comput Methods Biomech Biomed Engin. 2009;12(2):135–45.CrossRefPubMedGoogle Scholar
  30. Forwood MR, Bailey DA, Beck TJ, Mirwald RL, Baxter-Jones ADG, Uusi-Rasi K. Sexual dimorphism of the femoral neck during the adolescent growth spurt: a structural analysis. Bone. 2004;35(4):973–81.CrossRefPubMedGoogle Scholar
  31. Forwood MR, Baxter-Jones AD, Beck TJ, Mirwald RL, Howard A, Bailey DA. Physical activity and strength of the femoral neck during the adolescent growth spurt: a longitudinal analysis. Bone. 2006;38(4):576–83.CrossRefPubMedGoogle Scholar
  32. Friedman AW. Important determinants of bone strength: beyond bone mineral density. J Clin Rheumatol. 2006;12(2):70–7.CrossRefPubMedGoogle Scholar
  33. Gao G, Zhang ZL, Zhang H, Hu WW, Huang QR, Lu JH, Hu YQ, Li M, Liu YJ, He JW, Gu JM, Yu JB. Hip axis length changes in 10,554 males and females and the association with femoral neck fracture. J Clin Densitom. 2008;11(3):360–6.CrossRefPubMedGoogle Scholar
  34. Gilligan I, Chandraphak S, Mahakkanukrauh P. Femoral neck-shaft angle in humans: variation relating to climate, clothing, lifestyle, sex, age and side. J Anat. 2013;223(2):133–51.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Gnudi S, Malavolta N, Testi D, Viceconti M. Differences in proximal femur geometry distinguish vertebral from femoral neck fractures in osteoporotic women. Br J Radiol. 2004;77(915):219–23.CrossRefPubMedGoogle Scholar
  36. Gnudi S, Sitta E, Pignotti E. Prediction of incident hip fracture by femoral neck bone mineral density and neck-shaft angle: a 5-year longitudinal study in post-menopausal females. Br J Radiol. 2012;85(1016):e467–73.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Goulding A, Gold E, Cannan R, Williams S, Lewis-Barned NJ. Changing femoral geometry in growing girls: a cross-sectional DEXA study. Bone. 1996;19(6):645–9.CrossRefPubMedGoogle Scholar
  38. Haapasalo H, Kontulainen S, Sievanen H, Kannus P, Jarvinen M, Vuori I. Exercise-induced bone gain is due to enlargement in bone size without a change in volumetric bone density: a peripheral quantitative computed tomography study of the upper arms of male tennis players. Bone. 2000;27(3):351–7.CrossRefPubMedGoogle Scholar
  39. Hamilton CJ, Swan VJ, Jamal SA. The effects of exercise and physical activity participation on bone mass and geometry in postmenopausal women: a systematic review of pQCT studies. Osteoporos Int. 2010;21(1):11–23.CrossRefPubMedGoogle Scholar
  40. Houston CS, Zaleski WA. The shape of vertebral bodies and femoral necks in relation to activity. Radiology. 1967;89(1):59–66.CrossRefPubMedGoogle Scholar
  41. Jacobs CR, Simo JC, Beaupre GS, Carter DR. Adaptive bone remodeling incorporating simultaneous density and anisotropy considerations. J Biomech. 1997;30(6):603–13.CrossRefPubMedGoogle Scholar
  42. Janz KF, Gilmore JM, Levy SM, Letuchy EM, Burns TL, Beck TJ. Physical activity and femoral neck bone strength during childhood: the Iowa Bone Development Study. Bone. 2007;41(2):216–22.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Janz KF, Letuchy EM, Burns TL, Eichenberger Gilmore JM, Torner JC, Levy SM. Objectively measured physical activity trajectories predict adolescent bone strength: Iowa Bone Development Study. Br J Sports Med. 2014;48(13):1032–6.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Kalkwarf HJ, Laor T, Bean JA. Fracture risk in children with a forearm injury is associated with volumetric bone density and cortical area (by peripheral QCT) and areal bone density (by DXA). Osteoporos Int. 2011;22(2):607–16.CrossRefPubMedGoogle Scholar
  45. Kaptoge S, Beck TJ, Reeve J, Stone KL, Hillier TA, Cauley JA, Cummings SR. Prediction of incident hip fracture risk by femur geometry variables measured by hip structural analysis in the Study of Osteoporotic Fractures. J Bone Miner Res. 2008;23(12):1892–904.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Kontulainen S, Sievanen H, Kannus P, Pasanen M, Vuori I. Effect of long-term impact-loading on mass, size, and estimated strength of humerus and radius of female racquet-sports players: a peripheral quantitative computed tomography study between young and old starters and controls. J Bone Miner Res. 2002;17(12):2281–9.CrossRefPubMedGoogle Scholar
  47. Lang TF. The bone-muscle relationship in men and women. J Osteoporos. 2011;2011:702735.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Lang TF, Keyak JH, Heitz MW, Augat P, Lu Y, Mathur A, Genant HK. Volumetric quantitative computed tomography of the proximal femur: precision and relation to bone strength. Bone. 1997;21(1):101–8.CrossRefPubMedGoogle Scholar
  49. Leonard MB, Elmi A, Mostoufi-Moab S, Shults J, Burnham JM, Thayu M, Kibe L, Wetzsteon RJ, Zemel BS. Effects of sex, race, and puberty on cortical bone and the functional muscle bone unit in children, adolescents, and young adults. J Clin Endocrinol Metab. 2010;95(4):1681–9.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Leslie WD, Lix LM, Morin SN, Johansson H, Odén A, McCloskey EV, Kanis JA. Adjusting hip fracture probability in men and women using hip axis length: the Manitoba bone density database. J Clin Densitom. 2016;19(3):326–31.CrossRefPubMedGoogle Scholar
  51. Li GW, Chang SX, Xu Z, Chen Y, Bao H, Shi X. Prediction of hip osteoporotic fractures from composite indices of femoral neck strength. Skeletal Radiol. 2013;42(2):195–201.CrossRefPubMedGoogle Scholar
  52. Liu D, Manske SL, Kontulainen SA, Tang C, Guy P, Oxland TR, McKay HA. Tibial geometry is associated with failure load ex vivo: a MRI, pQCT and DXA study. Osteoporos Int. 2007;18(7):991–7.CrossRefPubMedGoogle Scholar
  53. Machado MM, Fernandes PR, Cardadeiro G, Baptista F. Femoral neck bone adaptation to weight-bearing physical activity by computational analysis. J Biomech. 2013;46(13):2179–85.CrossRefPubMedGoogle Scholar
  54. Machado MM, Fernandes PR, Zymbal V, Baptista F. Human proximal femur bone adaptation to variations in hip geometry. Bone. 2014;67:193–9.CrossRefPubMedGoogle Scholar
  55. Melton LJ, Riggs BL, Keaveny TM, Achenbach SJ, Hoffmann PF, Camp JJ, Rouleau PA, Bouxsein ML, Amin S, Atkinson EJ, Robb RA, Khosla S. Structural determinants of vertebral fracture risk. J Bone Miner Res. 2007;22(12):1885–92.CrossRefPubMedGoogle Scholar
  56. Micklesfield LK, Norris SA, Pettifor JM. Determinants of bone size and strength in 13-year-old South African children: the influence of ethnicity, sex and pubertal maturation. Bone. 2011;48(4):777–85.CrossRefPubMedGoogle Scholar
  57. Moro M, Hecker AT, Bouxsein ML, Myers ER. Failure load of thoracic vertebrae correlates with lumbar bone mineral density measured by DXA. Calcif Tissue Int. 1995;56(3):206–9.CrossRefPubMedGoogle Scholar
  58. Moyer-Mileur LJ, Quick JL, Murray MA. Peripheral quantitative computed tomography of the Tibia: pediatric reference values. J Clin Densitom. 2008;11(2):283–94.CrossRefPubMedGoogle Scholar
  59. Nakahara I, Takao M, Sakai T, Nishii T, Yoshikawa H, Sugano N. Gender differences in 3D morphology and bony impingement of human hips. J Orthop Res. 2011;29(3):333–9.CrossRefPubMedGoogle Scholar
  60. Nissen N, Hauge EM, Abrahamsen B, Jensen JE, Mosekilde L, Brixen K. Geometry of the proximal femur in relation to age and sex: a cross-sectional study in healthy adult Danes. Acta Radiol. 2005;46(5):514–8.CrossRefPubMedGoogle Scholar
  61. Pande I, O’Neill TW, Pritchard C, Scott DL, Woolf AD. Bone mineral density, hip axis length and risk of hip fracture in men: results from the Cornwall Hip Fracture Study. Osteoporos Int. 2000;11(10):866–70.CrossRefPubMedGoogle Scholar
  62. Petit MA, McKay HA, MacKelvie KJ, Heinonen A, Khan KM, Beck TJ. A randomized school-based jumping intervention confers site and maturity-specific benefits on bone structural properties in girls: a hip structural analysis study. J Bone Miner Res. 2002;17(3):363–72.CrossRefPubMedGoogle Scholar
  63. Quental C, Folgado J, Fernandes PR, Monteiro J. Subject-specific bone remodelling of the scapula. Comput Methods Biomech Biomed Engin. 2014;17(10):1129–43.CrossRefPubMedGoogle Scholar
  64. Rauch F, Schönau E. Peripheral quantitative computed tomography of the proximal radius in young subjects – new reference data and interpretation of results. J Musculoskelet Neuronal Interact. 2008;8(3):217–26.PubMedGoogle Scholar
  65. Riggs BL, Melton Iii LJ, Robb RA, Camp JJ, Atkinson EJ, Peterson JM, Rouleau PA, McCollough CH, Bouxsein ML, Khosla S. Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J Bone Miner Res. 2004;19(12):1945–54.CrossRefPubMedGoogle Scholar
  66. Rivadeneira F, Zillikens MC, De Laet CE, Hofman A, Uitterlinden AG, Beck TJ, Pols HA. Femoral neck BMD is a strong predictor of hip fracture susceptibility in elderly men and women because it detects cortical bone instability: the Rotterdam study. J Bone Miner Res. 2007;22(11):1781–90.CrossRefPubMedGoogle Scholar
  67. Seeman E. Bone modeling and remodeling. Crit Rev Eukaryot Gene Expr. 2009;19(3):219–33.CrossRefPubMedGoogle Scholar
  68. Singer K, Edmondston S, Day R, Breidahl P, Price R. Prediction of thoracic and lumbar vertebral body compressive strength: correlations with bone mineral density and vertebral region. Bone. 1995;17(2):167–74.CrossRefPubMedGoogle Scholar
  69. Skaggs DL, Loro ML, Pitukcheewanont P, Tolo V, Gilsanz V. Increased body weight and decreased radial cross-sectional dimensions in girls with forearm fractures. J Bone Miner Res. 2001;16(7):1337–42.CrossRefPubMedGoogle Scholar
  70. Szulc P, Duboeuf F, Schott AM, Dargent-Molina P, Meunier PJ, Delmas PD. Structural determinants of hip fracture in elderly women: re-analysis of the data from the EPIDOS study. Osteoporos Int. 2006;17(2):231–6.CrossRefPubMedGoogle Scholar
  71. Wang MC, Aguirre M, Bhudhikanok GS, Kendall CG, Kirsch S, Marcus R, Bachrach LK. Bone mass and hip axis length in healthy Asian, black, Hispanic, and white American youths. J Bone Miner Res. 1997;12(11):1922–35.CrossRefPubMedGoogle Scholar
  72. Wang Q, Teo JW, Ghasem-Zadeh A, Seeman E. Women and men with hip fractures have a longer femoral neck moment arm and greater impact load in a sideways fall. Osteoporos Int. 2009;20(7):1151–6.CrossRefPubMedGoogle Scholar
  73. Wang Q, Chen D, Cheng SM, Nicholson P, Alen M, Cheng S. Growth and aging of proximal femoral bone: a study with women spanning three generations. J Bone Miner Res. 2015;30(3):528–34.CrossRefPubMedGoogle Scholar
  74. Weinans H, Huiskes R, Grootenboer HJ. The behavior of adaptive bone-remodeling simulation models. J Biomech. 1992;25(12):1425–41.CrossRefPubMedGoogle Scholar
  75. Wilson J, Eardley W, Odak S, Jennings A. Progressive change in femoral neck shaft angle with age. Inj Extra. 2009;40(10):206.CrossRefGoogle Scholar
  76. Yang L, Burton AC, Bradburn M, Nielson CM, Orwoll ES, Eastell R. Distribution of bone density in the proximal femur and its association with hip fracture risk in older men: the osteoporotic fractures in men (MrOS) study. J Bone Miner Res. 2012;27(11):2314–24.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Zemel B, Bass S, Binkley T, Ducher G, Macdonald H, McKay H, Moyer-Mileur L, Shepherd J, Specker B, Ward K, Hans D. Peripheral quantitative computed tomography in children and adolescents: the 2007 ISCD Pediatric Official Positions. J Clin Densitom. 2008;11(1):59–74.CrossRefPubMedGoogle Scholar
  78. Zhang H, Hu YQ, Zhang ZL. Age trends for hip geometry in Chinese men and women and the association with femoral neck fracture. Osteoporos Int. 2011;22(9):2513–22.CrossRefPubMedGoogle Scholar
  79. Zymbal V, Rebocho LM, Cardadeiro G, Baptista F. Lean soft tissue and proximal femur geometry in young adults. 10th international symposium on body composition; 2014 June. Cascais; 2014a.Google Scholar
  80. Zymbal V, Rebocho LM, Cardadeiro G, Baptista F. Physical activity, bone geometry, and bone mass at the proximal femur regions in young adults. American College of Sports Medicine annual meeting; 2014 May. Orlando; 2014b.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Exercise and Health Laboratory, CIPER, Faculdade de Motricidade HumanaUniversidade de LisboaCruz QuebradaPortugal
  2. 2.LAETA, IDMEC, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal
  3. 3.Department of Health and Human Physiology; Department of EpidemiologyUniversity of IowaIowa CityUSA

Personalised recommendations