Tartrate-Resistant Acid Phosphatase as a Biomarker of Bone Remodeling

  • Divya VohoraEmail author
  • Bushra Parveen
Reference work entry
Part of the Biomarkers in Disease: Methods, Discoveries and Applications book series (BDMDA)


Tartrate-resistant acid phosphatase (TRACP) is an enzyme abundantly expressed in tissues such as the bone, spleen, liver, lungs, and skin. It has two isoforms, namely, TRACP 5a and TRACP 5b. TRACP 5a is specific for the placenta and lungs, whereas TRACP 5b is exclusive to the bone, spleen, thymus, kidney, colon, and brain. This chapter discusses the physiological functions as well as the pathological conditions associated with TRACP. While TRACP 5a is a prognostic marker for chronic inflammation, TRCAP 5b is a marker of osteoclast number. Plethora of studies revealed its importance in treatment monitoring, owing to absence of diurnal fluctuations, food effect, and accumulation in renal and liver impairment. Through this work, an effort has been made to collate the scientific information on the role and mechanism of TRACP in bone resorption and its advantages over other bone markers.


Tartrate-resistant acid phosphatase TRACP 5a TRACP 5b Bone resorption Osteoclast number 

List of Abbreviations


Type II autosomal dominant osteopetrosis


Acid phosphatase


Bone morphogenetic protein


Core-binding factor alpha 1


C-reactive protein


Collagen-type 1 cross-linked C-telopeptide


Functional secretory domain


Functional secretory domain


Glucagon-like peptide 2


Hormone replacement therapy


Insulin-like growth factor 1


Immunoglobulin M


Interleukin 6


Kilo Dalton


Nuclear factor kappa B


Amino-terminal collagen cross-link




Osteoclast differentiation factor


Osteoprotegerin ligand


Plant acid phosphatase


Polymerase chain reaction


Rheumatoid arthritis


Receptor-activated nuclear factor kappa ligand


Reactive oxygen species


Tumor growth factor β


Tartrate-resistant acid phosphatase


Tumor necrosis factor-related activation-induced cytokine


  1. Adams LM, Warburton MJ, Hayman AR. Human breast cancer cell lines and tissues express tartrate-resistant acid phosphatase (TRAP). Cell Biol Int. 2007;31:191–5.CrossRefPubMedGoogle Scholar
  2. Alatalo SL, Ivaska KK, Peng Z, et al. Serum tartrate resistant acid phosphatase 5b and osteocalcin in naturally occurring osteopetrotic rats. J Bone Miner Res. 2003;2 Suppl 18:119.Google Scholar
  3. Alatalo SL, Ivaska KK, Waguespack SG, et al. Osteoclast derived serum tartrate-resistant acid phosphatase 5b in Albers-Schonberg disease (type II autosomal dominant osteopetrosis). Clin Chem. 2004;50:883–90.CrossRefPubMedGoogle Scholar
  4. Araujo CL, Vihko PT. Structure of acid phosphatases. Methods Mol Biol. 2013;1053:155–66.CrossRefPubMedGoogle Scholar
  5. Avbersek-Luznik I, Balon BP, Rus I, et al. Increased bone resorption in HD patients: is it caused by elevated RANKL synthesis? Nephrol Dial Transplant. 2005;20:566–70.CrossRefPubMedGoogle Scholar
  6. Brehme CS, Roman S, Shaffer J, et al. Tartrate-resistant acid phosphatase forms complexes with a-macroglobulin in serum. J Bone Miner Res. 1999;14:311–8.CrossRefPubMedGoogle Scholar
  7. Bull H, Murray PG, Thomas D, Fraser AM, Nelson PN. Acid phosphatases. J Clin Pathol: Mol Pathol. 2002;55:65–72.Google Scholar
  8. Capeller B, Caffier H, Sutterlin MW, et al. Evaluation of tartrate-resistant acid phosphatase (TRAP) 5b as serum marker of bone metastases in human breast cancer. Anticancer Res. 2003;23:1011–5.PubMedGoogle Scholar
  9. Chao TY, Ho CL, Lee SH, et al. Tartrate-resistant acid phosphatase 5b as a serum marker of bone metastasis in breast cancer patients. J Biomed Sci. 2004;11:511–6.CrossRefPubMedGoogle Scholar
  10. Chao CY, Lee SH, Chen MM, Neustadt DH, Chaudhry UA, Yam LT, Janckila AJ. Development of immunoassays for serum tartrate-resistant acid phosphatase isoform 5a. Clin Chim Acta. 2005;359:132–40.CrossRefPubMedGoogle Scholar
  11. Chao T, Wu Y, Janckila AJ. Tartrate-resistant acid phosphatase isoform 5b (TRACP 5b) as a serum maker for cancer with bone metastasis. Clin Chim Acta. 2010;411:1553–64.CrossRefPubMedGoogle Scholar
  12. Chellaiah MA, Kizer N, Biswas R, Alvarez U, Strauss-Schoenberger J, Rifas L, Rittling SR, Denhardt DT, Hruska KA. Osteopontin deficiency produces osteoclast dysfunction due to reduced CD44 surface expression. Mol Biol Cell. 2003;14(1):173–89.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chu P, Chao TY, Lin YF, et al. Correlation between histomorphometric parameters of bone resorption and serum type 5b tartrate-resistant acid phosphatase in uremic patients on maintenance hemodialysis. Am J Kidney Dis. 2003;41:1052–9.CrossRefPubMedGoogle Scholar
  14. Clark SA, Ambrose WW, Anderson TR, et al. Ultrastructural localization of tartrate-resistant, purple acid phosphatase in rat osteoclasts by histochemistry and immunocytochemistry. J Bone Miner Res. 1989;4:399–405.CrossRefPubMedGoogle Scholar
  15. Delmas PD, Eastell R, Garnero P, Seibel MJ, Stepan J. The use of biochemical markers of bone turnover in osteoporosis. Committee of Scientific Advisors of the International Osteoporosis Foundation. Osteoporos Int. 2000;11(6):S2–17.CrossRefPubMedGoogle Scholar
  16. Efstratiadis T, Moss DW. Tartrate-resistant acid phosphatase in human alveolar macrophages. Enzyme. 1985;34:140–3.PubMedGoogle Scholar
  17. Ek-Rylander B, Flores M, Wendal M, et al. Dephosphorylation of osteopontin and bone sialoprotein by osteoclastic tartrate-resistant acid phosphatase. Modulation of osteoclast adhesion in vitro. J Biol Chem. 1994;269:14853–6.PubMedGoogle Scholar
  18. Ek-Rylander B, Barkhem T, Ljusberg J, Ohman L, Andersson KK, Andersson G. Comparative studies of rat recombinant purple acid phosphatase and bone tartrate-resistant acid phosphatase. Biochem J. 1997;15(321):305–11.CrossRefGoogle Scholar
  19. Fagerlund K. Osteoclastic tartrate-resistant acid phosphatase 5b. Diagnostic use and biological significance in bone physiology. Department of Cell Biology and Anatomy, Institute of Biomedicine, University of Turku, Turku and the National Graduate School of Musculoskeletal Disorders and Biomaterials (TBGS). 2009; Supervised by: Professor H. Kalervo Väänänen and Adjunct Professor Jussi M. Halleen.Google Scholar
  20. Fohr B, Woitage H, Seibel M. Molecular markers of bone turnover. Basic and analytical aspects. Chapter 8. In: Orwoll ES, Bliziotes M, editors. Osteoporosis: pathophysiology and clinical management. Springer science + business media; Totowa, NJ 07512 USA: Humana Press. 2003. pp 163–83.Google Scholar
  21. Funhoff EG, Ljusberg J, Wang Y, Andersson G, Averill BA. Mutational analysis of the interaction between active site residues and the loop region in mammalian purple acid phosphatases. Biochemistry. 2001;40:11614–22.CrossRefPubMedGoogle Scholar
  22. Funhoff EG, de Jongh TE, Averill BA. Direct observation of multiple protonation states in recombinant human purple acid phosphatase. J Biol Inorg Chem. 2005;10:550–63.CrossRefPubMedGoogle Scholar
  23. Gerdhem P, Ivaska KK, Alatalo SL, et al. Biochemical markers of bone metabolism and prediction of fracture in elderly women. J Bone Miner Res. 2004;19:386–93.CrossRefPubMedGoogle Scholar
  24. Hadjidakis DJ, Androulakis II. Bone remodeling. Ann NY Acad Sci. 2006;1092:385–96.CrossRefPubMedGoogle Scholar
  25. Halleen JM, Karp M, Viloma S, et al. Two-site immunoassays for osteoclastic tartrate-resistant acid phosphatase based on characterization of six monoclonal antibodies. J Bone Miner Res. 1999a;14:464–9.CrossRefPubMedGoogle Scholar
  26. Halleen JM, Räisänen S, Salo JJ, et al. Intracellular fragmentation of bone resorption products by reactive oxygen species generated by osteoclastic tartrate-resistant acid phosphatase. J Biol Chem. 1999b;274:22907–10.CrossRefPubMedGoogle Scholar
  27. Halleen JM, Alatalo SL, Janckila AJ, et al. Serum tartrate resistant acid phosphatase 5b is a specific and sensitive marker of bone resorption. Clin Chem. 2001;47:597–600.PubMedGoogle Scholar
  28. Halleen JM, Ylipahkala H, Alatalo SL, et al. Serum tartrate -resistant acid phosphatase 5b, but not 5a, correlates with other markers of bone turnover and bone mineral density. Calcif Tissue Int. 2002;71:20–5.CrossRefPubMedGoogle Scholar
  29. Halleen JM, Räisänen SR, Alatalo SL, et al. Potential function for the ROS-generating activity of TRACP. J Bone Miner Res. 2003;18(10):1908–11.CrossRefPubMedGoogle Scholar
  30. Halleen JM, Tiitinen SL, Ylipahkala H, et al. Tartrate-resistant acid phosphatase 5b (TRACP 5b) as a marker of bone resorption. Clin Lab. 2006;52(9–10):499–509.PubMedGoogle Scholar
  31. Hannon RA, Clowes JA, Eagleton AC, et al. Clinical performance of immunoreactive tartrate resistant acid phosphatase isoform 5b as a marker of bone resorption. Bone. 2004;34:187–94.CrossRefPubMedGoogle Scholar
  32. Hansdottir H, Franzson L, Prestwood K, et al. The effect of raloxifene on markers of bone turnover in older women living in long-term care facilities. J Am Geriatr Soc. 2004;52:779–83.CrossRefPubMedGoogle Scholar
  33. Hayman AR. Tartrate-resistant acid phosphatase (TRAP) and the osteoclast/immune cell dichotomy. Autoimmunity. 2008;41(3):218–22.CrossRefPubMedGoogle Scholar
  34. Hayman AR, Cox TM. Purple acid phosphatase of the human macrophage and osteoclast. Characterization, molecular properties, and crystallization of the recombinant di-iron-oxo protein secreted by baculovirus-infected insect cells. J Biol Chem. 1994;269:1294–300.PubMedGoogle Scholar
  35. Hayman AR, Cox TM. Tartrate resistant acid phosphatase knockout mice. J Bone Miner Res. 2003;18(10):1905–7.CrossRefPubMedGoogle Scholar
  36. Hayman AR, Warburton MJ, Pringle JA, et al. Purification and characterization of a tartrate-resistant acid phosphatase from human osteoclastomas. Biochem J. 1989;261:601–9.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Hayman AR, Jones SJ, Boyde A, et al. Mice lacking tartrate-resistant acid phosphatase (ACP5) have disrupted endochondral ossification and mild osteopetrosis. Development. 1997;122:3151–62.Google Scholar
  38. Hayman AR, Bune AJ, Bradley JR, et al. Osteoclastic tartrate-resistant acid phosphatase (Acp 5): its localization to dendritic cells and diverse murine tissues. J Histochem Cytochem. 2000a;48:219–28.CrossRefPubMedGoogle Scholar
  39. Hayman AR, Bune AJ, Cox TM. Widespread expression of tartrate-resistant acid phosphatase (Acp 5) in the mouse embryo. J Anat. 2000b;196(Pt 3):433–41.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Henriksen DB, Alexandersen P, Hartmann B, et al. GLP-2 administration attenuates nocturnal bone resorption in postmenopausal women: a 14-day study. J Bone Miner Res. 2005;20 Suppl 1:1225.Google Scholar
  41. Honig A, Rieger L, Kapp M, et al. Increased tartrate resistant acid phosphatase (TRAP) expression in malignant breast, ovarian and melanoma tissue: an investigational study. BMC Cancer. 2006;6:199.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Janckila AJ, Woodford TA, Lam KW, et al. Protein-tyrosine phosphatase activity of hairy cell tartrate-resistant acid phosphatase. Leukemia. 1992;6:199–203.PubMedGoogle Scholar
  43. Janckila AJ, Takahashi K, Sun SZ, et al. Tartrate-resistant acid phosphatase isoform 5b as serum marker for osteoclastic activity. Clin Chem. 2001;47:74–80.PubMedGoogle Scholar
  44. Janckila AJ, Neustadt DH, Nakasato YR, et al. Serum tartrate resistant acid phosphatase isoforms in rheumatoid arthritis. Clin Chim Acta. 2002;320:49–58.CrossRefPubMedGoogle Scholar
  45. Janckila AJ, Parthasarathy RN, Parthasarathy LK, et al. Properties and expression of human tartrate-resistant acid phosphatase isoform 5a by monocyte-derived cells. J Leukoc Biol. 2005;77:209–18.CrossRefPubMedGoogle Scholar
  46. Janckila AJ, Neustadt DH, Yam LT. Significance of serum TRACP in rheumatoid arthritis. J Bone Miner Res. 2008;23:1287–95.CrossRefPubMedGoogle Scholar
  47. Janckila AJ, Lin HF, Wu YY, et al. Serum tartrate-resistant acid phosphatase isoform 5a (TRACP5a) as a potential risk marker in cardiovascular disease. Clin Chim Acta. 2011;412:963.CrossRefPubMedGoogle Scholar
  48. Johnson RB, Henderson JS. Enhancement by sodium orthovanadate of the formation and mineralization of bone nodules by chick osteoblasts in vitro. Arch Oral Biol. 1997;42:271–6.CrossRefPubMedGoogle Scholar
  49. Jung K, Lein M, Stephan C, et al. Comparison of 10 serum bone turnover markers in prostate carcinoma patients with bone metastatic spread: diagnostic and prognostic implications. Int J Cancer. 2004;111:783–91.CrossRefPubMedGoogle Scholar
  50. Kaija H, Alatalo SL, Halleen JM, et al. Phosphatase and oxygen radical-generating activities of mammalian purple acid phosphatase are functionally independent. Biochem Biophys Res Commun. 2002;292:128–32.CrossRefPubMedGoogle Scholar
  51. Kalervo VH, Zhao H, Mulari M, Halleen JM. The cell biology of osteoclast function. J Cell Sci. 2000;113:377–81.Google Scholar
  52. Kini U, Nandeesh BN. Physiology of bone formation, remodeling, and metabolism. In: Fogelman I, editor. Radionuclide and hybrid bone imaging. Berlin/Heidelberg: Springer; 2012. p. 29–57.CrossRefGoogle Scholar
  53. Klabunde T, Sträter N, Krebs B, et al. Structural relationship between the mammalian Fe(III)-Fe(II) and the Fe(III)-Zn(II) plant purple acid phosphatases. FEBS Lett. 1995;367(1):56–60.CrossRefPubMedGoogle Scholar
  54. Koizumi M, Takahashi S, Ogata E. Comparison of serum bone resorption markers in the diagnosis of skeletal metastasis. Anticancer Res. 2003;23:4095–9.PubMedGoogle Scholar
  55. Kong YY, Yoshida H, Sarosi I, et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature. 1999;397:315–23.CrossRefPubMedGoogle Scholar
  56. Lam KW, Li CY, Yam LT, et al. Comparison of the tartrate-resistant acid phosphatase in Gaucher’s disease and leukemic reticuloendotheliosis. Clin Biochem. 1981;14:177–81.CrossRefPubMedGoogle Scholar
  57. Lång P, Schultzberg M, Andersson G. Expression and distribution of tartrate-resistant purple acid phosphatase in the rat nervous system. J Histochem Cytochem. 2001;49(3):379–96.CrossRefPubMedGoogle Scholar
  58. Lee HB, Alam MR, Seol JW, et al. Tartrate-resistant acid phosphatase, matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-2 in early stages of canine osteoarthritis. Vet Med. 2008;53(4):214–20.Google Scholar
  59. Li CY, Yam LT, Lam KW. Studies of acid phosphatase isoenzymes in human leukocytes demonstration of isoenzyme cell specificity. J Histochem Cytochem. 1970a;18(12):901–10.CrossRefPubMedGoogle Scholar
  60. Li CY, Yam LT, Lam KW. Acid phosphatase isoenzyme in human leukocytes in normal and pathologic conditions. J Histochem Cytochem. 1970b;18(7):473–81.CrossRefPubMedGoogle Scholar
  61. Li YP, Chen W, Liang Y, et al. Atp6I-deficient mice exhibit severe osteopetrosis due to loss of osteoclast-mediated extracellular acidification. Nat Genet. 1999;23:4447–51.Google Scholar
  62. Ljusberg J, Ek-Rylander B, Andersson G. Tartrate-resistant purple acid phosphatase is synthesized as a latent proenzyme and activated by cysteine proteinases. Biochem J. 1999;343(Pt 1):63–9.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Llyod JB, Mason RW. Subcellular Chemistry, Biology of the Lysosome, vol. 27. Boston: Springer US; 1996: Imprint : Springer.Google Scholar
  64. Lyubimova NV, Pashkov MV, Tyulyandin SA, et al. Tartrate-resistant acid phosphatase as a marker of bone metastases in patients with breast cancer and prostate cancer. Bull Exp Biol Med. 2004;138:77–9.CrossRefPubMedGoogle Scholar
  65. Minkin C. Bone acid phosphatase: tartrate-resistant acid phosphatase as a marker of osteoclast function. Calcif Tissue Int. 1982;34:285–90.CrossRefPubMedGoogle Scholar
  66. Mose S, Menzel C, Kurth AA, et al. Tartrate-resistant acid phosphatase 5b as serum marker of bone metabolism in cancer patients. Anticancer Res. 2003;23(3C):2783–8.PubMedGoogle Scholar
  67. Moss GP. Enzyme Nomenclature. Recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the Nomenclature and Classification of Enzymes by the Reactions they Catalyse. Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (NC-IUBMB). In consultation with the IUPAC-IUBMB Joint Commission on Biochemical Nomenclature (JCBN). Accessed on Nov 2015.
  68. Nenonen A, Cheng S, Ivaska KK, et al. Serum TRACP 5b is a useful marker for monitoring alendronate treatment: comparison with other markers of bone turnover. J Bone Miner Res. 2005;20:1804–12.CrossRefPubMedGoogle Scholar
  69. Nesbitt S, Nesbit A, Helfrich, et al. Biochemical characterisation of human osteoclast integrins. Osteoclasts express αvβ3, α2β1 and αvβ1 integrins. J Biol Chem. 1993;268:16737–45.Google Scholar
  70. Nesbitt SA, Horton MA. Trafficking of matrix collagens through bone-resorbing osteoclasts. Science. 1997;276(5310):266–9.CrossRefPubMedGoogle Scholar
  71. Perez-Amodio S, Jansen DC, Tigchelaar-Gutter W, et al. Endocytosis of tartrate-resistant acid phosphatase by osteoblast-like cells is followed by inactivation of the enzyme. Calcif Tissue Int. 2006;78(4):248–54.CrossRefPubMedGoogle Scholar
  72. Phan TCA, Xu J, Zheng MH. Interaction between osteoblast and osteoclast: impact in bone disease. Histol Histopathol. 2004;19:1325–44.PubMedGoogle Scholar
  73. Reichel H, Esser A, Roth HJ, et al. Influence of PTH assay methodology on differential diagnosis of renal bone disease. Nephrol Dial Transplant. 2003;18:759–68.CrossRefPubMedGoogle Scholar
  74. Reinholt FP, Mengarelli-Widholm S, Ek-Rylander B, et al. Ultrastructural localisation of tartrate-resistant acid ATPase in bone. J Bone Miner Res. 1990;5:1055–61.CrossRefPubMedGoogle Scholar
  75. Rico H, Villa LF. Serum tartrate resistant acid phosphatase (TRAP) as a biochemical marker of bone remodelling. Calcif Tissue Int. 1993;52:149–50.CrossRefPubMedGoogle Scholar
  76. Rissanen JP, Suominen MI, Peng Z, Halleen JM. Secreted tartrate-resistant acid phosphatase 5b is a marker of osteoclast number in human osteoclast cultures and the rat ovariectomy model. Calcif Tissue Int. 2008;82(2):108–15.CrossRefPubMedGoogle Scholar
  77. Robinson DB, Glew RH. Acid phosphatase in Gaucher’s disease. Clin Chem. 1980;26:371–82.PubMedGoogle Scholar
  78. Rosenbrock H, Seifert-Klauss V, Kaspar S, et al. Changes of biochemical bone markers during the menopausal transition. Clin Chem Lab Med. 2002;40:143–51.CrossRefPubMedGoogle Scholar
  79. Salminen E, Ala-Houhala M, Korpela J, et al. Serum tartrate-resistant acid phosphatase 5b (TRACP 5b) as a marker of skeletal changes in prostate cancer. Acta Oncol. 2005;44:742–7.CrossRefPubMedGoogle Scholar
  80. Schlosnagle DC, Bazer FW, Tsibris JC, et al. An iron-containing phosphatase induced by progesterone in the uterine fluids of pigs. J Biol Chem. 1974;249:7574–9.PubMedGoogle Scholar
  81. Sheu TJ, Schwarz EM, Martinez DA, et al. A phage display technique identifies a novel regulator of cell differentiation. J Biol Chem. 2003;278:438–43.CrossRefPubMedGoogle Scholar
  82. Sibille JC, Doi K, Aisen P. Hydroxyl radical formation and ironbinding proteins. Stimulation by the purple acid phosphatases. J Biol Chem. 1987;262:59–62.PubMedGoogle Scholar
  83. Silver IA, Murrills RJ, Etherington DJ. Microelectrode studies on the acid microenvironment beneath adherent macrophages and osteoclasts. Exp Cell Res. 1988;175(2):266–76.CrossRefPubMedGoogle Scholar
  84. Sodek J, Ganss B, McKee MD. Osteopontin. Crit Rev Oral Biol Med. 2000;11(3):279–303.CrossRefPubMedGoogle Scholar
  85. Solberg LB, Brorson S, Stordalen GA. Increased tartrate-resistant acid phosphatase expression in osteoblasts and osteocytes in experimental osteoporosis in rats. Calci Tissue Int. 2014;94(5):510–21.CrossRefGoogle Scholar
  86. Steinbeck MJ, Jr Appel WH, Verhoeven AJ, et al. NADPH-oxidase expression and in situ production of superoxide by osteoclasts actively resorbing bone. J Clin Biol. 1994;126:765–72.CrossRefGoogle Scholar
  87. Stepan JJ, Silinkova-Malkova E, Havranek T, et al. Relationship of plasma tartrate resistant acid phosphatase to the bone isoenzyme of serum alkaline phosphatase in hyperparathyroidism. Clin Chim Acta. 1983;133:189–200.CrossRefPubMedGoogle Scholar
  88. Takahashi K, Janckila AJ, Sun SZ, et al. Electrophoretic study of tartrate-resistant acid phosphatase isoforms in endstage renal disease and rheumatoid arthritis. Clin Chim Acta. 2000;301:147–58.CrossRefPubMedGoogle Scholar
  89. Teitelbaum SL. Bone resorption by osteoclasts. Science. 2000;289(5484):1504–8.CrossRefPubMedGoogle Scholar
  90. Terpos E, de la Fuente J, Szydlo R, et al. Tartrate-resistant acid phosphatase isoform 5b; a novel serum marker for monitoring bone disease in multiple myeloma. Int J Cancer. 2003a;106:455–7.CrossRefPubMedGoogle Scholar
  91. Terpos E, Samarkos M, Meletis C, et al. Unusual association between increased bone resorption and presence of paroxysmal nocturnal hemoglobinuria phenotype in multiple myeloma. Int J Hematol. 2003b;7:344–8.CrossRefGoogle Scholar
  92. Terpos E, Viniou N, de la Fuente J, et al. Pamidronate is superior to ibandronate in decreasing bone resorption, interleukin-6 and beta 2-microglobulin in multiple myeloma. Eur J Haematol. 2003c;70:34–42.CrossRefPubMedGoogle Scholar
  93. Terpos E, Polito M, Szydlo R, et al. Autologous stem cell transplantation normalizes abnormal bone remodeling and sRANKL/osteoprotegerin ratio in patients with multiple myeloma. Leukemia. 2004;18:1420–6.CrossRefPubMedGoogle Scholar
  94. Torres R, de la Piedra C, Rapado A. Clinical usefulness of serum tartrate-resistant acid phosphatase in Paget’s disease of bone: correlation with other biochemical markers of bone remodelling. Calcif Tissue Int. 1991;49(1):14–6.CrossRefPubMedGoogle Scholar
  95. Välimäki MJ, Tähtelä R. Serum tartrate-resistant acid phosphatase 5b or amino-terminal propeptide of type I procollagen for monitoring bisphosphonate therapy in postmenopausal osteoporosis? Clin Chem. 2005;51:2382–5.CrossRefPubMedGoogle Scholar
  96. Wang Y, Norgard M, Andersson G. Nglycosylation influences the latency and catalytic properties of mammalian purple acid phosphatase. Arch Biochem Biophys. 2005;435:147–56.CrossRefPubMedGoogle Scholar
  97. Woitge HW, Pecherstorfer M, Li Y, et al. Novel serum markers of bone resorption: clinical assessment and comparison with established urinary indices. J Bone Miner Res. 1999;14:792–801.CrossRefPubMedGoogle Scholar
  98. Yam LT, Li CY, Lam KW. Tartrate-resistant acid phosphatase isoenzyme in the reticulum cells of leukemic reticuloendotheliosis. N Engl J Med. 1971;284:357.CrossRefPubMedGoogle Scholar
  99. Yamamoto T, Nagai H. Ultrastructural localization of tartrate-resistant acid phosphatase activity in rat osteoblasts. J Electron Microsc (Tokyo). 1998;47(6):659–63.CrossRefGoogle Scholar
  100. Yaziji H, Janckila AJ, Lear SC, Martin AW, Yam LT. Immunohistochemical detection of tartrate resistant acid phosphatase in non-hematopoietic human tissues. Am J Clin Pathol. 1995;104:397–402.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Faculty of PharmacyJamia HamdardNew DelhiIndia

Personalised recommendations