Sirtuins as Markers of Bone Disease: A Focus on Osteoarthritis and Osteoporosis

  • Élie AbedEmail author
  • Pascal ReboulEmail author
  • Daniel LajeunesseEmail author
Reference work entry
Part of the Biomarkers in Disease: Methods, Discoveries and Applications book series (BDMDA)


Sirtuins are widely distributed class III NAD+-dependent histone deacetylases (HDAC) involved in epigenetic regulation. There are seven protein members of the sirtuins, SIRT1-7, each of which specific sites of action linked with the intracellular localization, and acting on selective target proteins. Sirtuins are involved in a number of processes ranging from cell cycle regulation, apoptosis/proliferation, DNA repair, tumor suppression, energy metabolism, mitochondrial homeostasis, metabolism, cellular senescence/aging, and inflammation. Sirtuins also play a key role on the recruitment and differentiation of mesenchymal stem cells and via this pathway play an important role in the maintenance and function of bone tissue. Hence, sirtuins are involved in bone pathologies such as osteoarthritis and osteoporosis and can serve as biomarkers for these pathologies.


Sirtuins Osteoarthritis Osteoporosis Mesenchymal stem cells Wnt/β-catenin 

List of abbreviations


Adenosine diphosphate


5’ Adenosine monophosphate-activated protein kinase


Activator protein-1 complex IkBα and NF-kB


Body mass index


Bone morphogenetic protein-2


Core-binding factor alpha 1/ Runt-related transcription factor 2


Canonical Wnt/β-catenin


Cysteine-knot protein abberative in neuroblastoma




E1A binding protein p300


Forkhead box O




Glycogen synthase kinase 3 beta


Histone 3 is deacetylated at lysine


Histone acetyl transferases


Human bone marrow stromal cellsMmp13 matrix metalloproteinase-13


NAD + -dependent histone deacetylases


Hepatocyte growth factor




c-Jun N-terminal kinase


Lymphoid enhancer-binding factor


Low-density lipoprotein receptor-related protein 5/6


Liver X receptor


Mesenchymal stem cell


Nicotinamide adenine dinucleotide


Transcription factor critically involved with self-renewal of undifferentiated embryonic stem cells




Octamer-binding transcription factor 4






Peroxisome proliferator-activated receptor gamma coactivator 1-alpha


Protein kinase C


Peroxisome proliferator-activated receptor γ


Parathyroid hormone


Receptor activator of nuclear factor kappa-B ligand

Rho GTPase

Rho family of guanosine triphosphate hydrolase


Secreted frizzled-related proteins


Sirtuin 1


Sirtuin 6




SRY (sex determining region Y)-box 2


Type 2 diabetes


T cell factor


Transforming growth factor beta-1


Tumor necrosis factor


Wnt inhibitory factor 1




  1. Abdallah BM, Kassem M. Human mesenchymal stem cells: from basic biology to clinical applications. Gene Ther. 2008;15(2):109–16.CrossRefPubMedGoogle Scholar
  2. Abed E, Couchourel D, Delalandre A, Duval N, Pelletier JP, Martel-Pelletier J, Lajeunesse D. Low sirtuin 1 levels in human osteoarthritis subchondral osteoblasts lead to abnormal sclerostin expression which decreases Wnt/beta-catenin activity. Bone. 2014;59:28–36.CrossRefPubMedGoogle Scholar
  3. Abed E, Bouvard B, Martineau X, Jouzeau JY, Reboul P, Lajeunesse D. Elevated hepatocyte growth factor levels in osteoarthritis osteoblasts contribute to their altered response to bone morphogenetic protein-2 and reduced mineralization capacity. Bone. 2015;75:111–9.CrossRefPubMedGoogle Scholar
  4. Artsi H, Cohen-Kfir E, Gurt I, Shahar R, Bajayo A, Kalish N, Bellido TM, Gabet Y, Dresner-Pollak R. The Sirtuin1 activator SRT3025 down-regulates sclerostin and rescues ovariectomy-induced bone loss and biomechanical deterioration in female mice. Endocrinology. 2014;155(9):3508–15.CrossRefPubMedGoogle Scholar
  5. Aspden RM, Scheven BAA, Hutchison JD. Osteoarthritis as a systemic disorder including stromal cell differentiation and lipid metabolism. Lancet. 2001;357:1118–20.CrossRefPubMedGoogle Scholar
  6. Avalos JL, Bever KM, Wolberger C. Mechanism of sirtuin inhibition by nicotinamide: altering the NAD(+) cosubstrate specificity of a Sir2 enzyme. Mol Cell. 2005;17(6):855–68.CrossRefPubMedGoogle Scholar
  7. Basu-Roy U, Ambrosetti D, Favaro R, Nicolis SK, Mansukhani A, Basilico C. The transcription factor Sox2 is required for osteoblast self-renewal. Cell Death Differ. 2010;17(8):1345–53.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Blander G, Guarente L. The Sir2 family of protein deacetylases. Annu Rev Biochem. 2004;73:417–35.CrossRefPubMedGoogle Scholar
  9. Boily G, Seifert EL, Bevilacqua L, He XH, Sabourin G, Estey C, Moffat C, Crawford S, Saliba S, Jardine K, Xuan J, Evans M, Harper ME, McBurney MW. SirT1 regulates energy metabolism and response to caloric restriction in mice. PLoS One. 2008;3(3), e1759.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Burr DB. Increased biological activity of subchondral mineralized tissues underlies the progressive deterioration of articular cartilage in osteoarthritis. J Rheumatol. 2005;32(6):1156–8. discussion 1158–1159.PubMedGoogle Scholar
  11. Canto C, Jiang LQ, Deshmukh AS, Mataki C, Coste A, Lagouge M, Zierath JR, Auwerx J. Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab. 2010;11(3):213–9.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Carlsson A, Nillson BE, Westlin NE. Bone mass in primary coxarthrosis. Acta Orthop Scand. 1979;50:187–9.CrossRefPubMedGoogle Scholar
  13. Chan BY, Fuller ES, Russell AK, Smith SM, Smith MM, Jackson MT, Cake MA, Read RA, Bateman JF, Sambrook PN, Little CB. Increased chondrocyte sclerostin may protect against cartilage degradation in osteoarthritis. Osteoarthritis Cartilage. 2011;19(7):874–85.CrossRefPubMedGoogle Scholar
  14. Chen H, Liu X, Chen H, Cao J, Zhang L, Hu X, Wang J. Role of SIRT1 and AMPK in mesenchymal stem cells differentiation. Ageing Res Rev. 2014;13:55–64.CrossRefPubMedGoogle Scholar
  15. Chen JR, Lazarenko OP, Blackburn ML, Badger TM, Ronis MJ. Soy protein isolate inhibits high-fat diet-induced senescence pathways in osteoblasts to maintain bone acquisition in male rats. Endocrinology. 2015;156(2):475–87.CrossRefPubMedGoogle Scholar
  16. Christensen R, Bartels EM, Astrup A, Bliddal H. Effect of weight reduction in obese patients diagnosed with knee osteoarthritis: a systematic review and meta-analysis. Ann Rheum Dis. 2007;66(4):433–9.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Cohen-Kfir E, Artsi H, Levin A, Abramowitz E, Bajayo A, Gurt I, Zhong L, D’Urso A, Toiber D, Mostoslavsky R, Dresner-Pollak R. Sirt1 is a regulator of bone mass and a repressor of Sost encoding for sclerostin, a bone formation inhibitor. Endocrinology. 2011;152(12):4514–24.CrossRefPubMedGoogle Scholar
  18. Coste A, Louet JF, Lagouge M, Lerin C, Antal MC, Meziane H, Schoonjans K, Puigserver P, O’Malley BW, Auwerx J. The genetic ablation of SRC-3 protects against obesity and improves insulin sensitivity by reducing the acetylation of PGC-1{alpha}. Proc Natl Acad Sci U S A. 2008;105(44):17187–92.CrossRefPubMedPubMedCentralGoogle Scholar
  19. D’Onofrio N, Vitiello M, Casale R, Servillo L, Giovane A, Balestrieri ML. Sirtuins in vascular diseases: emerging roles and therapeutic potential. Biochim Biophys Acta. 2015;1852(7):1311–22.CrossRefPubMedGoogle Scholar
  20. Davies-Tuck ML, Hanna F, Davis SR, Bell RJ, Davison SL, Wluka AE, Adams J, Cicuttini FM. Total cholesterol and triglycerides are associated with the development of new bone marrow lesions in asymptomatic middle-aged women – a prospective cohort study. Arthritis Res Ther. 2009;11(6):R181.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Day TF, Guo X, Garrett-Beal L, Yang Y. Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell. 2005;8(5):739–50.CrossRefPubMedGoogle Scholar
  22. de Boer J, Siddappa R, Gaspar C, van Apeldoorn A, Fodde R, van Blitterswijk C. Wnt signaling inhibits osteogenic differentiation of human mesenchymal stem cells. Bone. 2004;34(5):818–26.CrossRefPubMedGoogle Scholar
  23. Dumond H, Presle N, Terlain B, Mainard D, Loeuille D, Netter P, Pottie P. Evidence for a key role of leptin in osteoarthritis. Arthritis Rheum. 2003;48:3118–29.CrossRefPubMedGoogle Scholar
  24. Dvir-Ginzberg M, Gagarina V, Lee EJ, Hall DJ. Regulation of cartilage-specific gene expression in human chondrocytes by SirT1 and nicotinamide phosphoribosyltransferase. J Biol Chem. 2008;283(52):36300–10.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Edwards JR, Perrien DS, Fleming N, Nyman JS, Ono K, Connelly L, Moore MM, Lwin ST, Yull FE, Mundy GR, Elefteriou F. Silent information regulator (Sir)T1 inhibits NF-kappaB signaling to maintain normal skeletal remodeling. J Bone Miner Res. 2013;28(4):960–9.CrossRefPubMedGoogle Scholar
  26. Ehnert S, Freude T, Ihle C, Mayer L, Braun B, Graeser J, Flesch I, Stockle U, Nussler AK, Pscherer S. Factors circulating in the blood of type 2 diabetes mellitus patients affect osteoblast maturation – Description of a novel in vitro model. Exp Cell Res. 2015. Mar 15;332(2):247–58.Google Scholar
  27. Fei Y, Shimizu E, McBurney MW, Partridge NC. Sirtuin 1 is a negative regulator of parathyroid hormone stimulation of matrix metalloproteinase 13 expression in osteoblastic cells. J Biol Chem. 2015. Mar 27;290(13):8373–82.Google Scholar
  28. Felson DT, Anderson JJ, Naimark A, Walker AM, Meenan RF. Obesity and knee osteoarthritis. Ann Intern Med. 1988;109:18–24.CrossRefPubMedGoogle Scholar
  29. Felson DT, Zhang Y, Hannan MT, Naimark A, Weissman B, Aliabadi P, Levy D. Risk factors for incident radiographic knee osteoarthritis in the elderly: the Framingham Study. Arthritis Rheum. 1997;40:728–33.CrossRefPubMedGoogle Scholar
  30. Feng J, Liu S, Ma S, Zhao J, Zhang W, Qi W, Cao P, Wang Z, Lei W. Protective effects of resveratrol on postmenopausal osteoporosis: regulation of SIRT1-NF-kappaB signaling pathway. Acta Biochim Biophys Sin (Shanghai). 2014;46(12):1024–33.CrossRefGoogle Scholar
  31. Finkel T, Deng CX, Mostoslavsky R. Recent progress in the biology and physiology of sirtuins. Nature. 2009;460(7255):587–91.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Foss MVL, Byers PD. Bone density, osteoarthrosis of the hip and fracture of the upper end of the femur. Ann Rheum Dis. 1972;31:259–64.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Fujita N, Matsushita T, Ishida K, Kubo S, Matsumoto T, Takayama K, Kurosaka M, Kuroda R. Potential involvement of SIRT1 in the pathogenesis of osteoarthritis through the modulation of chondrocyte gene expressions. J Orthop Res. 2011;29(4):511–5.CrossRefPubMedGoogle Scholar
  34. Fulco M, Sartorelli V. Comparing and contrasting the roles of AMPK and SIRT1 in metabolic tissues. Cell Cycle. 2008;7(23):3669–79.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Gabay O, Oppenhiemer H, Meir H, Zaal K, Sanchez C, Dvir-Ginzberg M. Increased apoptotic chondrocytes in articular cartilage from adult heterozygous SirT1 mice. Ann Rheum Dis. 2012;71(4):613–6.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Gaur T, Lengner CJ, Hovhannisyan H, Bhat RA, Bodine PV, Komm BS, Javed A, van Wijnen AJ, Stein JL, Stein GS, Lian JB. Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J Biol Chem. 2005;280(39):33132–40.CrossRefPubMedGoogle Scholar
  37. Ghosh HS, McBurney M, Robbins PD. SIRT1 negatively regulates the mammalian target of rapamycin. PLoS One. 2010;5(2), e9199.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Gordon MD, Nusse R. Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J Biol Chem. 2006;281(32):22429–33.CrossRefPubMedGoogle Scholar
  39. Gregory CA, Gunn WG, Reyes E, Smolarz AJ, Munoz J, Spees JL, Prockop DJ. How Wnt signaling affects bone repair by mesenchymal stem cells from the bone marrow. Ann N Y Acad Sci. 2005;1049:97–106.CrossRefPubMedGoogle Scholar
  40. Guévremont M, Martel-Pelletier J, Massicotte F, Tardif G, Pelletier JP, Ranger P, Lajeunesse D, Reboul P. Human adult chondrocytes express hepatocyte growth factor (HGF) isoforms but not HGF. Potential implication of osteoblasts for the HGF presence in cartilage. J Bone Miner Res. 2003;18:1073–81.CrossRefPubMedGoogle Scholar
  41. Haigis MC, Guarente LP. Mammalian sirtuins – emerging roles in physiology, aging, and calorie restriction. Genes Dev. 2006;20(21):2913–21.CrossRefPubMedGoogle Scholar
  42. Henriksen M, Christensen R, Danneskiold-Samsoe B, Bliddal H. Changes in lower extremity muscle mass and muscle strength after weight loss in obese patients with knee osteoarthritis: a prospective cohort study. Arthritis Rheum. 2012;64(2):438–42.CrossRefPubMedGoogle Scholar
  43. Herranz D, Munoz-Martin M, Canamero M, Mulero F, Martinez-Pastor B, Fernandez-Capetillo O, Serrano M. Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nat Commun. 2010;1:3.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Hordon LD, Stewart SP, Troughton PR, Wright V, Horsman A, Smith MA. Primary generalized osteoarthritis and bone mass. Br J Rheumatol. 1993;32:1059–61.CrossRefPubMedGoogle Scholar
  45. Hurley MV. Quadriceps weakness in osteoarthritis. Curr Opin Rheumatol. 1998;10:246–50.CrossRefPubMedGoogle Scholar
  46. Hurley MV. The role of muscle weakness in the pathogenesis of osteoarthritis. Rheum Dis Clin North Am. 1999;25(2):283–98.CrossRefPubMedGoogle Scholar
  47. Imai S, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 2000;403(6771):795–800.CrossRefPubMedGoogle Scholar
  48. Iyer S, Han L, Bartell SM, Kim HN, Gubrij I, de Cabo R, O’Brien CA, Manolagas SC, Almeida M. Sirtuin1 (Sirt1) promotes cortical bone formation by preventing beta-catenin sequestration by FoxO transcription factors in osteoblast progenitors. J Biol Chem. 2014;289(35):24069–78.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Kok SH, Hou KL, Hong CY, Chao LH, Hsiang-Hua Lai E, Wang HW, Yang H, Shun CT, Wang JS, Lin SK. Sirtuin 6 modulates hypoxia-induced apoptosis in osteoblasts via inhibition of glycolysis: implication for pathogenesis of periapical lesions. J Endod. 2015;41(10):1631–7.CrossRefPubMedGoogle Scholar
  50. Komori T. Regulation of osteoblast differentiation by transcription factors. J Cell Biochem. 2006;99(5):1233–9.CrossRefPubMedGoogle Scholar
  51. Kumar R, Mohan N, Upadhyay AD, Singh AP, Sahu V, Dwivedi S, Dey AB, Dey S. Identification of serum sirtuins as novel noninvasive protein markers for frailty. Aging Cell. 2014;13(6):975–80.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Kwon HS, Ott M. The ups and downs of SIRT1. Trends Biochem Sci. 2008;33(11):517–25.CrossRefPubMedGoogle Scholar
  53. Lajeunesse D, Reboul P. Subchondral bone in osteoarthritis: a biologic link with articular cartilage leading to abnormal remodeling. Curr Opin Rheumatol. 2003;15:628–33.CrossRefPubMedGoogle Scholar
  54. Lam YY, Peterson CM, Ravussin E. Resveratrol vs. calorie restriction: data from rodents to humans. Exp Gerontol. 2013;48(10):1018–24.CrossRefPubMedGoogle Scholar
  55. Landry J, Sutton A, Tafrov ST, Heller RC, Stebbins J, Pillus L, Sternglanz R. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc Natl Acad Sci U S A. 2000;97(11):5807–11.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Leslie WD, Morin SN. Osteoporosis epidemiology 2013: implications for diagnosis, risk assessment, and treatment. Curr Opin Rheumatol. 2014;26(4):440–6.CrossRefPubMedGoogle Scholar
  57. Ling L, Nurcombe V, Cool SM. Wnt signaling controls the fate of mesenchymal stem cells. Gene. 2009;433(1–2):1–7.CrossRefPubMedGoogle Scholar
  58. Lisignoli G, Cristino S, Toneguzzi S, Grassi F, Piacentini A, Cavallo C, Facchini A, Mariani E. IL1beta and TNFalpha differently modulate CXCL13 chemokine in stromal cells and osteoblasts isolated from osteoarthritis patients: evidence of changes associated to cell maturation. Exp Gerontol. 2004;39(4):659–65.CrossRefPubMedGoogle Scholar
  59. Liu G, Vijayakumar S, Grumolato L, Arroyave R, Qiao H, Akiri G, Aaronson SA. Canonical Wnts function as potent regulators of osteogenesis by human mesenchymal stem cells. J Cell Biol. 2009;185(1):67–75.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Liu M, Wilk SA, Wang A, Zhou L, Wang RH, Ogawa W, Deng C, Dong LQ, Liu F. Resveratrol inhibits mTOR signaling by promoting the interaction between mTOR and DEPTOR. J Biol Chem. 2010;285(47):36387–94.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Lohmander LS. Articular cartilage and osteoarthrosis. The role of molecular markers to monitor breakdown, repair and disease. J Anat. 1994;184:477–92.PubMedPubMedCentralGoogle Scholar
  62. Lupsa BC, Insogna K. Bone health and osteoporosis. Endocrinol Metab Clin North Am. 2015;44(3):517–30.CrossRefPubMedGoogle Scholar
  63. Luyten FP. Mesenchymal stem cells in osteoarthritis. Curr Opin Rheumatol. 2004;16(5):599–603.CrossRefPubMedGoogle Scholar
  64. Magnusson K, Hagen KB, Osteras N, Nordsletten L, Natvig B, Haugen IK. Diabetes is associated with increased hand pain in erosive hand osteoarthritis: data from a population-based study. Arthritis Care Res. 2015;67(2):187–95.CrossRefGoogle Scholar
  65. Matsuzaki T, Matsushita T, Takayama K, Matsumoto T, Nishida K, Kuroda R, Kurosaka M. Disruption of Sirt1 in chondrocytes causes accelerated progression of osteoarthritis under mechanical stress and during ageing in mice. Ann Rheum Dis. 2014;73(7):1397–404.CrossRefPubMedGoogle Scholar
  66. Michan S, Sinclair D. Sirtuins in mammals: insights into their biological function. Biochem J. 2007;404(1):1–13.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Murphy JM, Dixon K, Beck S, Fabian D. Reduced chondrogenic and adipogenic activity of mesenchymal stem cells from patients with advanced osteoarthritis. Arthritis Rheum. 2002;46:704–13.CrossRefPubMedGoogle Scholar
  68. Muschler GF, Nitto H, Boehm CA, Easley KA. Age- and gender-related changes in the cellularity of human bone marrow and the prevalence of osteoblastic progenitors. J Orthop Res. 2001;19:117–25.CrossRefPubMedGoogle Scholar
  69. Mutabaruka MS, Aoulad Aissa M, Delalandre A, Lavigne M, Lajeunesse D. Local leptin production in osteoarthritis subchondral osteoblasts may be responsible for their abnormal phenotypic expression. Arthritis Res Ther. 2010;12:R20.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Nemoto S, Fergusson MM, Finkel T. Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science. 2004;306(5704):2105–8.CrossRefPubMedGoogle Scholar
  71. Park SB, Seo KW, So AY, Seo MS, Yu KR, Kang SK, Kang KS. SOX2 has a crucial role in the lineage determination and proliferation of mesenchymal stem cells through Dickkopf-1 and c-MYC. Cell Death Differ. 2012;19(3):534–45.CrossRefPubMedGoogle Scholar
  72. Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T, Machado De Oliveira R, Leid M, McBurney MW, Guarente L. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature. 2004;429(6993):771–6.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Powell A, Teichtahl AJ, Wluka AE, Cicuttini FM. Obesity: a preventable risk factor for large joint osteoarthritis which may act through biomechanical factors. Br J Sports Med. 2005;39(1):4–5.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Ramis MR, Esteban S, Miralles A, Tan DX, Reiter RJ. Caloric restriction, resveratrol and melatonin: role of SIRT1 and implications for aging and related-diseases. Mech Ageing Dev. 2015;146–148:28–41.CrossRefPubMedGoogle Scholar
  75. Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature. 2005;434(7035):843–50.CrossRefPubMedGoogle Scholar
  76. Rizzoli R, Bruyere O, Cannata-Andia JB, Devogelaer JP, Lyritis G, Ringe JD, Vellas B, Reginster JY. Management of osteoporosis in the elderly. Curr Med Res Opin. 2009;25(10):2373–87.CrossRefPubMedGoogle Scholar
  77. Sauve AA, Wolberger C, Schramm VL, Boeke JD. The biochemistry of sirtuins. Annu Rev Biochem. 2006;75:435–65.CrossRefPubMedGoogle Scholar
  78. Scharstuhl A, Vitters EL, van der Kraan PM, van den Berg WB. Reduction of osteophyte formation and synovial thickening by adenoviral overexpression of transforming growth factor beta/bone morphogenetic protein inhibitors during experimental osteoarthritis. Arthritis Rheum. 2003;48:3442–51.CrossRefPubMedGoogle Scholar
  79. Schemies J, Uciechowska U, Sippl W, Jung M. NAD(+) -dependent histone deacetylases (sirtuins) as novel therapeutic targets. Med Res Rev. 2010;30(6):861–89.CrossRefPubMedGoogle Scholar
  80. Seo E, Basu-Roy U, Gunaratne PH, Coarfa C, Lim DS, Basilico C, Mansukhani A. SOX2 regulates YAP1 to maintain stemness and determine cell fate in the osteo-adipo lineage. Cell Rep. 2013;3(6):2075–87.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Shakibaei M, Buhrmann C, Mobasheri A. Resveratrol-mediated SIRT-1 interactions with p300 modulate receptor activator of NF-kappaB ligand (RANKL) activation of NF-kappaB signaling and inhibit osteoclastogenesis in bone-derived cells. J Biol Chem. 2011;286(13):11492–505.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Simic P, Zainabadi K, Bell E, Sykes DB, Saez B, Lotinun S, Baron R, Scadden D, Schipani E, Guarente L. SIRT1 regulates differentiation of mesenchymal stem cells by deacetylating beta-catenin. EMBO Mol Med. 2013;5(3):430–40.CrossRefPubMedPubMedCentralGoogle Scholar
  83. Sugatani T, Agapova O, Malluche HH, Hruska KA. SIRT6 deficiency culminates in low-turnover osteopenia. Bone. 2015;81:168–77.CrossRefPubMedPubMedCentralGoogle Scholar
  84. Sun H, Wu Y, Fu D, Liu Y, Huang C. SIRT6 regulates osteogenic differentiation of rat bone marrow mesenchymal stem cells partially via suppressing the nuclear factor-kappaB signaling pathway. Stem Cells. 2014;32(7):1943–55.CrossRefPubMedGoogle Scholar
  85. Taipaleenmaki H, Abdallah BM, Aldamash A, Saamanen AM, Kassem M. Wnt signalling mediates the cross-talk between bone marrow derived preadipocytic and pre-osteoblastic cell populations. Exp Cell Res. 2011.Google Scholar
  86. Thomas T, Gori F, Khosla S, Jensen MD, Burguera B, Riggs BL. Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology. 1999;140:1630–8.CrossRefPubMedGoogle Scholar
  87. Tsai CC, Su PF, Huang YF, Yew TL, Hung SC. Oct4 and Nanog directly regulate Dnmt1 to maintain self-renewal and undifferentiated state in mesenchymal stem cells. Mol Cell. 2012;47(2):169–82.CrossRefPubMedGoogle Scholar
  88. Vandermeersch S, Geusens P, Nijs J, Dequeker J. Total body mineral measurements in osteoarthritis, osteoporosis and normal controls. Current Research in Osteoporosis and Bone Mineral Measurement. In: Ring EF, editor. London: British Institute of Radiology; 1990. p. 49.Google Scholar
  89. Vaquero A, Scher MB, Lee DH, Sutton A, Cheng HL, Alt FW, Serrano L, Sternglanz R, Reinberg D. SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis. Genes Dev. 2006;20(10):1256–61.CrossRefPubMedPubMedCentralGoogle Scholar
  90. Veeman MT, Axelrod JD, Moon RT. A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling. Dev Cell. 2003;5(3):367–77.CrossRefPubMedGoogle Scholar
  91. Watts NB, Lewiecki EM, Miller PD, Baim S. National Osteoporosis Foundation 2008 clinician’s guide to prevention and treatment of osteoporosis and the World Health Organization Fracture Risk Assessment Tool (FRAX): what they mean to the bone densitometrist and bone technologist. J Clin Densitom. 2008;11(4):473–7.CrossRefPubMedGoogle Scholar
  92. Yoon DS, Choi Y, Jang Y, Lee M, Choi WJ, Kim SH, Lee JW. SIRT1 directly regulates SOX2 to maintain self-renewal and multipotency in bone marrow-derived mesenchymal stem cells. Stem Cells. 2014;32(12):3219–31.CrossRefPubMedGoogle Scholar
  93. Yuan HF, Zhai C, Yan XL, Zhao DD, Wang JX, Zeng Q, Chen L, Nan X, He LJ, Li ST, Yue W, Pei XT. SIRT1 is required for long-term growth of human mesenchymal stem cells. J Mol Med (Berl). 2012;90(4):389–400.CrossRefGoogle Scholar
  94. Zhen G, Wen C, Jia X, Li Y, Crane JL, Mears SC, Askin FB, Frassica FJ, Chang W, Yao J, Carrino JA, Cosgarea A, Artemov D, Chen Q, Zhao Z, Zhou X, Riley L, Sponseller P, Wan M, Lu WW, Cao X. Inhibition of TGF-beta signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat Med. 2013;19(6):704–12.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Centre de recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM)MontréalCanada
  2. 2.Biopôle de l’Université de Lorraine – Campus biologie-santéUMR7365 CNRS Université de Lorraine, IMoPAVandœuvre-lès-Nancy cedexFrance
  3. 3.Département of médicineCentre de recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de MontréalMontréalCanada

Personalised recommendations