Bone-Related Proteins as Markers in Vascular Remodeling

  • Alexander E. BerezinEmail author
Reference work entry
Part of the Biomarkers in Disease: Methods, Discoveries and Applications book series (BDMDA)


Recent evidences reported that bone is a metabolically active tissue that undergoes continuous remodeling that realizes through the activity of osteoclasts and osteoblasts. The family of bone-related proteins includes several active proteins, i.e., osteopontin (OPN), osteoprotegerin (OPG), osteonectin (OSN), osteocalcin (OCN), sclerostin, and RANKL/RANK system that regulate bone formation, matrix reposition, and remodeling. More evidences indicate that bone-related proteins are involved in extra bone mineralization, calcification at ectopic sites, and they might play a pivotal role in atherosclerosis, plaque formation, vascular remodeling and integrity, neovascularization, and malignancy. This review is dedicated to the discussion of controversial role of the bone-related proteins among patients with cardiovascular disease and a predictive value of bone-related proteins as biomarker at risk stratification.


Bone-related proteins Osteopontin Osteoprotegerine Osteonectin Osteocalcin Cardiovascular diseases Age-related diseases Metabolic comorbidities 

List of Abbreviations


Acute coronary syndrome


Coronary artery bypass grafting


Coronary artery disease


Chronic heart failure


C-reactive protein


Major adverse cardiac events


Myocardial infarction










Receptor activator of nuclear factor-kB ligand


  1. Alford AI, Hankenson KD. Matricellular proteins: extracellular modulators of bone development, remodeling, and regeneration. Bone. 2006;38(6):749–57.CrossRefPubMedGoogle Scholar
  2. Almeida M. Aging mechanisms in bone. Bonekey Rep. 2012;1:1.CrossRefGoogle Scholar
  3. Alves RD, Eijken M, van de Peppel J, van Leeuwen JP. Calcifying vascular smooth muscle cells and osteoblasts: independent cell types exhibiting extracellular matrix and biomineralization-related mimicries. BMC Genomics. 2014;15:965.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Anderson DM, Maraskovsky E, Billingsley WL, et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature. 1997;390:175–9.CrossRefPubMedGoogle Scholar
  5. Baron R, Kneissel M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med. 2013;19(2):179–92.CrossRefPubMedGoogle Scholar
  6. Behnes M, Brueckmann M, Lang S, et al. Diagnostic and prognostic value of osteopontin in patients with acute congestive heart failure. Eur J Heart Fail. 2013;15(12):1390–400.CrossRefPubMedGoogle Scholar
  7. Berezin AE, Kremzer AA. Circulating osteopontin as a marker of early coronary vascular calcification in type two diabetes mellitus patients with known asymptomatic coronary artery disease. Atherosclerosis. 2013;229(2):475–81.CrossRefPubMedGoogle Scholar
  8. Berezin AE, Kremzer AA. Relationship between serum RANKL/osteoprotegerin complex and endothelial progenitor cells in ischemic chronic heart failure. J Cardiol Ther. 2014;1(8):189–95.Google Scholar
  9. Bjerre M, Munk K, Sloth AD, et al. High osteoprotegerin levels predict MACCE in STEMI patients, but are not associated with myocardial salvage. Scand Cardiovasc J. 2014;48(4):209–15.CrossRefPubMedGoogle Scholar
  10. Bostrom K, Watson KE, Horn S, et al. Bone morphogenetic protein expression in human atherosclerotic lesions. J Clin Invest. 1993;91:1800–9.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Boyce BF, Xing L. Biology of RANK, RANKL, and osteoprotegerin. Arthritis Res Ther. 2007a;9 Suppl 1:S1.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Boyce BF, Xing L. The RANKL/RANK/OPG pathway. Curr Osteoporos Rep. 2007b;5(3):98–104.CrossRefPubMedGoogle Scholar
  13. Carbone F, Vuilleumier N, Burger F, et al. Serum OPN levels are up regulated and predict disability after an ischemic stroke. Eur J Clin Invest. 2015. doi:10.1111/eci.12446. [Epub ahead of print].Google Scholar
  14. Chen XX, Yang T. Roles of leptin in bone metabolism and bone diseases. J Bone Miner Metab. 2015. [Epub ahead of print].Google Scholar
  15. Chen J, Lu Y, Huang D, et al. Relationship of osteopontin and renal function with severity of coronary artery lesions. Int J Clin Exp Med. 2014;7(4):1122–7.PubMedPubMedCentralGoogle Scholar
  16. Chen JR, Lazarenko OP, Blackburn ML et al. p47phox/Nox2-dependent ROS signaling inhibits early bone development in mice but protects against skeletal aging. J Biol Chem. 2015. pii: jbc.M114.633461. [Epub ahead of print].Google Scholar
  17. Coombes JD, Syn WK. Differential osteopontin functions: the role of osteopontin isoforms. Hepatology. 2014. doi:10.1002/hep.27555. [Epub ahead of print].Google Scholar
  18. David L, Feige JJ, Bailly S. Emerging role of bone morphogenetic proteins in angiogenesis. Cytokine Growth Factor Rev. 2009;20(3):203–12.CrossRefPubMedGoogle Scholar
  19. Dhore CR, Cleutjens JP, Lutgens E, et al. Differential expression of bone matrix regulatory proteins in human atherosclerotic plaques. Arterioscler Thromb Vasc Biol. 2001;21:1998–2003.CrossRefPubMedGoogle Scholar
  20. Doumouchtsis KK, Kostakis AI, Doumouchtsis SK, et al. sRANKL/osteoprotegerin complex and biochemical markers in a cohort of male and female hemodialysis patients. J Endocrinol Invest. 2007;30(9):762–6.CrossRefPubMedGoogle Scholar
  21. Drager J, Harvey EJ, Barralet J. Hypoxia signalling manipulation for bone regeneration. Expert Rev Mol Med. 2015;17:e6.CrossRefPubMedGoogle Scholar
  22. Drüeke TB. Pathophysiological aspects of vascular calcification in chronic renal failure. Nefrologia. 2005;25 Suppl 2:96–9.PubMedGoogle Scholar
  23. El Hadj Othmane T, Speer G, Fekete B, et al. Osteoprotegerin: regulator, protector and marker. Orv Hetil. 2008;149(42):1971–80.CrossRefPubMedGoogle Scholar
  24. Evrard S, Delanaye P, Kamel S, SFBC/SN joined working group on vascular calcifications, et al. Vascular calcification: from pathophysiology to biomarkers. Clin Chim Acta. 2015;438:401–14.CrossRefPubMedGoogle Scholar
  25. Fukumoto S, Martin TJ. Bone as an endocrine organ. Trends Endocrinol Metab. 2009;20(5):230–6.CrossRefPubMedGoogle Scholar
  26. Garnero P, Grimaux M, Demiaux B, et al. Measurement of serum osteocalcin with a human-specific two-site immunoradiometric assay. J Bone Miner Res. 1992;7(12):1389–98.CrossRefPubMedGoogle Scholar
  27. Giaginis C, Papadopouli A, Zira A, et al. Correlation of plasma osteoprotegerin (OPG) and receptor activator of the nuclear factor kB ligand (RANKL) levels with clinical risk factors in patients with advanced carotid atherosclerosis. Med Sci Monit. 2012;18(10):CR597–604.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Gluba-Brzózka A, Michalska-Kasiczak M, Franczyk-Skóra B, et al. Markers of increased cardiovascular risk in patients with chronic kidney disease. Lipids Health Dis. 2014;13:135.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Gong X, Tong Q, Chen Z, et al. Microvascular density and vascular endothelial growth factor and osteopontin expression during the implantation window in a controlled ovarian hyperstimulation rat model. Exp Ther Med. 2015;9(3):773–9.PubMedPubMedCentralGoogle Scholar
  30. Gu J, Tong XS, Chen GH, et al. Effects of 1α,25-(OH)2D3 on the formation and activity of osteoclasts in RAW264.7 cells. J Steroid Biochem Mol Biol. 2015. pii: S0960-0760(15)00100-4. doi:10.1016/j.jsbmb.2015.04.003. [Epub ahead of print].Google Scholar
  31. Hauschka PV, Lian JB, Cole DE, Gundberg CM. Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone. Physiol Rev. 1989;69(3):990–1047.PubMedGoogle Scholar
  32. Hofbauer LC, Schoppet M. Clinical implications of the osteoprotegerin/RANKL/RANK system for bone and vascular diseases. JAMA. 2004;292:490–5.CrossRefPubMedGoogle Scholar
  33. Hofbauer LC, Khosla S, Dunstan CR, et al. The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. J Bone Miner Res. 2000;15:2–12.CrossRefPubMedGoogle Scholar
  34. Hruska KA, Mathew S, Saab G. Bone morphogenetic proteins in vascular calcification. Circ Res. 2005;97(2):105–14.CrossRefPubMedGoogle Scholar
  35. Ito K, Kon S, Nakayama Y, et al. The differential amino acid requirement within osteopontin in alpha4 and alpha9 integrin-mediated cell binding and migration. Matrix Biol. 2009;28(1):11–9.CrossRefPubMedGoogle Scholar
  36. Johnsen IK, Beuschlein F. Role of bone morphogenetic proteins in adrenal physiology and disease. J Mol Endocrinol. 2010;44(4):203–11.CrossRefPubMedGoogle Scholar
  37. Johnson RC, Leopold JA, Loscalzo J. Vascular calcification: pathobiological mechanisms and clinical implications. Circ Res. 2006;99(10):1044–59.CrossRefPubMedGoogle Scholar
  38. Kassem M, Marie PJ. Senescence-associated intrinsic mechanisms of osteoblast dysfunctions. Aging Cell. 2011;10:191–7.CrossRefPubMedGoogle Scholar
  39. Kawao N, Kaji H. Interactions between muscle tissues and bone metabolism. J Cell Biochem. 2015;116(5):687–95.CrossRefPubMedGoogle Scholar
  40. Kearns AE, Khosla S, Kostenuik PJ. Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr Rev. 2008;29(2):155–92.CrossRefPubMedGoogle Scholar
  41. Kindblom JM, Ohlsson C, Ljunggren O, et al. Plasma osteocalcin is inversely related to fat mass and plasma glucose in elderly Swedish men. J Bone Miner Res. 2009;24(5):785–91.CrossRefPubMedGoogle Scholar
  42. Leavenworth JW, Verbinnen B, Yin J, et al. A p85α-osteopontin axis couples the receptor ICOS to sustained Bcl-6 expression by follicular helper and regulatory T cells. Nat Immunol. 2015;16(1):96–106.CrossRefPubMedGoogle Scholar
  43. Leistner DM, Seeger FH, Fischer A, et al. Elevated levels of the mediator of catabolic bone remodeling RANKL in the bone marrow environment link chronic heart failure with osteoporosis. Circ Heart Fail. 2012;5(6):769–77.CrossRefPubMedGoogle Scholar
  44. Liu W, Zhang X. Receptor activator of nuclear factor-kB ligand (RANKL)/RANK/osteoprotegerin system in bone and other tissues (Review). Mol Med Rep. 2015;11(5):3212–8.PubMedGoogle Scholar
  45. Lok SI, Nous FM, van Kuik J, et al. Myocardial fibrosis and pro-fibrotic markers in end-stage heart failure patients during continuous-flow left ventricular assist device support. Eur J Cardiothorac Surg. 2015. pii: ezu539. [Epub ahead of print].Google Scholar
  46. Loncar G, Bozic B, Cvorovic V, et al. Relationship between RANKL and neuroendocrine activation in elderly males with heart failure. Endocrine. 2010;37(1):148–56.CrossRefPubMedGoogle Scholar
  47. Lund SA, Wilson CL, Raines EW, et al. Osteopontin mediates macrophage chemotaxis via α(4) and α(9) integrins and survival via the α(4) integrin. J Cell Biochem. 2013;114(5):1194–202.CrossRefPubMedGoogle Scholar
  48. McCurdy S, Baicu CF, Heymans S, Bradshaw AD. Cardiac extracellular matrix remodeling: fibrillar collagens and Secreted Protein Acidic and Rich in Cysteine (SPARC). J Mol Cell Cardiol. 2010;48(3):544–9.CrossRefPubMedGoogle Scholar
  49. Meier C, Schwartz AV, Egger A, Lecka-Czernik B. Effects of diabetes drugs on the skeleton. Bone. 2015. pii: S8756-3282(15)00139-8. doi:10.1016/j.bone.2015.04.026. [Epub ahead of print].Google Scholar
  50. Mohamadpour AH, Abdolrahmani L, Mirzaei H, et al. Serum osteopontin concentrations in relation to coronary artery disease. Arch Med Res. 2015;46(2):112–7.CrossRefPubMedGoogle Scholar
  51. Montagnana M, Lippi G, Danese E, Guidi GC. The role of osteoprotegerin in cardiovascular disease. Ann Med. 2013;45(3):254–64.CrossRefPubMedGoogle Scholar
  52. Morena M, Jaussent I, Dupuy AM, et al. Osteoprotegerin and sclerostin in chronic kidney disease prior to dialysis: potential partners in vascular calcifications. Nephrol Dial Transplant. 2015;30(8):1345–56Google Scholar
  53. Morhayim J, van de Peppel J, Demmers JA, et al. Proteomic signatures of extracellular vesicles secreted by nonmineralizing and mineralizing human osteoblasts and stimulation of tumor cell growth. FASEB J. 2015;29(1):274–85.CrossRefPubMedGoogle Scholar
  54. Motovska Z, Vichova T, Doktorova M, Labos M, Maly M, Widimsky P. Serum Dickkopf-1 signaling and calcium deposition in aortic valve are significantly related to the presence of concomitant coronary atherosclerosis in patients with symptomatic calcified aortic stenosis. J Transl Med. 2015;13(1):63.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Nagaraju GP, Dontula R, El-Rayes BF, Lakka SS. Molecular mechanisms underlying the divergent roles of SPARC in human carcinogenesis. Carcinogenesis. 2014;35(5):967–73.CrossRefPubMedGoogle Scholar
  56. Obert L, Lepage D, Gindraux F, Garbuio P. Bone morphogenetic proteins in soft-tissue reconstruction. Injury. 2009;40 Suppl 3:S17–20.CrossRefPubMedGoogle Scholar
  57. Okamura H, Yoshida K, Ochiai K, Haneji T. Reduction of protein phosphatase 2A Cα enhances bone formation and osteoblast differentiation through the expression of bone-specific transcription factor Osterix. Bone. 2011;49(3):368–75.CrossRefPubMedGoogle Scholar
  58. Persy V, D’Haese P. Vascular calcification and bone disease: the calcification paradox. Trends Mol Med. 2009;15(9):405–16.CrossRefPubMedGoogle Scholar
  59. Rachmiel A, Leiser Y. The molecular and cellular events that take place during craniofacial distraction osteogenesis. Plast Reconstr Surg Glob Open. 2014;2(1):e98.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Ramchandani D, Weber GF. Interactions between osteopontin and vascular endothelial growth factor: implications for cancer. Biochim Biophys Acta. 2015;1855(2):202–22.PubMedGoogle Scholar
  61. Raouf A, Seth A. Ets transcription factors and targets in osteogenesis. Oncogene. 2000;19(55):6455–63.CrossRefPubMedGoogle Scholar
  62. Reinehr T, Roth CL. A new link between skeleton, obesity and insulin resistance: relationships between osteocalcin, leptin and insulin resistance in obese children before and after weight loss. Int J Obesity. 2010;34(5):852–8.CrossRefGoogle Scholar
  63. Reynolds JL, Joannides AJ, Skepper JN, et al. Human vascular smooth muscle cells undergo vesicle-mediated calcification in response to changes in extracellular calcium and phosphate concentrations: a potential mechanism for accelerated vascular calcification in ESRD. J Am Soc Nephrol. 2004;15:2857–67.CrossRefPubMedGoogle Scholar
  64. Ribeiro N, Sousa SR, Brekken RA, Monteiro FJ. Role of SPARC in bone remodeling and cancer-related bone metastasis. J Cell Biochem. 2014;115(1):17–26.CrossRefPubMedGoogle Scholar
  65. Rodríguez AI, Csányi G, Ranayhossaini DJ, et al. MEF2B-Nox1 signaling is critical for stretch-induced phenotypic modulation of vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2015;35(2):430–8.CrossRefPubMedGoogle Scholar
  66. Sarosiek K, Jones E, Chipitsyna G, et al. Osteopontin (OPN) isoforms, diabetes, obesity, and cancer; what is one got to do with the other? A new role for OPN. J Gastrointest Surg. 2015;19(4):639–50.CrossRefPubMedGoogle Scholar
  67. Schellings MW, Vanhoutte D, Swinnen M, et al. Absence of SPARC results in increased cardiac rupture and dysfunction after acute myocardial infarction. J Exp Med. 2009;206:113–23.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Shao J, Wang Z, Yang T, et al. Bone regulates glucose metabolism as an endocrine organ through osteocalcin. Int J Endocrinol. 2015;2015:967673.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Shroff RC, Shanahan CM. The vascular biology of calcification. Semin Dial. 2007;20(2):103–9.CrossRefPubMedGoogle Scholar
  70. Silva BC, Bilezikian JP. Parathyroid hormone: anabolic and catabolic actions on the skeleton. Curr Opin Pharmacol. 2015;22:41–50.CrossRefPubMedPubMedCentralGoogle Scholar
  71. Simonet WS, Lacey DL, Dunstan CR, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell. 1997;89:309–19.CrossRefPubMedGoogle Scholar
  72. Stegen S, van Gastel N, Carmeliet G. Bringing new life to damaged bone: the importance of angiogenesis in bone repair and regeneration. Bone. 2015;70:19–27.CrossRefPubMedGoogle Scholar
  73. Ueland T, Jemtland R, Godang K, et al. The prognostic value of osteoprotegerin in patients with acute myocardial infarction. J Am Coll Cardiol. 2004;44:1970–6.CrossRefPubMedGoogle Scholar
  74. Ueland T, Yndestad A, Øie E, et al. Dysregulated osteoprotegerin/RANK ligand/RANK axis in clinical and experimental heart failure. Circulation. 2005;111(19):2461–8.CrossRefPubMedGoogle Scholar
  75. Viegas CS, Rafael MS, Enriquez JL, et al. Gla-rich protein acts as a calcification inhibitor in the human cardiovascular system. Arterioscler Thromb Vasc Biol. 2015;35(2):399–408.CrossRefPubMedGoogle Scholar
  76. Warren JT, Zou W, Decker CE, et al. Correlating RANK ligand/RANK binding kinetics with osteoclast formation and function. J Cell Biochem. 2015. doi:10.1002/jcb.25191. [Epub ahead of print].PubMedPubMedCentralGoogle Scholar
  77. Wei J, Karsenty G. An overview of the metabolic functions of osteocalcin. Curr Osteoporos Rep. 2015;13(3):180–5Google Scholar
  78. Wright HL, McCarthy HS, Middleton J, Marshall MJ. RANK, RANKL and osteoprotegerin in bone biology and disease. Curr Rev Musculoskelet Med. 2009;2(1):56–64.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Yamamoto M. Vascular calcification – pathological mechanism and clinical application -.vascular calcification as a clinical manifestation of bone-vascular axis. Clin Calcium. 2015;25(5):655–60.PubMedGoogle Scholar
  80. Yasuda H, Shima N, Nakagawa N, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A. 1998;95:3597–602.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Yndestad A, Kristian DJ, Geir EH, et al. Increased gene expression of tumor necrosis factor superfamily ligands in peripheral blood mononuclear cells during chronic heart failure. Cardiovasc Res. 2002;54:175–82.CrossRefPubMedGoogle Scholar
  82. Zhang Q, Riddle RC, Clemens TL. Bone and the regulation of global energy balance. J Intern Med. 2015. doi:10.1111/joim.12348. [Epub ahead of print].PubMedCentralGoogle Scholar
  83. Zimmermann EA, Ritchie RO. Bone as a structural material. Adv Healthc Mater. 2015. doi:10.1002/adhm.201500070. [Epub ahead of print].PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of Internal MedicineState Medical University of ZaporozhyeZaporozhyeUkraine

Personalised recommendations