Advertisement

Analysis of Integrin Alpha2Beta12β1) Expression as a Biomarker of Skeletal Metastasis

  • Christopher L. HallEmail author
  • Evan T. KellerEmail author
Reference work entry
Part of the Biomarkers in Disease: Methods, Discoveries and Applications book series (BDMDA)

Abstract

Skeletal metastasis is a frequent and debilitating end product of tumor progression affecting roughly a third of cancer patients within the USA. Tumor growth within the bone uncouples normal bone remodeling which leads to a net loss or gain of bone. These cancer-induced bone changes compromise the integrity of the skeleton and may cause pathologic fracture, severe pain, nerve compression, and metabolic imbalances. Therefore, to improve patient outcome, the identification of tumor cell markers with which to accurately predict skeletal metastasis potential is needed. The integrin family of adhesion molecules is a class of cell surface receptors that facilitate cell attachment to the extracellular matrix and promote cancer metastasis. The present chapter is focused on current literature evidence supporting that integrin α2β1 is both a mediator and predictive marker of metastasis, particularly metastasis to the skeleton.

Keywords

Prostate cancer Skeleton Metastasis Integrin Collagen 

List of Abbreviations

ALDH

Aldehyde dehydrogenase

α2β1

Integrin alpha2beta1

BPH

Benign prostatic hyperplasia

BrCa

Breast cancer

Col I

Collagen type I

DTC

Disseminated tumor cell

FAK

Focal adhesion kinase

GAS6

Growth arrest-specific 6

GFOGER

Glycine-phenylalanine-hydroxyproline-glycine-glutamate-arginine

IHC

Immunohistochemistry

ILK

Integrin-linked kinase

JNK

Jun N-terminal kinase

MAPK

Mitogen-activated protein kinase

MMP

Matrix metalloproteinase

MMTV

Mouse mammary tumor virus

mRNA

Messenger ribonucleic acid

Neu

Neuroblastoma-derived oncogene homology

PCa

Prostate cancer

PI3-K

Phosphatidylinositol 3 kinase

PSA

Prostate-specific antigen

Rac

Ras-related C3 botulinum toxin substrate

RGD

Arginine-glycine-aspartic acid

Rho GTPase

Ras homology guanosine-5′-triphosphatase

SCID

Severe combined immunodeficiency

shRNA

Small hairpin ribonucleic acid

Src

Rous sarcoma virus homology proto-oncogene tyrosine kinase

TGFβ

Transforming growth factor beta

TMA

Tissue microarray

uPAR

Urokinase-type plasminogen activator receptor

VCAM-1

Vascular cell adhesion molecule-1

VLA-2

Very late antigen-2

Notes

Acknowledgments

Supported in part by grants from the Department of Defense PC094375 (to CLH), National Institutes of Health UL1RR024986, and National Cancer Institute Grant P01 CA093900 (to ETK).

References

  1. Aguirre-Ghiso JA. Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer. 2007;7:834–46.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aguirre-Ghiso JA, Liu D, et al. Urokinase receptor and fibronectin regulate the ERK(MAPK) to p38(MAPK) activity ratios that determine carcinoma cell proliferation or dormancy in vivo. Mol Biol Cell. 2001;12:863–79.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Anastassiou G, Duensing S, et al. In vivo distribution of integrins in renal cell carcinoma: integrin-phenotype alteration in different degrees of tumor differentiation and VLA-2 involvement in tumor metastasis. Cancer Biother. 1995;10:287–92.CrossRefPubMedGoogle Scholar
  4. Attinger A, How S, Pesenti EA, Mancini L, Mottl H. Abstract LB-294: GBR 500, a monoclonal VLA-2 antibody inhibits tumor and metastasis growth but not extravasation in a prostate cancer animal model. In: Proceedings of the 102nd annual meeting of the American Association for Cancer Research. 2011; p. 71.Google Scholar
  5. Ayala G, Tuxhorn JA, et al. Reactive stroma as a predictor of biochemical-free recurrence in prostate cancer. Clin Cancer Res. 2003;9:4792–801.PubMedGoogle Scholar
  6. Barkan D, Kleinman H, et al. Inhibition of metastatic outgrowth from single dormant tumor cells by targeting the cytoskeleton. Cancer Res. 2008;68:6241–50.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Barkan D, El Touny LH, et al. Metastatic growth from dormant cells induced by a col-I-enriched fibrotic environment. Cancer Res. 2010;70:5706–16.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bradley DA, Daignault S, Ryan CJ, Dipaola RS, Cooney KA, Smith DC, Small E, Mathew P, Gross ME, Stein MN, Chen A, Pienta KJ, Escara-Wilke J, Doyle G, Al-Hawary M, Keller ET, Hussain M. Cilengitide (EMD 121974, NSC 707544) in asymptomatic metastatic castration resistant prostate cancer patients: a randomized phase II trial by the prostate cancer clinical trials consortium. Invest New Drugs. 2011;29(6):1432-40. PubMed PMID: 20336348. Pubmed Central PMCID: 2917503.Google Scholar
  9. Bubendorf L, Schopfer A, et al. Metastatic patterns of prostate cancer: an autopsy study of 1,589 patients. Hum Pathol. 2000;31:578–83.CrossRefPubMedGoogle Scholar
  10. Buckwalter JA, Glimcher MJ, et al. Bone biology. I. Structure, blood supply, cells, matrix, and mineralization. Instr Course Lect. 1996;45:371–86.PubMedGoogle Scholar
  11. Chan BM, Matsuura N, et al. In vitro and in vivo consequences of VLA-2 expression on rhabdomyosarcoma cells. Science. 1991;251:1600–2.CrossRefPubMedGoogle Scholar
  12. Chen KW, Pienta KJ. Modeling invasion of metastasizing cancer cells to bone marrow utilizing ecological principles. Theor Biol Med Model. 2011;8:36.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Clark EA, Golub TR, et al. Genomic analysis of metastasis reveals an essential role for RhoC. Nature. 2000;406:532–5.CrossRefPubMedGoogle Scholar
  14. Cohen E, Tendler T, et al. Collagen I provides a survival advantage to MD-1483 head and neck squamous cell carcinoma cells through phosphoinositol 3-kinase signaling. Anticancer Res. 2013;33:379–86.PubMedGoogle Scholar
  15. Collins AT, Habib FK, et al. Identification and isolation of human prostate epithelial stem cells based on alpha(2)beta(1)-integrin expression. J Cell Sci. 2001;114:3865–72.PubMedGoogle Scholar
  16. Collins AT, Berry PA, et al. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 2005;65:10946–51.CrossRefPubMedGoogle Scholar
  17. Colombel M, Eaton CL, Hamdy F, Ricci E, van der Pluijm G, Cecchini M, Mege-Lechevallier F, Clezardin P, Thalmann G. Increased expression of putative cancer stem cell markers in primary prostate cancer is associated with progression of bone metastases. Prostate. 2012;72:713–20.CrossRefPubMedGoogle Scholar
  18. Cox TR, Rumney RM, et al. The hypoxic cancer secretome induces pre-metastatic bone lesions through lysyl oxidase. Nature. 2015;522:106–10.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Dahlman T, Grimelius L, et al. Integrins in thyroid tissue: upregulation of alpha2beta1 in anaplastic thyroid carcinoma. Eur J Endocrinol. 1998;138:104–12.CrossRefPubMedGoogle Scholar
  20. Dudley DT, Li XY, et al. A 3D matrix platform for the rapid generation of therapeutic anti-human carcinoma monoclonal antibodies. Proc Natl Acad Sci U S A. 2014;111:14882–7.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Eaton CL, Colombel M, et al. Evaluation of the frequency of putative prostate cancer stem cells in primary and metastatic prostate cancer. Prostate. 2010;70:875–82.PubMedGoogle Scholar
  22. Eble JA, Niland S, et al. The alpha2beta1 integrin-specific antagonist rhodocetin is a cruciform, heterotetrameric molecule. FASEB J. 2009;23:2917–27.CrossRefPubMedGoogle Scholar
  23. Erler JT, Bennewith KL, et al. Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell. 2009;15:35–44.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Evers EE, van der Kammen RA, et al. Rho-like GTPases in tumor cell invasion. Methods Enzymol. 2000;325:403–15.CrossRefPubMedGoogle Scholar
  25. Felding-Habermann B. Integrin adhesion receptors in tumor metastasis. Clin Exp Metastasis. 2003;20:203–13.CrossRefPubMedGoogle Scholar
  26. Fishman DA, Kearns A, et al. Metastatic dissemination of human ovarian epithelial carcinoma is promoted by alpha2beta1-integrin-mediated interaction with type I collagen. Invasion Metastasis. 1998;18:15–26.CrossRefPubMedGoogle Scholar
  27. Geyer M, Wittinghofer A. GEFs, GAPs, GDIs and effectors: taking a closer (3D) look at the regulation of Ras-related GTP-binding proteins. Curr Opin Struct Biol. 1997;7:786–92.CrossRefPubMedGoogle Scholar
  28. Goel HL, Li J, et al. Integrins in prostate cancer progression. Endocr Relat Cancer. 2008;15:657–64.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Greene KL, Meng MV, et al. Validation of the Kattan preoperative nomogram for prostate cancer recurrence using a community based cohort: results from cancer of the prostate strategic urological research endeavor (capsure). J Urol. 2004;171:2255–9.CrossRefPubMedGoogle Scholar
  30. Grzesiak JJ, Bouvet M. The alpha2beta1 integrin mediates the malignant phenotype on type I collagen in pancreatic cancer cell lines. Br J Cancer. 2006;94:1311–9.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Guo YS, Zhao R, et al. Betaig-h3 promotes human osteosarcoma cells metastasis by interacting with integrin alpha2beta1 and activating PI3K signaling pathway. PLoS One. 2014;9:e90220.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Hall CL, Dai J, et al. Type I collagen receptor ({alpha}2{beta}1) signaling promotes the growth of human prostate cancer cells within the bone. Cancer Res. 2006a;66:8648–54.CrossRefPubMedGoogle Scholar
  33. Hall CL, Kang S, et al. Role of Wnts in prostate cancer bone metastases. J Cell Biochem. 2006b;97:661–72.CrossRefPubMedGoogle Scholar
  34. Hall CL, Dubyk CW, et al. Type I collagen receptor (alpha2beta1) signaling promotes prostate cancer invasion through RhoC GTPase. Neoplasia. 2008;10:797–803.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Hasebe T, Sasaki S, et al. Prognostic significance of fibrotic focus in invasive ductal carcinoma of the breast: a prospective observational study. Mod Pathol. 2002;15:502–16.CrossRefPubMedGoogle Scholar
  36. Ibaragi S, Shimo T, et al. Induction of MMP-13 expression in bone-metastasizing cancer cells by type I collagen through integrin alpha1beta1 and alpha2beta1-p38 MAPK signaling. Anticancer Res. 2011;31:1307–13.PubMedGoogle Scholar
  37. Islam F, Gopalan V, et al. Translational potential of cancer stem cells: a review of the detection of cancer stem cells and their roles in cancer recurrence and cancer treatment. Exp Cell Res. 2015;335:135–47.CrossRefPubMedGoogle Scholar
  38. Jaffe AB, Hall A. Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol. 2005;21:247–69.CrossRefPubMedGoogle Scholar
  39. Kaplan RN, Riba RD, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature. 2005;438:820–7.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kaplan RN, Rafii S, et al. Preparing the “soil”: the premetastatic niche. Cancer Res. 2006;66:11089–93.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Keely P, Parise L, et al. Integrins and GTPases in tumour cell growth, motility and invasion. Trends Cell Biol. 1998;8:101–6.CrossRefPubMedGoogle Scholar
  42. Kern A, Eble J, et al. Interaction of type IV collagen with the isolated integrins alpha 1 beta 1 and alpha 2 beta 1. Eur J Biochem. 1993;215:151–9.CrossRefPubMedGoogle Scholar
  43. Kirkland SC. Type I collagen inhibits differentiation and promotes a stem cell-like phenotype in human colorectal carcinoma cells. Br J Cancer. 2009;101:320–6.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Knerr K, Ackermann K, et al. Bone metastasis: osteoblasts affect growth and adhesion regulons in prostate tumor cells and provoke osteomimicry. Int J Cancer. 2004;111:152–9.CrossRefPubMedGoogle Scholar
  45. Knight CG, Morton LF, et al. The collagen-binding A-domains of integrins alpha(1)beta(1) and alpha(2)beta(1) recognize the same specific amino acid sequence, GFOGER, in native (triple-helical) collagens. J Biol Chem. 2000;275:35–40.CrossRefPubMedGoogle Scholar
  46. Kostenuik PJ, Sanchez-Sweatman O, et al. Bone cell matrix promotes the adhesion of human prostatic carcinoma cells via the alpha 2 beta 1 integrin. Clin Exp Metastasis. 1996;14:19–26.CrossRefPubMedGoogle Scholar
  47. Kostenuik PJ, Singh G, et al. Transforming growth factor beta upregulates the integrin-mediated adhesion of human prostatic carcinoma cells to type I collagen. Clin Exp Metastasis. 1997;15:41–52.CrossRefPubMedGoogle Scholar
  48. Langley RR, Fidler IJ. The seed and soil hypothesis revisited – the role of tumor-stroma interactions in metastasis to different organs. Int J Cancer. 2011;128:2527–35.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Leitinger B, Hohenester E. Mammalian collagen receptors. Matrix Biol. 2007;26:146–55.CrossRefPubMedGoogle Scholar
  50. Longhurst CM, Jennings LK. Integrin-mediated signal transduction. Cell Mol Life Sci. 1998;54:514–26.CrossRefPubMedGoogle Scholar
  51. Lu X, Mu E, et al. VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging alpha4beta1-positive osteoclast progenitors. Cancer Cell. 2011;20:701–14.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Lundström A, Holmbom J, Lindqvist C, Nordström T. The role of alpha2 beta1 and alpha3 beta1 integrin receptors in the initial anchoring of MDA-MB-231 human breast cancer cells to cortical bone matrix. Biochem Biophys Res Commun. 1998;250:735–40.CrossRefPubMedGoogle Scholar
  53. Maitland NJ, Frame FM, et al. Prostate cancer stem cells: do they have a basal or luminal phenotype? Horm Cancer. 2011;2:47–61.CrossRefPubMedGoogle Scholar
  54. Malliri A, Collard JG. Role of Rho-family proteins in cell adhesion and cancer. Curr Opin Cell Biol. 2003;15:583–9.CrossRefPubMedGoogle Scholar
  55. Matsuoka T, Yashiro M, et al. Increased expression of alpha2beta1-integrin in the peritoneal dissemination of human gastric carcinoma. Int J Mol Med. 2000;5:21–5.PubMedGoogle Scholar
  56. Miranti CK, Brugge JS. Sensing the environment: a historical perspective on integrin signal transduction. Nat Cell Biol. 2002;4:E83–90.CrossRefPubMedGoogle Scholar
  57. Mita M, Kelly KR, et al. Phase I study of E7820, an oral inhibitor of integrin {alpha}-2 expression with antiangiogenic properties, in patients with advanced malignancies. Clin Cancer Res. 2011;17:193–200.CrossRefPubMedGoogle Scholar
  58. Momic T, Katzehendler J, et al. Vimocin and vidapin, cyclic KTS peptides, are dual antagonists of alpha1beta1/alpha2beta1 integrins with antiangiogenic activity. J Pharmacol Exp Ther. 2014;350:506–19.CrossRefPubMedGoogle Scholar
  59. Morgan TM, Lange PH, et al. Disseminated tumor cells in prostate cancer patients after radical prostatectomy and without evidence of disease predicts biochemical recurrence. Clin Cancer Res. 2009;15:677–83.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Naci D, Aoudjit F. Alpha2beta1 integrin promotes T cell survival and migration through the concomitant activation of ERK/Mcl-1 and p38 MAPK pathways. Cell Signal. 2014;26:2008–15.CrossRefPubMedGoogle Scholar
  61. Naci D, El Azreq MA, et al. alpha2beta1 integrin promotes chemoresistance against doxorubicin in cancer cells through extracellular signal-regulated kinase (ERK). J Biol Chem. 2012;287:17065–76.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Naumov GN, MacDonald IC, et al. Persistence of solitary mammary carcinoma cells in a secondary site: a possible contributor to dormancy. Cancer Res. 2002;62:2162–8.PubMedGoogle Scholar
  63. Olson MF. Guanine nucleotide exchange factors for the Rho GTPases: a role in human disease? J Mol Med. 1996;74:563–71.CrossRefPubMedGoogle Scholar
  64. Park CC, Rembert J, et al. High mammographic breast density is independent predictor of local but not distant recurrence after lumpectomy and radiotherapy for invasive breast cancer. Int J Radiat Oncol Biol Phys. 2009;73:75–9.CrossRefPubMedGoogle Scholar
  65. Price LS, Collard JG. Regulation of the cytoskeleton by Rho-family GTPases: implications for tumour cell invasion. Semin Cancer Biol. 2001;11:167–73.CrossRefPubMedGoogle Scholar
  66. Provenzano PP, Inman DR, et al. Collagen density promotes mammary tumor initiation and progression. BMC Med. 2008;6:11.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Ramirez NE, Zhang Z, et al. The alpha(2)beta(1) integrin is a metastasis suppressor in mouse models and human cancer. J Clin Invest. 2011;121:226–37.CrossRefPubMedGoogle Scholar
  68. Ricci E, Mattei E, et al. Increased expression of putative cancer stem cell markers in the bone marrow of prostate cancer patients is associated with bone metastasis progression. Prostate. 2013;73:1738–46.CrossRefPubMedGoogle Scholar
  69. Seguin L, Desgrosellier JS, et al. Integrins and cancer: regulators of cancer stemness, metastasis, and drug resistance. Trends Cell Biol. 2015;25:234–40.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Shiozawa Y, Pedersen EA, et al. GAS6/AXL axis regulates prostate cancer invasion, proliferation, and survival in the bone marrow niche. Neoplasia. 2010;12:116–27.CrossRefPubMedPubMedCentralGoogle Scholar
  71. Siret C, Terciolo C, et al. Interplay between cadherins and alpha2beta1 integrin differentially regulates melanoma cell invasion. Br J Cancer. 2015;113:1445–53.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Slack-Davis JK, Parsons JT. Emerging views of integrin signaling: implications for prostate cancer. J Cell Biochem. 2004;91:41–6.CrossRefPubMedGoogle Scholar
  73. Smith MR, Cook R, et al. Disease and host characteristics as predictors of time to first bone metastasis and death in men with progressive castration-resistant nonmetastatic prostate cancer. Cancer. 2011;117:2077–85.CrossRefPubMedGoogle Scholar
  74. Sottnik JL, Daignault-Newton S, et al. Integrin alpha2beta 1 (alpha2beta1) promotes prostate cancer skeletal metastasis. Clin Exp Metastasis. 2013;30:569–78.CrossRefPubMedGoogle Scholar
  75. Suwa H, Ohshio G, et al. Overexpression of the rhoC gene correlates with progression of ductal adenocarcinoma of the pancreas. Br J Cancer. 1998;77:147–52.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Tamkun JW, DeSimone DW, et al. Structure of integrin, a glycoprotein involved in the transmembrane linkage between fibronectin and actin. Cell. 1986;46:271–82.CrossRefPubMedGoogle Scholar
  77. Tressler RJ, Belloni PN, et al. Correlation of inhibition of adhesion of large cell lymphoma and hepatic sinusoidal endothelial cells by RGD-containing peptide polymers with metastatic potential: role of integrin-dependent and -independent adhesion mechanisms. Cancer Commun. 1989;1:55–63.PubMedGoogle Scholar
  78. Ura H, Denno R, et al. Separate functions of alpha2beta1 and alpha3beta1 integrins in the metastatic process of human gastric carcinoma. Surg Today. 1998;28:1001–6.CrossRefPubMedGoogle Scholar
  79. van der Bij GJ, Oosterling SJ, et al. Blocking alpha2 integrins on rat CC531s colon carcinoma cells prevents operation-induced augmentation of liver metastases outgrowth. Hepatology. 2008;47:532–43.PubMedGoogle Scholar
  80. van Deventer HW, Palmieri DA, et al. Circulating fibrocytes prepare the lung for cancer metastasis by recruiting Ly-6C+ monocytes via CCL2. J Immunol. 2013;190:4861–7.CrossRefPubMedPubMedCentralGoogle Scholar
  81. van Golen KL, Bao L, et al. Reversion of RhoC GTPase-induced inflammatory breast cancer phenotype by treatment with a farnesyl transferase inhibitor. Mol Cancer Ther. 2002;1:575–83.PubMedGoogle Scholar
  82. Van Slambrouck S, Jenkins AR, et al. Reorganization of the integrin alpha2 subunit controls cell adhesion and cancer cell invasion in prostate cancer. Int J Oncol. 2009;34:1717–26.PubMedGoogle Scholar
  83. Vihinen P, Riikonen T, et al. Integrin alpha 2 beta 1 in tumorigenic human osteosarcoma cell lines regulates cell adhesion, migration, and invasion by interaction with type I collagen. Cell Growth Differ. 1996;7:439–47.PubMedGoogle Scholar
  84. Vuoristo MVP, Vlaykova T, Nylund C, Heino J, Pyrhönen S. Increased gene expression levels of collagen receptor integrins are associated with decreased survival parameters in patients with advanced melanoma. Melanoma Res. 2007;17:215–23.CrossRefPubMedGoogle Scholar
  85. Wheeler AP, Ridley AJ. Why three Rho proteins? RhoA, RhoB, RhoC, and cell motility. Exp Cell Res. 2004;301:43–9.CrossRefPubMedGoogle Scholar
  86. Yamaguchi K, Ura H, et al. Establishment and characterization of a human gastric carcinoma cell line that is highly metastatic to lymph nodes. J Exp Clin Cancer Res. 2000;19:113–20.PubMedGoogle Scholar
  87. Yao H, Dashner EJ, et al. RhoC GTPase is required for PC-3 prostate cancer cell invasion but not motility. Oncogene. 2005;25:2285–96.CrossRefGoogle Scholar
  88. Yoshimura K, Meckel K, Laird LS, Chia CY, Park JJ, Olino KL, Tsunedomi R, Harada T, Iizuka N, Hazama S, Kato Y, Keller JW, Thompson JM, Chang F, Romer LH, Jain A, Iacobuzio-Donahue C, Oka M, Pardoll DM, Schulick RD. Integrin alpha2 mediates selective metastasis to the liver. Cancer Res. 2009;69:7320–8.CrossRefPubMedPubMedCentralGoogle Scholar
  89. Zhang Z, Ramirez NE, et al. alpha2beta1 integrin expression in the tumor microenvironment enhances tumor angiogenesis in a tumor cell-specific manner. Blood. 2008;111:1980–8.CrossRefPubMedPubMedCentralGoogle Scholar
  90. Zutter MM, Mazoujian G, et al. Decreased expression of integrin adhesive protein receptors in adenocarcinoma of the breast. Am J Pathol. 1990;137:863–70.PubMedPubMedCentralGoogle Scholar
  91. Zutter MM, Santoro SA, et al. Re-expression of the alpha 2 beta 1 integrin abrogates the malignant phenotype of breast carcinoma cells. Proc Natl Acad Sci U S A. 1995;92:7411–5.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of Chemical EngineeringUniversity of Massachusetts at AmherstAmherstUSA
  2. 2.Department of UrologyUniversity of MichiganAnn ArborUSA

Personalised recommendations