Skip to main content

Dietary Soy Phytoestrogens and Biomarkers of Osteoporosis

  • Reference work entry
  • First Online:
Biomarkers in Bone Disease

Abstract

Osteoporosis, decreased bone strength increasing the risk of fractures, is the result of alterations in bone remodeling causing an imbalance between bone formation and resorption with a predominance of resorption. In postmenopausal women, bone loss increases due to lower levels of estrogen. One of the most common treatment strategies for osteoporosis after incidence of fractures is the use of antiresorptive agents to stimulate osteoblastic proliferation. Hormone replacement therapy (HRT) for the treatment of menopausal symptoms also reduces the risk of osteoporosis, although its adverse side effects have led researchers to investigate alternative treatments. Dietary soy phytoestrogens have gained considerable attention for exhibiting beneficial effects on bone metabolism and modulating related biomarkers of osteoporosis. Studies using cultured bone cells and postmenopausal rat models support a significant bone-sparing effect of soy phytoestrogens. These findings have initiated clinical studies for the evaluation of soy phytoestrogen effects on postmenopausal bone loss. Human clinical studies have shown both promising and conflicting results. Only few studies show that consumption of soy phytoestrogens increase bone mineral density in postmenopausal women, whereas most studies show no such effects. This short review focuses on the potential effects of soy-derived phytoestrogens on biomarkers (alkaline phosphatase, N-telopeptide of type 1 collagen) of osteoporosis by examining the evidence from in vitro cultured bone cells, in vivo animal models, and human clinical studies. These collective data suggest the bone-sparing effects of soy phytoestrogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALP:

Alkaline phosphatase

AP-1:

Activator protein 1

ASC:

Adipose-derived stromal/stem cell

BAP:

Bone-specific alkaline phosphatase

BMC:

Bone marrow stromal osteoprogenitor cells

BMD:

Bone mineral density

BMP:

Bone morphogenetic protein

BMSC:

Bone marrow-derived mesenchymal stem cell

BV/TV:

Trabecular bone volume

Cbfa1:

Core binding factor 1

Cd:

Cadmium

CdCl2 :

Cadmium chloride

CLO:

Caged layer osteoporosis

Col I:

Collagen type 1

DXA:

Dual-energy X-ray absorptiometry

E2:

17β-estradiol

E2B:

Estradiol-3 benzoate

ER:

Estrogen receptor

ER-PKCα:

Estrogen receptor-protein kinase C alpha

ERα:

Estrogen receptor alpha

ERβ:

Estrogen receptor beta

FDA:

Food and Drug Administration

FRAX®:

Fracture Risk Assessment Tool

HOB:

Trabecular bone osteoblasts

IGF:

Insulin-like growth factor

IP:

Ipriflavone

MAPK:

Mitogen-activated protein kinase

MAR:

Mineral apposition rate

NF-kB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

NTx:

N-telopeptide of type 1 collagen

OCN:

Osteocalcin

O-DMA:

o-Desmethylangolensin

OPG:

Osteoprotegerin

ORX:

Orchidectomized

OVX:

Ovariectomized

PTH:

Parathyroid hormone

RANKL:

Receptor activator of NF-kappa B ligand

ROI:

Region of interest

SD:

Standard deviation

SIE:

Soy isoflavone extract

Tb.Sp:

Trabecular separation

TGF-β:

Tumor growth factor-beta

Th.N:

Trabecular number

VDR:

Vitamin D receptor

vitD3:

Vitamin D3

VOI:

Volume of interest

WHO:

World Health Organization

References

  • Alekel DL, Van Loan MD, Koehler KJ, et al. The soy isoflavones for reducing bone loss (SIRBL) study: a 3-y randomized controlled trial in postmenopausal women. Am J Clin Nutr. 2010;91:218–30.

    Article  CAS  PubMed  Google Scholar 

  • Alexandersen P, Toussaint A, Christiansen C, et al. Ipriflavone in the treatment of postmenopausal osteoporosis: a randomized controlled trial. JAMA. 2001;285:1482–8.

    Article  CAS  PubMed  Google Scholar 

  • Arjmandi BH, Alekel L, Hollis BW, et al. Dietary soybean protein prevents bone loss in an ovariectomized rat model of osteoporosis. J Nutr. 1996;126:161–7.

    CAS  PubMed  Google Scholar 

  • Arjmandi BH, Khalil DA, Hollis BW. Ipriflavone, a synthetic phytoestrogen, enhances intestinal calcium transport in vitro. Calcif Tissue Int. 2000;67:225–9.

    Article  CAS  PubMed  Google Scholar 

  • Arrain Y, Masud T. Recent recommendations on bisphosphonate associated osteonecrosis of the jaw. Dent Update. 2008;35(238):40. 242.

    Google Scholar 

  • Arts J, Kuiper GGJM, Janssen JMMF, et al. Differential expression of estrogen receptors and mRNA during differentiation of human osteoblast SV-HFO cells. Endocrinol. 1997;138:5067–70.

    Article  CAS  Google Scholar 

  • Atkinson C, Frankenfeld CL, Lampe JW. Gut bacterial metabolism of the soy isoflavone daidzein: exploring the relevance to human health. Exp Biol Med (Maywood). 2005;230:155–70.

    CAS  Google Scholar 

  • Barnes PM, Bloom B, Nahin RL. Complementary and alternative medicine use among adults and children: United States, 2007. Natl Health Stat Report. 2008;12:1–23.

    Google Scholar 

  • Becker C. Pathophysiology and clinical manifestations of osteoporosis. Clin Cornerstone. 2008;9:42–50.

    Article  PubMed  Google Scholar 

  • Bernabei R, Martone AM, Ortolani E, Landi F, Marzetti E. Screening, diagnosis and treatment of osteoporosis: a brief review. Clin Cases Miner Bone Metab. 2014;11:201–7.

    PubMed  PubMed Central  Google Scholar 

  • Bhathena SJ, Velasquez MT. Beneficial role of dietary phytoestrogens in obesity and diabetes. Am J Clin Nutr. 2002;76:1191–201.

    CAS  PubMed  Google Scholar 

  • Bodine PVN, Henderson RA, Green J, et al. Estrogen receptor is developmentally regulated during osteoblast differentiation and contributes to selective responsiveness of gene expression. Endocrinology. 1998;139:2048–57.

    Article  CAS  Google Scholar 

  • Brandi ML. New treatment strategies: ipriflavone, strontium, vitamin D metabolites and analogs. Am J Med. 1993;95:69S–74.

    Article  CAS  PubMed  Google Scholar 

  • Brink E, Coxam V, Robins S, et al. Long-term consumption of isoflavone-enriched foods does not affect bone mineral density, bone metabolism, or hormonal status in early postmenopausal women: a randomized, double-blind, placebo controlled study. Am J Clin Nutr. 2008;87:761–70.

    CAS  PubMed  Google Scholar 

  • Cederroth CR, Nef S. Soy, phytoestrogens and metabolism: a review. Mol Cell Endocrinol. 2009;304:30–42.

    Article  CAS  PubMed  Google Scholar 

  • Chang KL, Hu YC, Hsieh BS, et al. Combined effect of soy isoflavones and vitamin D3 on bone loss in ovariectomized rats. Nutrition. 2013;29:250–7.

    Article  CAS  PubMed  Google Scholar 

  • Chan SDH, Chiu DKH, Atkins D. Oophorectomy leads to a selective decrease in 1, 25-dihydroxycholecalciferol receptors in rat jejunal villous cells. Clin Sci. 1984;66:745–8.

    Article  CAS  PubMed  Google Scholar 

  • Chlebowski RT, Hendrix SL, Langer RD, et al. Influence of estrogen plus progestin on breast cancer and mammography in healthy postmenopausal women: the Women’s Health Initiative randomized trial. JAMA. 2003;289:3243–53.

    Article  CAS  PubMed  Google Scholar 

  • Chen YM, Ho SC, Lam SS, Ho SS, Woo JL. Soy isoflavones have a favorable effect on bone loss in Chinese postmenopausal women with lower bone mass: a double-blind, randomized, controlled trial. J Clin Endocrinol Metab. 2003;88:4740–7.

    Article  CAS  PubMed  Google Scholar 

  • Chen WF, Wong MS. Genistein modulates the effects of parathyroid hormone in human osteoblastic SaOS-2 cells. Br J Nutr. 2006;95:1039–47.

    Article  CAS  PubMed  Google Scholar 

  • Civitelli R. In vitro and in vivo effects of ipriflavone on bone formation and bone biomechanics. Calcif Tissue Int. 1997;61:S12–4.

    Article  CAS  PubMed  Google Scholar 

  • Devareddy L, Khalil DA, Smith BJ, et al. Soy moderately improves microstructural properties without affecting bone mass in an ovariectomized rat model of osteoporosis. Bone. 2006;38:686–93.

    Article  CAS  PubMed  Google Scholar 

  • Deyhim F, Smith BJ, Soung DY, Juma S, Devareddy L, Arjmandi BH. Ipriflavone modulates IGF-I but is unable to restore bone in rats. Phytother Res. 2005;19:116–20.

    Article  CAS  PubMed  Google Scholar 

  • Dixon RA. Phytoestrogens. Annu Rev Plant Biol. 2004;55:225–61.

    Article  CAS  PubMed  Google Scholar 

  • Ferguson N. Osteoporosis in focus. Oxford, UK: Pharmaceutical Press; 2004.

    Google Scholar 

  • Gautam AK, Bhargavan B, Tyagi AM, et al. Differential effects of formononetin and cladrin on osteoblast function, peak bone mass achievement and bioavailability in rats. J Nutr Biochem. 2011;22:318–27.

    Article  CAS  PubMed  Google Scholar 

  • Ge Y, Chen D, Xie L, Zhang R. Enhancing effect of daidzein on the differentiation and mineralization in mouse osteoblast-like MC3T3-E1 cells. Yakugaku Zasshi. 2006;126:651–6.

    Article  CAS  PubMed  Google Scholar 

  • Ge B, Wang Y, Guo H, et al. Effects of ipriflavone on prevention and treatment of osteoporosis in ovariectomized rats. Chin J New Drugs Clin Remedies. 2010;2:008.

    Google Scholar 

  • Gielen E, Vanderschueren D, Callewaert F, Boonen S. Osteoporosis in men. Best Pract Res Clin Endocrinol Metab. 2011;25:321–35.

    Article  CAS  PubMed  Google Scholar 

  • Giossi M, Caruso P, Civelli M, Bongrani S. Inhibition of parathyroid hormone-stimulated resorption in cultured fetal rat long bones by the main metabolites of ipriflavone. Calcif Tissue Int. 1996;58:419–22.

    Article  CAS  PubMed  Google Scholar 

  • Hadjidakis DJ, Androulakis II. Bone remodeling. Ann N Y Acad Sci. 2006;1092:385–96.

    Article  CAS  PubMed  Google Scholar 

  • Head KA. Ipriflavone: an important bone-building isoflavone. Altern Med Rev. 1999;4:10–22.

    CAS  PubMed  Google Scholar 

  • James P, Sabatier J, Bureau F, et al. Influence of dietary protein and phyto-oestrogens on bone mineralization in the young rat. Nutr Res. 2002;22:385–92.

    Article  CAS  Google Scholar 

  • Jeon BJ, Ahn J, Kwak HS. Effect of isoflavone-enriched milk on bone mass in ovariectomized rats. J Med Food. 2009;12:1260–7.

    Article  CAS  PubMed  Google Scholar 

  • Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int. 2006;17:1726–33.

    Article  CAS  PubMed  Google Scholar 

  • Juma SS, Ezzat-Zadeh Z, Khalil DA, Hooshmand S, Akhter M, Arjmandi BH. Soy protein with or without isoflavones failed to preserve bone density in gonadal hormone-deficient male rat model of osteoporosis. Nutr Res. 2012;32:694–700.

    Article  CAS  PubMed  Google Scholar 

  • Kanis JA, Johnell O, Oden A, Johansson H, McCloskey E. FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int. 2008;19:385–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katase K, Kato T, Hirai Y, Hasumi K, Chen JT. Effects of ipriflavone on bone loss following a bilateral ovariectomy and menopause: a randomized placebo-controlled study. Calcif Tissue Int. 2001;69:73–7.

    Article  CAS  PubMed  Google Scholar 

  • Khalil DA, Lucas EA, Smith BJ, et al. Soy isoflavones may protect against orchidectomy-induced bone loss in aged male rats. Calcif Tissue Int. 2005;76:56–62.

    Article  CAS  PubMed  Google Scholar 

  • Khosla S. Update in male osteoporosis. J Clin Endocrinol Metab. 2010;95:3–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuiper GG, Lemmen JG, Carlsson B, et al. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinol. 1998;139:4252–63.

    Article  CAS  Google Scholar 

  • Leboime A, Confavreux CB, Mehsen N, Paccou J, David C, Roux C. Osteoporosis and mortality. Joint Bone Spine. 2010;77:S107–12.

    Article  PubMed  Google Scholar 

  • Lee SH, Kim JK, Jang HD. Genistein inhibits osteoclastic differentiation of RAW 264.7 cells via regulation of ROS production and scavenging. Int J Mol Sci. 2014;15:10605–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao MH, Tai YT, Cherng YG, et al. Genistein induces oestrogen receptor-alpha gene expression in osteoblasts through the activation of mitogen-activated protein kinases/NF-kappaB/activator protein-1 and promotes cell mineralisation. Br J Nutr. 2014;111:55–63.

    Article  CAS  PubMed  Google Scholar 

  • Liao QC, Xiao ZS, Qin YF, Zhou HH. Genistein stimulates osteoblastic differentiation via p38 MAPK-Cbfa1 pathway in bone marrow culture. Acta Pharmacol Sin. 2007;28:1597–602.

    Article  CAS  PubMed  Google Scholar 

  • Lv WT, Yang YH, Ma LQ, Wang P, Li K. Ipriflavone reverses the adverse effects of a low-calcium diet on the histology of the tibia in caged layers. Br Poult Sci. 2014;55:207–14.

    Article  CAS  PubMed  Google Scholar 

  • Marini H, Minutoli L, Polito F, et al. Effects of the phytoestrogen genistein on bone metabolism in osteopenic postmenopausal women: a randomized trial. Ann Intern Med. 2007;146:839–47.

    Article  PubMed  Google Scholar 

  • Minegishi T, Kawamoto K, Yamada Y, et al. Effects of ipriflavone on bone augmentation within a titanium cap in rabbit calvaria. J Oral Sci. 2002;44:7–11.

    Article  CAS  PubMed  Google Scholar 

  • Morabito N, Crisafulli A, Vergara C, et al. Effects of genistein and hormone-replacement therapy on bone loss in early postmenopausal women: a randomized double-blind placebo-controlled study. J Bone Miner Res. 2002;17:1904–12.

    Article  CAS  PubMed  Google Scholar 

  • Morito K, Hirose T, Kinjo J, et al. Interaction of phytoestrogens with estrogen receptors alpha and beta. Biol Pharm Bull. 2001;24:351–6.

    Article  CAS  PubMed  Google Scholar 

  • Nakai M, Cook L, Pyter LM, et al. Dietary soy protein and isoflavones have no significant effect on bone and a potentially negative effect on the uterus of sexually mature intact Sprague–Dawley female rats. Menopause. 2005;12:291–8.

    Article  PubMed  Google Scholar 

  • Om AS, Shim JY. Effect of daidzein, a soy isoflavone, on bone metabolism in cd-treated ovariectomized rats. Acta Biochim Pol. 2007;54:641–6.

    CAS  PubMed  Google Scholar 

  • Onoe Y, Miyaura C, Ohta H, Nozawa S, Suda T. Expression of estrogen receptor in rat bone. Endocrinol. 1997;138:4509–12.

    Article  CAS  Google Scholar 

  • Pawlowski JW, Martin BR, McCabe GP, et al. Impact of equol-producing capacity and soy-isoflavone profiles of supplements on bone calcium retention in postmenopausal women: a randomized crossover trial. Am J Clin Nutr. 2015;102:695–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peterson CA, Schnell JD, Kubas KL, Rottinghaus GE. Effects of soy isoflavone consumption on bone structure and milk mineral concentration in a rat model of lactation-associated bone loss. Eur J Nutr. 2009;48:84–91.

    Article  CAS  PubMed  Google Scholar 

  • Rachon D, Seidlova-Wuttke D, Vortherms T, Wuttke W. Effects of dietary equol administration on ovariectomy induced bone loss in Sprague–Dawley rats. Maturitas. 2007;58:308–15.

    Article  CAS  PubMed  Google Scholar 

  • Reginster J-YL. Ipriflavone: pharmacological properties and usefulness in postmenopausal osteoporosis. Bone Miner. 1993;23:223–32.

    Article  CAS  PubMed  Google Scholar 

  • Rossouw JE, Anderson GL, Prentice RL, et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women’s Health Initiative randomized controlled trial. JAMA. 2002;288:321–33.

    Article  CAS  PubMed  Google Scholar 

  • Roush K. Prevention and treatment of osteoporosis in postmenopausal women: a review. Am J Nurs. 2011;111:26–35.

    Article  PubMed  Google Scholar 

  • Schousboe JT, Ensrud KE, Nyman JA, Melton 3rd LJ, Kane RL. Universal bone densitometry screening combined with alendronate therapy for those diagnosed with osteoporosis is highly cost-effective for elderly women. J Am Geriatr Soc. 2005;53:1697–704.

    Article  PubMed  Google Scholar 

  • Schousboe JT, Taylor BC, Fink HA, et al. Cost-effectiveness of bone densitometry followed by treatment of osteoporosis in older men. JAMA. 2007;298:629–37.

    Article  CAS  PubMed  Google Scholar 

  • Setchell KD. Phytoestrogens: the biochemistry, physiology, and implications for human health of soy isoflavones. Am J Clin Nutr. 1998;68:1333S–46.

    CAS  PubMed  Google Scholar 

  • Setchell KD, Brown NM, Desai P, et al. Bioavailability of pure isoflavones in healthy humans and analysis of commercial soy isoflavone supplements. J Nutr. 2001;131:1362S–75.

    CAS  PubMed  Google Scholar 

  • Setchell KDR, Brown NM, Lydeking-Olsen E. The clinical importance of the metabolite equol–a clue to the effectiveness of soy and its isoflavones. J Nutr. 2002;132:3577–84.

    CAS  PubMed  Google Scholar 

  • Setchell KD, Lydeking-Olsen E. Dietary phytoestrogens and their effect on bone: evidence from in vitro and in vivo, human observational, and dietary intervention studies. Am J Clin Nutr. 2003;78:593S–609.

    CAS  PubMed  Google Scholar 

  • Shiguemoto GE, Rossi EA, Baldissera V, Gouveia CH, de Valdez Vargas GM, de Andrade Perez SE. Isoflavone-supplemented soy yoghurt associated with resistive physical exercise increase bone mineral density of ovariectomized rats. Maturitas. 2007;57:261–70.

    Article  CAS  PubMed  Google Scholar 

  • Shumaker SA, Legault C, Rapp SR, et al. Estrogen plus progestin and the incidence of dementia and mild cognitive impairment in postmenopausal women – the Women’s Health Initiative Memory Study: a randomized controlled trial. JAMA. 2003;289:2651–62.

    Article  CAS  PubMed  Google Scholar 

  • Soung DY, Devareddy L, Khalil DA, Hooshmand S, Patade A, Lucas EA, et al. Soy affects trabecular microarchitecture and favorably alters select bone-specific gene expressions in a male rat model of osteoporosis. Calcif Tissue Int. 2006;78:385–91.

    Article  CAS  PubMed  Google Scholar 

  • Somekawa Y, Chiguchi M, Ishibashi T, Aso T. Soy intake related to menopausal symptoms, serum lipids, and bone mineral density in postmenopausal Japanese women. Obstet Gynecol. 2001;97:109–15.

    CAS  PubMed  Google Scholar 

  • Strong AL, Ohlstein JF, Jiang Q, et al. Novel daidzein analogs enhance osteogenic activity of bone marrow-derived mesenchymal stem cells and adipose-derived stromal/stem cells through estrogen receptor dependent and independent mechanisms. Stem Cell Res Ther. 2014;5:105.

    Article  PubMed  PubMed Central  Google Scholar 

  • Suh KS, Koh G, Park CY, et al. Soybean isoflavones inhibit tumor necrosis factor-alpha-induced apoptosis and the production of interleukin-6 and prostaglandin E2 in osteoblastic cells. Phytochemistry. 2003;63:209–15.

    Article  CAS  PubMed  Google Scholar 

  • Sziklai I, Komora V, Ribari O. Double-blind study of the effectiveness of a bioflavonoid in the control of tinnitus in otosclerosis. Acta Chir Hung. 1992–93;33:101–7.

    CAS  Google Scholar 

  • Szulc P, Munoz F, Claustrat B, et al. Bioavailable estradiol may be an important determinant of osteoporosis in men: the MINOS study. J Clin Endocrinol Metab. 2001;86:192–9.

    CAS  PubMed  Google Scholar 

  • Tadaishi M, Nishide Y, Tousen Y, Kruger MC, Ishimi Y. Cooperative effects of soy isoflavones and carotenoids on osteoclast formation. J Clin Biochem Nutr. 2014;54:109–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tai TY, Tsai KS, Tu ST, et al. The effect of soy isoflavone on bone mineral density in postmenopausal Taiwanese women with bone loss: a 2-year randomized double-blind placebo-controlled study. Osteoporos Int. 2012;23:1571–80.

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Xu J, Wang B, Shu FR, Chen K, Mi MT. Equol promotes rat osteoblast proliferation and differentiation through activating estrogen receptor. Genet Mol Res. 2014;13:5055–63.

    Article  CAS  PubMed  Google Scholar 

  • Ward WE, Piekarz AV. Effect of prenatal exposure to isoflavones on bone metabolism in mice at adulthood. Pediatr Res. 2007;61:438–43.

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of WHO study group. Geneva, Switzerland; 1994. WHO technical report series 843; http://whqlibdoc.who.int/trs/WHO_TRS_843.pdf

  • Yao J, Zhang J, Hou JF. Effects of ipriflavone on caged layer bone metabolism in vitro and in vivo. Poult Sci. 2007;86:503–7.

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Shu XO, Li H, Yang G, Li Q, Gao YT, et al. Prospective cohort study of soy food consumption and risk of bone fracture among postmenopausal women. Arch Intern Med. 2005;165:1890–5.

    Article  PubMed  Google Scholar 

  • Zhang Y, Li Q, Wan HY, Helferich WG, Wong MS. Genistein and a soy extract differentially affect three-dimensional bone parameters and bone-specific gene expression in ovariectomized mice. J Nutr. 2009;139:2230–6.

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Li SW, Wu JF, et al. Effects of ipriflavone on postmenopausal syndrome and osteoporosis. Gynecol Endocrinol. 2010;26:76–80.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arpita Basu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Basu, P., Maier, C., Basu, A. (2017). Dietary Soy Phytoestrogens and Biomarkers of Osteoporosis. In: Patel, V., Preedy, V. (eds) Biomarkers in Bone Disease. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7693-7_36

Download citation

Publish with us

Policies and ethics