Bone Biomarkers Related to Osteoarthritis

  • M. P. Engbersen
  • Z. Huang
  • V. B. KrausEmail author
Reference work entry
Part of the Biomarkers in Disease: Methods, Discoveries and Applications book series (BDMDA)


It is evident that the bone plays a vital role in osteoarthritis (OA) disease pathogenesis, progression, and symptomatology. The close interaction of the bone and cartilage in the pathogenesis of OA and the knowledge that OA is a disease of the whole joint provide a strong rationale for investigating bone biomarker changes in OA. The evaluation of bone biomarkers is important for gaining a greater understanding of the role of bone pathology in OA and a means for developing new diagnostic and prognostic tools for therapeutic developments and early OA intervention. Although comparisons among studies are difficult because different assays and assay parameters are used and different assays reflect different outcomes, many bone-related biomarkers have shown great promise as diagnostic, prognostic, and efficacy of intervention biomarkers for OA. These include the traditional bone biomarkers, CTX-I and NTX-I and osteocalcin. The strong association of these traditional bone biomarkers with urinary C-terminal telopeptide of type II collagen (CTX-II) from the articular cartilage confirms the strong association of bone resorption with cartilage degradation. To date, results using bone biomarkers in OA trials provide examples of the modifiability of the whole joint organ by bone-acting agents. Based on recent data, tartrate-resistant acid phosphatase 5b (TRAP5b), periostin, and endothelin-1 (ET-1) show great promise and can be considered new OA-related bone biomarkers. More studies are required in the context of treatment trials to determine which bone biomarkers will be most relevant for drug development and use in the clinic.


Osteoarthritis Bone Biomarkers Resorption Formation Turnover Collagen Subchondral Articular 

List of Abbreviations


Alkaline phosphatase


Burden of disease, Investigative, Prognostic, Efficacy of intervention, Diagnostic or Safety biomarkers


Bone mineral density


Bone marrow lesion


Bone sialoprotein


Computed tomography


C-terminal telopeptide of type I collagen


C-telopeptide of type II collagen


Dickkopf WNT signaling pathway inhibitor 1


Disease-modifying OA drugs


Deoxypyridinoline (also called lysyl-pyridinoline or LP)


Electrochemiluminescence immunoassay


Enzyme-linked immunosorbent assay




Hydroxylysyl-pyridinoline (also called pyridinoline or HP)


Carboxy-terminal telopeptide of type I collagen




Joint space narrowing


Kellgren and Lawrence grade (of radiographic severity of OA)


Knee injury and osteoarthritis outcome score


Matrix metalloproteinases


Magnetic resonance imaging


N-terminal telopeptide of type I collagen




Osteocalcin (intact protein indicative of bone formation; fragments of OA indicative of bone resorption)


“Os des Femmes de Lyon,” a longitudinal cohort study for assessing osteoporosis and secondary OA


Procollagen type I C-terminal propeptide


Procollagen type I N-terminal propeptide


N-propeptide of type IIA procollagen






Synovial fluid


Tartrate-resistant acid phosphatase 5b


Wingless-related integration site


  1. Aigner T, Soder S, Gebhard PM, Mcalinden A, Haag J. Mechanisms of disease: role of chondrocytes in the pathogenesis of osteoarthritis – structure, chaos and senescence. Nat Clin Pract Rheumatol. 2007;3:391–9.PubMedCrossRefGoogle Scholar
  2. Aurich M, Squires GR, Reiner A, Mollenhauer JA, Kuettner KE, Poole AR, Cole AA. Differential matrix degradation and turnover in early cartilage lesions of human knee and ankle joints. Arthritis Rheum. 2005;52:112–9.PubMedCrossRefGoogle Scholar
  3. Bagger YZ, Tanko LB, Alexandersen P, Karsdal MA, Olson M, Mindeholm L, Azria M, Christiansen C. Oral salmon calcitonin induced suppression of urinary collagen type II degradation in postmenopausal women: a new potential treatment of osteoarthritis. Bone. 2005;37:425–30.PubMedCrossRefGoogle Scholar
  4. Baron R, Kneissel M. Wnt signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med. 2013;19:179–92.PubMedCrossRefGoogle Scholar
  5. Bartels EM, Christensen R, Christensen P, Henriksen M, Bennett A, Gudbergsen H, Boesen M, Bliddal H. Effect of a 16 weeks weight loss program on osteoarthritis biomarkers in obese patients with knee osteoarthritis: a prospective cohort study. Osteoarthritis Cartilage. 2014;22:1817–25.PubMedCrossRefGoogle Scholar
  6. Bauer DC, Hunter DJ, Abramson SB, Attur M, Corr M, Felson D, Heinegard D, Jordan JM, Kepler TB, Lane NE, Saxne T, Tyree B, Kraus VB. Classification of osteoarthritis biomarkers: a proposed approach. Osteoarthritis Cartilage. 2006;14:723–7.PubMedCrossRefGoogle Scholar
  7. Baxter I, Rogers A, Eastell R, Peel N. Evaluation of urinary N-telopeptide of type I collagen measurements in the management of osteoporosis in clinical practice. Osteoporos Int. 2013;24:941–7.PubMedCrossRefGoogle Scholar
  8. Bender S, Haubeck HD, Van de Leur E, Dufhues G, Schiel X, Lauwerijns J, Greiling H, Heinrich PC. Interleukin-1 beta induces synthesis and secretion of interleukin-6 in human chondrocytes. FEBS Lett. 1990;263:321–4.PubMedCrossRefGoogle Scholar
  9. Berger CE, Kroner A, Stiegler H, Leitha T, Engel A. Elevated levels of serum type I collagen C-telopeptide in patients with rapidly destructive osteoarthritis of the hip. Int Orthop. 2005;29:1–5.PubMedCrossRefGoogle Scholar
  10. Berry PA, Maciewicz RA, Cicuttini FM, Jones MD, Hellawell CJ, Wluka AE. Markers of bone formation and resorption identify subgroups of patients with clinical knee osteoarthritis who have reduced rates of cartilage loss. J Rheumatol. 2010;37:1252–9.PubMedCrossRefGoogle Scholar
  11. Bettica P, Cline G, Hart DJ, Meyer J, Spector TD. Evidence for increased bone resorption in patients with progressive knee osteoarthritis: longitudinal results from the Chingford study. Arthritis Rheum. 2002;46:3178–84.PubMedCrossRefGoogle Scholar
  12. Bijlsma JW, Berenbaum F, Lafeber FP. Osteoarthritis: an update with relevance for clinical practice. Lancet. 2011;377:2115–26.PubMedCrossRefGoogle Scholar
  13. Blumenfeld O, Williams FM, Hart DJ, Spector TD, Arden N, Livshits G. Association between cartilage and bone biomarkers and incidence of radiographic knee osteoarthritis (RKOA) in UK females: a prospective study. Osteoarthritis Cartilage. 2013;21:923–9.PubMedCrossRefGoogle Scholar
  14. Bruyere O, Collette JH, Ethgen O, Rovati LC, Giacovelli G, Henrotin YE, Seidel L, Reginster JY. Biochemical markers of bone and cartilage remodeling in prediction of longterm progression of knee osteoarthritis. J Rheumatol. 2003;30:1043–50.PubMedGoogle Scholar
  15. Catterall JB, Stabler TV, Flannery CR, Kraus VB. Changes in serum and synovial fluid biomarkers after acute injury (NCT00332254). Arthritis Res Ther. 2010;12:R229.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Chaganti RK, Kelman A, Lui L, Yao W, Javaid MK, Bauer D, Nevitt M, Lane NE, Study OF Osteoporotic Fractures Research Group, S. Change in serum measurements of cartilage oligomeric matrix protein and association with the development and worsening of radiographic hip osteoarthritis. Osteoarthritis Cartilage. 2008;16:566–71.PubMedCrossRefGoogle Scholar
  17. Chen XX, Yang T. Roles of leptin in bone metabolism and bone diseases. J Bone Miner Metab. 2015;33:474–485.PubMedCrossRefGoogle Scholar
  18. Cheras PA, Myers SP, Paul-Brent PA, Outerbridge KH, Nielsen GV. Randomized double-blind placebo-controlled trial on the potential modes of action of SheaFlex70 in osteoarthritis. Phytother Res. 2010;24:1126–31.PubMedGoogle Scholar
  19. Chou CH, Lee CH, Lu LS, Song IW, Chuang HP, Kuo SY, Wu JY, Chen YT, Kraus VB, Wu CC, Lee MT. Direct assessment of articular cartilage and underlying subchondral bone reveals a progressive gene expression change in human osteoarthritic knees. Osteoarthritis Cartilage. 2013a;21:450–61.PubMedCrossRefGoogle Scholar
  20. Chou CH, Wu CC, Song IW, Chuang HP, Lu LS, Chang JH, Kuo SY, Lee CH, Wu JY, Chen YT, Kraus VB, Lee MT. Genome-wide expression profiles of subchondral bone in osteoarthritis. Arthritis Res Ther. 2013b;15:R190.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Clines GA, Mohammad KS, Grunda JM, Clines KL, Niewolna M, Mckenna CR, Mckibbin CR, Yanagisawa M, Suva LJ, Chirgwin JM, Guise TA. Regulation of postnatal trabecular bone formation by the osteoblast endothelin A receptor. J Bone Miner Res. 2011;26:2523–36.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Cloos PA, Fledelius C. Collagen fragments in urine derived from bone resorption are highly racemized and isomerized: a biological clock of protein aging with clinical potential. Biochem J. 2000;345(Pt 3):473–80.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Clowes JA, Hannon RA, Yap TS, Hoyle NR, Blumsohn A, Eastell R. Effect of feeding on bone turnover markers and its impact on biological variability of measurements. Bone. 2002;30:886–90.PubMedCrossRefGoogle Scholar
  24. Conrozier T, Saxne T, Fan CS, Mathieu P, Tron AM, Heinegard D, Vignon E. Serum concentrations of cartilage oligomeric matrix protein and bone sialoprotein in hip osteoarthritis: a one year prospective study. Ann Rheum Dis. 1998;57:527–32.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Couchourel D, Aubry I, Delalandre A, Lavigne M, Martel-Pelletier J, Pelletier JP, Lajeunesse D. Altered mineralization of human osteoarthritic osteoblasts is attributable to abnormal type I collagen production. Arthritis Rheum. 2009;60:1438–50.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Crema MD, Roemer FW, Zhu Y, Marra MD, Niu J, Zhang Y, Lynch JA, Javaid MK, Lewis CE, EL-Khoury GY, Felson DT, Guermazi A. Subchondral cystlike lesions develop longitudinally in areas of bone marrow edema-like lesions in patients with or at risk for knee osteoarthritis: detection with MR imaging--the MOST study. Radiology. 2010;256:855–62.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Davis CR, Karl J, Granell R, Kirwan JR, Fasham J, Johansen J, Garnero P, Sharif M. Can biochemical markers serve as surrogates for imaging in knee osteoarthritis? Arthritis Rheum. 2007;56:4038–47.PubMedCrossRefGoogle Scholar
  28. Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT, Shen J, Vinson C, Rueger JM, Karsenty G. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell. 2000;100:197–207.PubMedCrossRefGoogle Scholar
  29. Dumond H, Presle N, Terlain B, Mainard D, Loeuille D, Netter P, Pottie P. Evidence for a key role of leptin in osteoarthritis. Arthritis Rheum. 2003;48:3118–29.PubMedCrossRefGoogle Scholar
  30. Fardellone P, Sejourne A, Paccou J, Goeb V. Bone remodelling markers in rheumatoid arthritis. Mediators Inflamm. 2014;2014:484280.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Floerkemeier T, Hirsch S, Budde S, Radtke K, Thorey F, Windhagen H, Von Lewinski G. Bone turnover markers failed to predict the occurrence of osteonecrosis of the femoral head: a preliminary study. J Clin Lab Anal. 2012;26:55–60.PubMedCrossRefGoogle Scholar
  32. Funck-Brentano T, Cohen-Solal M. Subchondral bone and osteoarthritis. Curr Opin Rheumatol. 2015;27:420–426.PubMedCrossRefGoogle Scholar
  33. Garnero P, Ferreras M, Karsdal MA, Nicamhlaoibh R, Risteli J, Borel O, Qvist P, Delmas PD, Foged NT, Delaisse JM. The type I collagen fragments ICTP and CTX reveal distinct enzymatic pathways of bone collagen degradation. J Bone Miner Res. 2003;18:859–67.PubMedCrossRefGoogle Scholar
  34. Garnero P, Aronstein WS, Cohen SB, Conaghan PG, Cline GA, Christiansen C, Beary JF, Meyer JM, Bingham CO, 3RD. Relationships between biochemical markers of bone and cartilage degradation with radiological progression in patients with knee osteoarthritis receiving risedronate: the Knee Osteoarthritis Structural Arthritis randomized clinical trial. Osteoarthritis Cartilage. 2008;16:660–6.PubMedCrossRefGoogle Scholar
  35. Gegout PP, Francin PJ, Mainard D, Presle N. Adipokines in osteoarthritis: friends or foes of cartilage homeostasis? Joint Bone Spine. 2008;75:669–71.PubMedCrossRefGoogle Scholar
  36. Goldring MB, Goldring SR. Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis. Ann N Y Acad Sci. 2010;1192:230–7.PubMedCrossRefGoogle Scholar
  37. Guerne PA, Carson DA, Lotz M. IL-6 production by human articular chondrocytes. Modulation of its synthesis by cytokines, growth factors, and hormones in vitro. J Immunol. 1990;144:499–505.PubMedGoogle Scholar
  38. Haq A, EL-Ramahi K, AL-Dalaan A, AL-Sedairy ST. Serum and synovial fluid concentrations of endothelin-1 in patients with rheumatoid arthritis. J Med. 1999;30:51–60.PubMedGoogle Scholar
  39. Hart DJ, Spector TD. Radiographic criteria for epidemiologic studies of osteoarthritis. J Rheumatol Suppl. 1995;43:46–8.PubMedGoogle Scholar
  40. Hauschka PV, Lian JB, Cole DE, Gundberg CM. Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone. Physiol Rev. 1989;69:990–1047.PubMedGoogle Scholar
  41. He T, Wu W, Huang Y, Zhang X, Tang T, Dai K. Multiple biomarkers analysis for the early detection of prosthetic aseptic loosening of hip arthroplasty. Int Orthop. 2013;37:1025–31.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Honsawek S, Tanavalee A, Yuktanandana P, Ngarmukos S, Saetan N, Tantavisut S. Dickkopf-1 (Dkk-1) in plasma and synovial fluid is inversely correlated with radiographic severity of knee osteoarthritis patients. BMC Musculoskelet Disord. 2010;11:257.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Honsawek S, Wilairatana V, Udomsinprasert W, Sinlapavilawan P, Jirathanathornnukul N. Association of plasma and synovial fluid periostin with radiographic knee osteoarthritis: cross-sectional study. Joint Bone Spine. 2015;82:352.PubMedCrossRefGoogle Scholar
  44. Huebner JL, Kraus VB. Assessment of the utility of biomarkers of osteoarthritis in the guinea pig. Osteoarthritis Cartilage. 2006;14:923–30.PubMedCrossRefGoogle Scholar
  45. Huebner JL, Hanes MA, Beekman B, Tekoppele JM, Kraus VB. A comparative analysis of bone and cartilage metabolism in two strains of guinea-pig with varying degrees of naturally occurring osteoarthritis. Osteoarthritis Cartilage. 2002;10:758–67.PubMedCrossRefGoogle Scholar
  46. Huebner JL, Bay-Jensen AC, Huffman KM, He Y, Leeming DJ, Mcdaniel GE, Karsdal MA, Kraus VB. Alpha C-telopeptide of type I collagen is associated with subchondral bone turnover and predicts progression of joint space narrowing and osteophytes in osteoarthritis. Arthritis Rheum. 2014;66:2440–9.CrossRefGoogle Scholar
  47. Huebner J, Landerman L, Somers T, Keefe F, Guilak F, Blumenthal J, Caldwell D, Kraus V. Exploratory secondary analyses of a cognitive-behavioral intervention for knee osteoarthritis demonstrate reduction in biomarkers of adipocyte inflammation. Osteoarthr Cart. 2016;Apr 16. pii: S1063-4584(16)30015-2. doi:  10.1016/j.joca.2016.04.002.
  48. Hunter DJ, Zhang W, Conaghan PG, Hirko K, Menashe L, Li L, Reichmann WM, Losina E. Systematic review of the concurrent and predictive validity of MRI biomarkers in OA. Osteoarthritis Cartilage. 2011;19:557–88.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Hunter DJ, Nevitt M, Losina E, Kraus V. Biomarkers for osteoarthritis: current position and steps towards further validation. Best Pract Res Clin Rheumatol. 2014;28:61–71.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Ivaska KK, Käkönen S-M, Gerdhem P, Obrant KJ, Pettersson K, Väänänen HK. Urinary osteocalcin as a marker of bone metabolism. Clin Chem. 2005;51:618–28.PubMedCrossRefGoogle Scholar
  51. Kalichman L, Kobyliansky E. Radiographic hand osteoarthritis and serum levels of osteocalcin: cross-sectional study. Rheumatol Int. 2010;30:1131–5.PubMedCrossRefGoogle Scholar
  52. Karsdal MA, Byrjalsen I, Henriksen K, Riis BJ, Christiansen C. Investigations of inter- and intraindividual relationships between exposure to oral salmon calcitonin and a surrogate marker of pharmacodynamic efficacy. Eur J Clin Pharmacol. 2010a;66:29–37.PubMedCrossRefGoogle Scholar
  53. Karsdal MA, Byrjalsen I, Henriksen K, Riis BJ, Lau EM, Arnold M, Christiansen C. The effect of oral salmon calcitonin delivered with 5-CNAC on bone and cartilage degradation in osteoarthritic patients: a 14-day randomized study. Osteoarthritis Cartilage. 2010b;18:150–9.PubMedCrossRefGoogle Scholar
  54. Karsdal MA, Bay-Jensen AC, Lories RJ, Abramson S, Spector T, Pastoureau P, Christiansen C, Attur M, Henriksen K, Goldring SR, Kraus V. The coupling of bone and cartilage turnover in osteoarthritis: opportunities for bone antiresorptives and anabolics as potential treatments? Ann Rheum Dis. 2014;73:336–48.PubMedCrossRefGoogle Scholar
  55. Karsdal MA, Byrjalsen I, Alexandersen P, Bihlet A, Andersen JR, Riis BJ, Bay-Jensen AC, Christiansen C. Treatment of symptomatic knee osteoarthritis with oral salmon calcitonin: results from two phase 3 trials. Osteoarthritis Cartilage. 2015;23:532–43.PubMedCrossRefGoogle Scholar
  56. Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis. 1957;16:494–502.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Kelman A, Lui L, Yao W, Krumme A, Nevitt M, Lane NE. Association of higher levels of serum cartilage oligomeric matrix protein and N-telopeptide crosslinks with the development of radiographic hip osteoarthritis in elderly women. Arthritis Rheum. 2006;54:236–43.PubMedCrossRefGoogle Scholar
  58. Koivula MK, Risteli L, Risteli J. Measurement of aminoterminal propeptide of type I procollagen (PINP) in serum. Clin Biochem. 2012;45:920–7.PubMedCrossRefGoogle Scholar
  59. Kraus VB, Feng S, Wang S, White S, Ainslie M, Brett A, Holmes A, Charles HC. Trabecular morphometry by fractal signature analysis is a novel marker of osteoarthritis progression. Arthritis Rheum. 2009;60:3711–22.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Kraus VB, Burnett B, Coindreau J, Cottrell S, Eyre D, Gendreau M, Gardiner J, Garnero P, Hardin J, Henrotin Y, Heinegard D, Ko A, Lohmander LS, Matthews G, Menetski J, Moskowitz R, Persiani S, Poole AR, Rousseau JC, Todman M. Application of biomarkers in the development of drugs intended for the treatment of osteoarthritis. Osteoarthritis Cartilage. 2011;19:515–42.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Kraus VB, Feng S, Wang S, White S, Ainslie M, Graverand MP, Brett A, Eckstein F, Hunter DJ, Lane NE, Taljanovic MS, Schnitzer T, Charles HC. Subchondral bone trabecular integrity predicts and changes concurrently with radiographic and magnetic resonance imaging-determined knee osteoarthritis progression. Arthritis Rheum. 2013;65:1812–21.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Kraus VB, Blanco FJ, Englund M, Karsdal MA, Lohmander LS. Call for standardized definitions of osteoarthritis and risk stratification for clinical trials and clinical use. Osteoarthritis Cartilage. 2015;23:1233–41.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Kraus V, Collins J, Hargrove D, Losina E, Nevitt M, Katz J, Wang S, Sandell L, Hoffman S, Hunter D. Predictive validity of biochemical biomarkers in knee osteoarthritis – data from the FNIH OA biomarkers consortium. Ann Rheum Dis. 2016; Jun 13. pii: annrheumdis-2016-209252. doi:  10.1136/annrheumdis-2016-209252.
  64. Kumahashi N, Sward P, Larsson S, Lohmander LS, Frobell R, Struglics A. Type II collagen C2C epitope in human synovial fluid and serum after knee injury – associations with molecular and structural markers of injury. Osteoarthr Cart. 2015;Sep;23(9):1506–12.Google Scholar
  65. Kumm J, Tamm A, Lintrop M, Tamm A. Diagnostic and prognostic value of bone biomarkers in progressive knee osteoarthritis: a 6-year follow-up study in middle-aged subjects. Osteoarthritis Cartilage. 2013;21:815–22.PubMedCrossRefGoogle Scholar
  66. Lane NE, Nevitt MC, Lui LY, de Leon P, Corr M. Wnt signaling antagonists are potential prognostic biomarkers for the progression of radiographic hip osteoarthritis in elderly Caucasian women. Arthritis Rheum. 2007;56:3319–25.PubMedCrossRefGoogle Scholar
  67. Lawrence RC, Felson DT, Helmick CG, Arnold LM, Choi H, Deyo RA, Gabriel S, Hirsch R, Hochberg MC, Hunder GG, Jordan JM, Katz JN, Kremers HM, Wolfe F, National Arthritis Data W. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum. 2008;58:26–35.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Lis K. Bone sialoprotein in laboratory diagnostic work-up of osteoarthritis. Ortop Traumatol Rehabil. 2008;10:211–7.PubMedGoogle Scholar
  69. Livshits G, Zhai G, Hart DJ, Kato BS, Wang H, Williams FM, Spector TD. Interleukin-6 is a significant predictor of radiographic knee osteoarthritis: the chingford study. Arthritis Rheum. 2009;60:2037–45.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Lohmander L, Eyre D. Biochemical markers as surrogate end points of joint disease. In: Reid D, Miller C, editors. Clinical trials in rheumatoid arthritis and osteoarthritis. New York: Springer; 2008.Google Scholar
  71. Lohmander LS, Englund PM, Dahl LL, Roos EM. The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am J Sports Med. 2007;35:1756–69.PubMedCrossRefGoogle Scholar
  72. Lombardi G, Lanteri P, Colombini A, Banfi G. Blood biochemical markers of bone turnover: pre-analytical and technical aspects of sample collection and handling. Clin Chem Lab Med. 2012;50:771–89.PubMedCrossRefGoogle Scholar
  73. Mabey T, Honsawek S. Cytokines as biochemical markers for knee osteoarthritis. World J Orthod. 2015;6:95–105.CrossRefGoogle Scholar
  74. Manolagas SC, Jilka RL. Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis. N Engl J Med. 1995;332:305–11.PubMedCrossRefGoogle Scholar
  75. Mutabaruka MS, Aoulad Aissa M, Delalandre A, Lavigne M, Lajeunesse D. Local leptin production in osteoarthritis subchondral osteoblasts may be responsible for their abnormal phenotypic expression. Arthritis Res Ther. 2010;12:R20.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Nagaosa Y, Mateus M, Hassan B, Lanyon P, Doherty M. Development of a logically devised line drawing atlas for grading of knee osteoarthritis. Ann Rheum Dis. 2000;59:587–95.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Nahir AM, Hoffman A, Lorber M, Keiser HR. Presence of immunoreactive endothelin in synovial fluid: analysis of 22 cases. J Rheumatol. 1991;18:678–80.PubMedGoogle Scholar
  78. Nakamura I, Rodan GA, Duong Le T. Regulatory mechanism of osteoclast activation. J Electron Microsc (Tokyo). 2003;52:527–33.CrossRefGoogle Scholar
  79. Nwosu L, Chapman V, Walsh D, Kraus V. Subchondral bone biomarkers as predictors of OA pain progression; linking structural pathology and pain. Osteoarthr Cart. 2016; 24(S51):73.Google Scholar
  80. Orita S, Koshi T, Mitsuka T, Miyagi M, Inoue G, Arai G, Ishikawa T, Hanaoka E, Yamashita K, Yamashita M, Eguchi Y, Toyone T, Takahashi K, Ohtori S. Associations between proinflammatory cytokines in the synovial fluid and radiographic grading and pain-related scores in 47 consecutive patients with osteoarthritis of the knee. BMC Musculoskelet Disord. 2011;12:144.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Orlowsky EW, Kraus VB. The role of innate immunity in osteoarthritis: when our first line of defense goes on the offensive. J Rheumatol. 2015;42:363–71.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Otterness IG, Swindell AC, Zimmerer RO, Poole AR, Ionescu M, Weiner E. An analysis of 14 molecular markers for monitoring osteoarthritis: segregation of the markers into clusters and distinguishing osteoarthritis at baseline. Osteoarthritis Cartilage. 2000;8:180–5.PubMedCrossRefGoogle Scholar
  83. Pelletier JP, Raynauld JP, Caron J, Mineau F, Abram F, Dorais M, Haraoui B, Choquette D, Martel-Pelletier J. Decrease in serum level of matrix metalloproteinases is predictive of the disease-modifying effect of osteoarthritis drugs assessed by quantitative MRI in patients with knee osteoarthritis. Ann Rheum Dis. 2010;69:2095–101.PubMedCrossRefGoogle Scholar
  84. Pesesse L, Sanchez C, Walsh DA, Delcour JP, Baudouin C, Msika P, Henrotin Y. Bone sialoprotein as a potential key factor implicated in the pathophysiology of osteoarthritis. Osteoarthritis Cartilage. 2014;22:547–56.PubMedCrossRefGoogle Scholar
  85. Research MFFMEA. Test ID: PINP (Procollagen I Intact N-Terminal, Serum). 2015. Available: Accessed 28 Dec 2015.
  86. Rousseau JC, Sandell LJ, Delmas PD, Garnero P. Development and clinical application in arthritis of a new immunoassay for serum type IIA procollagen NH2 propeptide. Methods Mol Med. 2004;101:25–37.PubMedGoogle Scholar
  87. Rousseau JC, Chevrel G, Schott AM, Garnero P. Increased cartilage type II collagen degradation in patients with osteogenesis imperfecta used as a human model of bone type I collagen alterations. Bone. 2010;46:897–900.PubMedCrossRefGoogle Scholar
  88. Rousseau JC, Sornay-Rendu E, Bertholon C, Garnero P, Chapurlat R. Serum periostin is associated with prevalent knee osteoarthritis and disease incidence/progression in women: the OFELY study. Osteoarthritis Cartilage. 2015;23:1736–1742.PubMedCrossRefGoogle Scholar
  89. Rubenhagen R, Schuttrumpf JP, Sturmer KM, Frosch KH. Interleukin-7 levels in synovial fluid increase with age and MMP-1 levels decrease with progression of osteoarthritis. Acta Orthop. 2012;83:59–64.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Sanghi D, Mishra A, Sharma AC, Singh A, Natu SM, Agarwal S, Srivastava RN. Does vitamin D improve osteoarthritis of the knee: a randomized controlled pilot trial. Clin Orthop Relat Res. 2013;471:3556–62.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Schmidt-Rohlfing B, Thomsen M, Niedhart C, Wirtz D, Schneider U. Correlation of bone and cartilage markers in the synovial fluid with the degree of osteoarthritis. Rheumatol Int. 2002;21:193–9.PubMedCrossRefGoogle Scholar
  92. Sharma AR, Jagga S, Lee SS, Nam JS. Interplay between cartilage and subchondral bone contributing to pathogenesis of osteoarthritis. Int J Mol Sci. 2013;14:19805–30.PubMedPubMedCentralCrossRefGoogle Scholar
  93. Sin A, Tang W, Wen CY, Chung SK, Chiu KY. The emerging role of endothelin-1 in the pathogenesis of subchondral bone disturbance and osteoarthritis. Osteoarthritis Cartilage. 2015;23:516–24.PubMedCrossRefGoogle Scholar
  94. Stannus O, Jones G, Cicuttini F, Parameswaran V, Quinn S, Burgess J, Ding C. Circulating levels of IL-6 and TNF-alpha are associated with knee radiographic osteoarthritis and knee cartilage loss in older adults. Osteoarthritis Cartilage. 2010a;18:1441–7.PubMedCrossRefGoogle Scholar
  95. Stannus OP, Jones G, Quinn SJ, Cicuttini FM, Dore D, Ding C. The association between leptin, interleukin-6, and hip radiographic osteoarthritis in older people: a cross-sectional study. Arthritis Res Ther. 2010b;12:R95.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Tanishi N, Yamagiwa H, Hayami T, Mera H, Koga Y, Omori G, Endo N. Usefulness of urinary CTX-II and NTX-I in evaluating radiological knee osteoarthritis: the Matsudai knee osteoarthritis survey. J Orthop Sci. 2014;19:429–36.PubMedCrossRefGoogle Scholar
  97. Valdes AM, Meulenbelt I, Chassaing E, Arden NK, Bierma-Zeinstra S, Hart D, Hofman A, Karsdal M, Kloppenburg M, Kroon HM, Slagboom EP, Spector TD, Uitterlinden AG, Van Meurs JB, Bay-Jensen AC. Large scale meta-analysis of urinary C-terminal telopeptide, serum cartilage oligomeric protein and matrix metalloprotease degraded type II collagen and their role in prevalence, incidence and progression of osteoarthritis. Osteoarthritis Cartilage. 2014;22:683–9.PubMedCrossRefGoogle Scholar
  98. Van Spil WE, Degroot J, Lems WF, Oostveen JC, Lafeber FP. Serum and urinary biochemical markers for knee and hip-osteoarthritis: a systematic review applying the consensus BIPED criteria. Osteoarthritis Cartilage. 2010;18:605–12.PubMedCrossRefGoogle Scholar
  99. Van Spil WE, Drossaers-Bakker KW, Lafeber FP. Associations of CTX-II with biochemical markers of bone turnover raise questions on its tissue origin: data from CHECK, a cohort study of early osteoarthritis. Ann Rheum Dis. 2013;72:29–36.PubMedCrossRefGoogle Scholar
  100. Vasikaran S, Cooper C, Eastell R, Griesmacher A, Morris HA, Trenti T, Kanis JA. International Osteoporosis Foundation and International Federation of Clinical Chemistry and Laboratory Medicine position on bone marker standards in osteoporosis. Clin Chem Lab Med. 2011;49:1271–4.PubMedCrossRefGoogle Scholar
  101. Wang Q, Rozelle AL, Lepus CM, Scanzello CR, Song JJ, Larsen DM, Crish JF, Bebek G, Ritter SY, Lindstrom TM, Hwang I, Wong HH, Punzi L, Encarnacion A, Shamloo M, Goodman SB, Wyss-Coray T, Goldring SR, Banda NK, Thurman JM, Gobezie R, Crow MK, Holers VM, Lee DM, Robinson WH. Identification of a central role for complement in osteoarthritis. Nat Med. 2011;17:1674–9.PubMedPubMedCentralCrossRefGoogle Scholar
  102. Wen CY, Chen Y, Tang HL, Yan CH, Lu WW, Chiu KY. Bone loss at subchondral plate in knee osteoarthritis patients with hypertension and type 2 diabetes mellitus. Osteoarthritis Cartilage. 2013;21:1716–23.PubMedCrossRefGoogle Scholar
  103. Wieland HA, Michaelis M, Kirschbaum BJ, Rudolphi KA. Osteoarthritis – an untreatable disease? Nat Rev Drug Discov. 2005;4:331–44.PubMedCrossRefGoogle Scholar
  104. Wollheim FA. Bone sialoprotein-a new marker for subchondral bone. Osteoarthritis Cartilage. 1999;7:331–2.PubMedCrossRefGoogle Scholar
  105. Wong GS, Lee JS, Park YY, Klein-Szanto AJ, Waldron TJ, Cukierman E, Herlyn M, Gimotty P, Nakagawa H, Rustgi AK. Periostin cooperates with mutant p53 to mediate invasion through the induction of STAT1 signaling in the esophageal tumor microenvironment. Oncogenesis. 2013;2:e59.PubMedPubMedCentralCrossRefGoogle Scholar
  106. Xu L, Hayashi D, Roemer FW, Felson DT, Guermazi A. Magnetic resonance imaging of subchondral bone marrow lesions in association with osteoarthritis. Semin Arthritis Rheum. 2012;42:105–18.PubMedPubMedCentralCrossRefGoogle Scholar
  107. Yang Y, Cui Q, Sahai N. How does bone sialoprotein promote the nucleation of hydroxyapatite? A molecular dynamics study using model peptides of different conformations. Langmuir. 2010;26:9848–59.PubMedCrossRefGoogle Scholar
  108. Zhang Y, Nevitt M, Niu J, Lewis C, Torner J, Guermazi A, Roemer F, Mcculloch C, Felson DT. Fluctuation of knee pain and changes in bone marrow lesions, effusions, and synovitis on magnetic resonance imaging. Arthritis Rheum. 2011;63:691–9.PubMedCrossRefGoogle Scholar
  109. Zhang R, Fang H, Chen Y, Shen J, Lu H, Zeng C, Ren J, Zeng H, Li Z, Chen S, Cai D, Zhao Q. Gene expression analyses of subchondral bone in early experimental osteoarthritis by microarray. PLoS One. 2012;7:e32356.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Division of RheumatologyDuke Molecular Physiology Institute, Duke University School of MedicineDurhamUSA

Personalised recommendations