Advertisement

Pentosidine as a Biomarker for Poor Bone Quality and Elevated Fracture Risk

  • Janet M. Pritchard
  • Thomas L. WillettEmail author
Reference work entry
  • 965 Downloads
Part of the Biomarkers in Disease: Methods, Discoveries and Applications book series (BDMDA)

Abstract

The purpose of this chapter is to explore the concept of pentosidine, an advanced glycation end product, as a biomarker of bone quality and bone fragility. Bone quality is a term used to describe the many factors that contribute to fracture risk that are not necessarily captured during clinical fracture assessment. Pentosidine formation in the body requires glycation and oxidation of proteins. In bone, the protein that is most affected is type 1 collagen. Pentosidine forms divalent cross-links between adjacent type 1 collagen molecules. Pentosidine content can be assessed in systemic fluids (urine and serum) and in bone tissue using various methods, including high-performance liquid chromatography (HPLC) and more recently, mass spectrometry (MS). When assessed in urine and serum, most studies report an association between pentosidine and prevalent or incident fracture. The risk of incident fracture appears to be 3–42% higher for elevated levels of pentosidine in serum or urine. However, these results may be confounded by overall bone turnover rate, as gold standard bone turnover markers, procollagen type 1 N propeptide of type 1 collagen (P1NP), and C-terminal cross-linking telopeptide of type 1 collagen (CTX) are not accounted for in regression models. There are other inconsistencies in the results related to disease status (i.e., type 2 diabetes diagnosis), ethnicity (i.e., Japanese vs. Caucasian), and sex. When assessed in bone samples, pentosidine accumulation in cortical bone is negatively related to measures of bone toughness (such as ductility, work-to-fracture), but inconsistent results have been reported in trabecular bone. Also, correlation is not causation and in vitro models do not completely account for all changes occurring in the bone material with aging and disease. Pentosidine content in bone tends to increase in an age-dependent manner, and different diseases can accelerate the accumulation of pentosidine. Studies in animal models of type 2 diabetes, type 1 diabetes, low and high turnover chronic kidney disease, and postmenopausal osteoporosis have shown elevated levels of bone pentosidine and altered amounts of enzymatic cross-links (lysyl oxidase [LOX]-dependent cross-links). As these diseases are also associated with higher fracture risk, the hypothesis is that pentosidine contributes to fracture risk. However, whether pentosidine plays a causal role in degrading bone mechanical properties and increasing fracture risk remains to be elucidated. The role of pentosidine as a biomarker for bone quality and fracture risk requires more research in the areas of determining whether systemic pentosidine is better at predicting fractures and is superior to other gold standard bone turnover markers (s-CTX, s-P1NP), determining whether the link between bone-specific pentosidine and bone mechanical properties is consistent in trabecular and cortical bone, determining relationships between bone-specific and systemic pentosidine in diseases with high and low bone turnover, and accounting for differences in resorption rate, ethnicity, and sex. In addition, standard quality assurance measures must be addressed (i.e., specimen stability, variability) for pentosidine to be a biomarker for bone quality and fracture risk.

Keywords

Pentosidine Bone quality Fracture Fracture risk Osteoporosis Biomarker Bone turnover markers Advanced glycation end product Nonenzymatic cross-link 

List of Abbreviations

AGE

Advanced glycation end product

BAP

Serum bone-specific alkaline phosphatase

BMD

Bone mineral density

CTX

C-terminal cross-linking telopeptide of type 1 collagen

deH-DHLNL

Dehydro-dihydroxylysinonorleucine

deH-HLNL

Dehydro-hydroxylysinonorleucine

DPD

Deoxypyridinoline

DPL

Deoxypyrrololine

DXA

Dual x-ray absorptiometry

ELISA

Enzyme-linked immunosorbent assay

HPLC

High-performance liquid chromatography

HR

Hazard ratio

LOX

Lysyl oxidase

OR

Odds ratio

P1NP

Procollagen type 1 N propeptide of type 1 collagen

PYD

Pyridinoline

PYL

Pyrrololine

RR

Relative risk

u-NTX

Urinary N-terminal telopeptide of type 1 collagen

References

  1. Allen MR, Newman CL, Chen N, Granke M, Nyman JS, Moe SM. Changes in skeletal collagen cross-links and matrix hydration in high- and low-turnover chronic kidney disease. Osteoporos Int. 2015;26:977–85.PubMedCrossRefGoogle Scholar
  2. Bailey AJ, Wotton SF, Sims TJ, Thompson PW. Post-translational modifications in the collagen of human osteoporotic femoral head. Biochem Biophys Res Commun. 1992;185:801–5.PubMedCrossRefGoogle Scholar
  3. Bank RA, Beekman B, Verzijl N, de Roos JA, Sakkee AN, Tekoppele JM. Sensitive fluorimetric quantitation of pyridinium and pentosidine crosslinks in biological samples in a single high-performance liquid chromatographic run. J Chromatogr B Biomed Sci Appl. 1997;703:37–44.PubMedCrossRefGoogle Scholar
  4. Banse X, Sims TJ, Bailey AJ. Mechanical properties of adult vertebral cancellous bone: correlation with collagen intermolecular cross-links. J Bone Miner Res. 2002;17:1621–8.PubMedCrossRefGoogle Scholar
  5. Biemel KM, Reihl O, Conrad J, Lederer MO. Formation pathways for lysine-arginine cross-links derived from hexoses and pentoses by Maillard processes: unraveling the structure of a pentosidine precursor. J Biol Chem. 2001;276:23405–12.PubMedCrossRefGoogle Scholar
  6. Biemel KM, Friedl DA, Lederer MO. Identification and quantification of major maillard cross-links in human serum albumin and lens protein. Evidence for glucosepane as the dominant compound. J Biol Chem. 2002;277:24907–15.PubMedCrossRefGoogle Scholar
  7. Bonde M, Fledelius C, Qvist P, Christiansen C. Coated-tube radioimmunoassay for C-telopeptides of type I collagen to assess bone resorption. Clin Chem. 1996;42:1639–44.PubMedGoogle Scholar
  8. Boonen S, Koutri R, Dequeker J, Aerssens J, Lowet G, Nijs J, Verbeke G, Lesaffre E, Geusens P. Measurement of femoral geometry in type I and type II osteoporosis: differences in hip axis length consistent with heterogeneity in the pathogenesis of osteoporotic fractures. J Bone Miner Res. 1995;10:1908–12.PubMedCrossRefGoogle Scholar
  9. Boskey AL. Biomineralization: conflicts, challenges, and opportunities. J Cell Biochem Suppl. 1998;72(30–31):83–91.CrossRefGoogle Scholar
  10. Bouxsein ML, Szulc P, Munoz F, Thrall E, Sornay-Rendu E, Delmas PD. Contribution of trochanteric soft tissues to fall force estimates, the factor of risk, and prediction of hip fracture risk. J Bone Miner Res. 2007;22:825–31.PubMedCrossRefGoogle Scholar
  11. Brown JP, Albert C, Nassar BA, Adachi JD, Cole D, Davison KS, Dooley KC, Don-Wauchope A, Douville P, Hanley DA, Jamal SA, Josse R, Kaiser S, Krahn J, Krause R, Kremer R, Lepage R, Letendre E, Morin S, Ooi DS, Papaioaonnou A, Ste-Marie LG. Bone turnover markers in the management of postmenopausal osteoporosis. Clin Biochem. 2009;42:929–42.PubMedCrossRefGoogle Scholar
  12. Chapurlat RD, Garnero P, Breart G, Meunier PJ, Delmas PD. Serum type I collagen breakdown product (serum CTX) predicts hip fracture risk in elderly women: the EPIDOS study. Bone. 2000;27:283–6.PubMedCrossRefGoogle Scholar
  13. Chubb SA. Measurement of C-terminal telopeptide of type I collagen (CTX) in serum. Clin Biochem. 2012;45:928–35.PubMedCrossRefGoogle Scholar
  14. Cranney A, Jamal SA, Tsang JF, Josse RG, Leslie WD. Low bone mineral density and fracture burden in postmenopausal women. CMAJ. 2007;177:575–80.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Cummings SR, Karpf DB, Harris F, Genant HK, Ensrud K, Lacroix AZ, Black DM. Improvement in spine bone density and reduction in risk of vertebral fractures during treatment with antiresorptive drugs. Am J Med. 2002;112:281–9.PubMedCrossRefGoogle Scholar
  16. Dyer DG, Blackledge JA, Katz BM, Hull CJ, Adkisson HD, Thorpe SR, Lyons TJ, Baynes JW. The Maillard reaction in vivo. Z Ernahrungswiss. 1991a;30:29–45.PubMedCrossRefGoogle Scholar
  17. Dyer DG, Blackledge JA, Thorpe SR, Baynes JW. Formation of pentosidine during nonenzymatic browning of proteins by glucose. Identification of glucose and other carbohydrates as possible precursors of pentosidine in vivo. J Biol Chem. 1991b;266:11654–60.PubMedGoogle Scholar
  18. Eastell R, Christiansen C, Grauer A, Kutilek S, Libanati C, Mcclung MR, Reid IR, Resch H, Siris E, Uebelhart D, Wang A, Weryha G, Cummings SR. Effects of denosumab on bone turnover markers in postmenopausal osteoporosis. J Bone Miner Res. 2011a;26:530–7.PubMedCrossRefGoogle Scholar
  19. Eastell R, Vrijens B, Cahall DL, Ringe JD, Garnero P, Watts NB. Bone turnover markers and bone mineral density response with risedronate therapy: relationship with fracture risk and patient adherence. J Bone Miner Res. 2011b;26:1662–9.PubMedCrossRefGoogle Scholar
  20. Ebeling PR, Atley LM, Guthrie JR, Burger HG, Dennerstein L, Hopper JL, Wark JD. Bone turnover markers and bone density across the menopausal transition. J Clin Endocrinol Metab. 1996;81:3366–71.PubMedGoogle Scholar
  21. Ehrlich H, Hanke T, Simon P, Born R, Fischer C, Frolov A, Langrock T, Hoffmann R, Schwarzenbolz U, Henle T, Bazhenov VV, Worch H. Carboxymethylation of the fibrillar collagen with respect to the formation of hydroxyapatite. J Biomed Mater Res B Appl Biomater. 2010;92B:542–51.Google Scholar
  22. Eyre DR, Paz A, Gallop PM. Cross-linking in collagen and elastin. Annu Rev Biochem. 1984;53:717–48.PubMedCrossRefGoogle Scholar
  23. Fantner GE, Birkedal H, Kindt JH, Hassenkam T, Weaver JC, Cutroni JA, Bosma BL, Bawazer L, Finch MM, Cidade GA, Morse DE, Stucky GD, Hansma PK. Influence of the degradation of the organic matrix on the microscopic fracture behavior of trabecular bone. Bone. 2004;35:1013–22.PubMedCrossRefGoogle Scholar
  24. Farlay D, Armas LA, Gineyts E, Akhter MP, Recker RR, Boivin G. Nonenzymatic glycation and degree of mineralization are higher in bone from fractured patients with type 1 diabetes mellitus. J Bone Miner Res. 2016;31:190–5.PubMedCrossRefGoogle Scholar
  25. Faulkner KG, Cummings SR, Black D, Palermo L, Gluer CC, Genant HK. Simple measurement of femoral geometry predicts hip fracture: the study of osteoporotic fractures. J Bone Miner Res. 1993;8:1211–7.PubMedCrossRefGoogle Scholar
  26. Felson DT, Lohmander LS. Whither osteoarthritis biomarkers? Osteoarthritis Cartilage. 2009;17:419–22.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Follet H, Viguet-Carrin S, Burt-Pichat B, Depalle B, Bala Y, Gineyts E, Munoz F, Arlot M, Boivin G, Chapurlat RD, Delmas PD, Bouxsein ML. Effects of preexisting microdamage, collagen cross-links, degree of mineralization, age, and architecture on compressive mechanical properties of elderly human vertebral trabecular bone. J Orthop Res. 2011;29:481–8.PubMedCrossRefGoogle Scholar
  28. Fyhrie DP. Summary – measuring “bone quality”. J Musculoskelet Neuronal Interact. 2005;5:318–20.PubMedGoogle Scholar
  29. Garcia-Martin A, Rozas-Moreno P, Reyes-Garcia R, Morales-Santana S, Garcia-Fontana B, Garcia-Salcedo JA, Munoz-Torres M. Circulating levels of sclerostin are increased in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2012;97:234–41.PubMedCrossRefGoogle Scholar
  30. Garnero P. The role of collagen organization on the properties of bone. Calcif Tissue Int. 2015;97:229–40.PubMedCrossRefGoogle Scholar
  31. Garnero P, Hausherr E, Chapuy MC, Marcelli C, Grandjean H, Muller C, Cormier C, Breart G, Meunier PJ, Delmas PD. Markers of bone resorption predict hip fracture in elderly women: the EPIDOS Prospective Study. J Bone Miner Res. 1996a;11:1531–8.PubMedCrossRefGoogle Scholar
  32. Garnero P, Sornay-Rendu E, Chapuy MC, Delmas PD. Increased bone turnover in late postmenopausal women is a major determinant of osteoporosis. J Bone Miner Res. 1996b;11:337–49.PubMedCrossRefGoogle Scholar
  33. Garnero P, Borel O, Gineyts E, Duboeuf F, Solberg H, Bouxsein ML, Christiansen C, Delmas PD. Extracellular post-translational modifications of collagen are major determinants of biomechanical properties of fetal bovine cortical bone. Bone. 2006;38:300–9.PubMedCrossRefGoogle Scholar
  34. Garnero P, Vergnaud P, Hoyle N. Evaluation of a fully automated serum assay for total N-terminal propeptide of type I collagen in postmenopausal osteoporosis. Clin Chem. 2008;54:188–96.PubMedCrossRefGoogle Scholar
  35. Gerdhem P, Isaksson A, Akesson K, Obrant KJ. Increased bone density and decreased bone turnover, but no evident alteration of fracture susceptibility in elderly women with diabetes mellitus. Osteoporos Int. 2005;16:1506–12.PubMedCrossRefGoogle Scholar
  36. Gineyts E, Borel O, Chapurlat R, Garnero P. Quantification of immature and mature collagen crosslinks by liquid chromatography-electrospray ionization mass spectrometry in connective tissues. J Chromatogr B Analyt Technol Biomed Life Sci. 2010a;878:1449–54.PubMedCrossRefGoogle Scholar
  37. Gineyts E, Munoz F, Bertholon C, Sornay-Rendu E, Chapurlat R. Urinary levels of pentosidine and the risk of fracture in postmenopausal women: the OFELY study. Osteoporos Int. 2010b;21:243–50.PubMedCrossRefGoogle Scholar
  38. Gordon CL, Webber CE, Nicholson PS. Relation between image-based assessment of distal radius trabecular structure and compressive strength. Can Assoc Radiol J. 1998;49:390–7.PubMedGoogle Scholar
  39. Grandhee SK, Monnier VM. Mechanism of formation of the Maillard protein cross-link pentosidine. Glucose, fructose, and ascorbate as pentosidine precursors. J Biol Chem. 1991;266:11649–53.PubMedGoogle Scholar
  40. Grune T, Catalgol B, Jung T. Oxidative stress and protein oxidation. In: Protein oxidation and aging. Hoboken: Wiley; 2013.Google Scholar
  41. Hamada Y, Fujii H, Fukagawa M. Role of oxidative stress in diabetic bone disorder. Bone. 2009;45 Suppl 1:S35–8.PubMedCrossRefGoogle Scholar
  42. Hein G, Wiegand R, Lehmann G, Stein G, Franke S. Advanced glycation end-products pentosidine and N epsilon-carboxymethyllysine are elevated in serum of patients with osteoporosis. Rheumatology (Oxford). 2003;42:1242–6.CrossRefGoogle Scholar
  43. Hernandez CJ, Tang SY, Baumbach BM, Hwu PB, Sakkee AN, Van Der Ham F, Degroot J, Bank RA, Keaveny TM. Trabecular microfracture and the influence of pyridinium and non-enzymatic glycation-mediated collagen cross-links. Bone. 2005;37:825–32.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Ioannidis G, Papaioannou A, Hopman WM, Akhtar-Danesh N, Anastassiades T, Pickard L, Kennedy CC, Prior JC, Olszynski WP, Davison KS, Goltzman D, Thabane L, Gafni A, Papadimitropoulos EA, Brown JP, Josse RG, Hanley DA, Adachi JD. Relation between fractures and mortality: results from the Canadian Multicentre Osteoporosis Study. CMAJ. 2009;181:265–71.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Ivaska KK, Gerdhem P, Vaananen HK, Akesson K, Obrant KJ. Bone turnover markers and prediction of fracture: a prospective follow-up study of 1040 elderly women for a mean of 9 years. J Bone Miner Res. 2010;25:393–403.PubMedCrossRefGoogle Scholar
  46. Izuhara Y, Miyata T, Ueda Y, Suzuki D, Asahi K, Inagi R, Sakai H, Kurokawa K. A sensitive and specific ELISA for plasma pentosidine. Nephrol Dial Transplant. 1999;14:576–80.PubMedCrossRefGoogle Scholar
  47. Jepsen KJ, Schaffler MB, Kuhn JL, Goulet RW, Bonadio J, Goldstein SA. Type I collagen mutation alters the strength and fatigue behavior of Mov13 cortical tissue. J Biomech. 1997;30:1141–7.PubMedCrossRefGoogle Scholar
  48. Johnell O, Kanis JA, Oden A, Johansson H, de Laet C, Delmas P, Eisman JA, Fujiwara S, Kroger H, Mellstrom D, Meunier PJ, Melton 3rd LJ, O’Neill T, Pols H, Reeve J, Silman A, Tenenhouse A. Predictive value of BMD for hip and other fractures. J Bone Miner Res. 2005;20:1185–94.PubMedCrossRefGoogle Scholar
  49. Kaffashian S, Raina P, Oremus M, Pickard L, Adachi J, Papadimitropoulos E, Papaioannou A. The burden of osteoporotic fractures beyond acute care: the Canadian Multicentre Osteoporosis Study (CaMos). Age Ageing. 2011;40:602–7.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Kanis JA, Oden A, Johnell O, Jonsson B, De Laet C, Dawson A. The burden of osteoporotic fractures: a method for setting intervention thresholds. Osteoporos Int. 2001;12:417–27.PubMedCrossRefGoogle Scholar
  51. Kanis JA, Hans D, Cooper C, Baim S, Bilezikian JP, Binkley N, Cauley JA, Compston JE, Dawson-Hughes B, El-Hajj Fuleihan G, Johansson H, Leslie WD, Lewiecki EM, Luckey M, Oden A, Papapoulos SE, Poiana C, Rizzoli R, Wahl DA, Mccloskey EV. Interpretation and use of FRAX in clinical practice. Osteoporos Int. 2011;22:2395–411.PubMedCrossRefGoogle Scholar
  52. Karim L, Vashishth D. Heterogeneous glycation of cancellous bone and its association with bone quality and fragility. PLoS One. 2012;7:e35047.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Karim L, Tang SY, Sroga GE, Vashishth D. Differences in non-enzymatic glycation and collagen cross-links between human cortical and cancellous bone. Osteoporos Int. 2013;24:2441–7.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Li X, Agrawal CM, Wang X. Age dependence of in situ termostability of collagen in human bone. Calcif Tissue Int. 2003;72:513–8.PubMedCrossRefGoogle Scholar
  55. Maggio D, Barabani M, Pierandrei M, Polidori MC, Catani M, Mecocci P, Senin U, Pacifici R, Cherubini A. Marked decrease in plasma antioxidants in aged osteoporotic women: results of a cross-sectional study. J Clin Endocrinol Metab. 2003;88:1523–7.PubMedCrossRefGoogle Scholar
  56. Mashiba T, Hirano T, Turner CH, Forwood MR, Johnston CC, Burr DB. Suppressed bone turnover by bisphosphonates increases microdamage accumulation and reduces some biomechanical properties in dog rib. J Bone Miner Res. 2000;15:613–20.PubMedCrossRefGoogle Scholar
  57. Masse PG, Rimnac CM, Yamauchi M, Coburn SP, Rucker RB, Howell DS, Boskey AL. Pyridoxine deficiency affects biomechanical properties of chick tibial bone. Bone. 1996;18:567–74.PubMedCrossRefGoogle Scholar
  58. Mcnally EA, Schwarcz HP, Botton GA, Arsenault AL. A model for the ultrastructure of bone based on electron microscopy of ion-milled sections. PLoS One. 2012;7:e29258.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Mcnerny EM, Gong B, Morris MD, Kohn DH. Bone fracture toughness and strength correlate with collagen cross-link maturity in a dose-controlled lathyrism mouse model. J Bone Miner Res. 2015;30:455–64.PubMedCrossRefGoogle Scholar
  60. Mitome J, Yamamoto H, Saito M, Yokoyama K, Marumo K, Hosoya T. Nonenzymatic cross-linking pentosidine increase in bone collagen and are associated with disorders of bone mineralization in dialysis patients. Calcif Tissue Int. 2011;88:521–9.PubMedCrossRefGoogle Scholar
  61. Muthusami S, Ramachandran I, Muthusamy B, Vasudevan G, Prabhu V, Subramaniam V, Jagadeesan A, Narasimhan S. Ovariectomy induces oxidative stress and impairs bone antioxidant system in adult rats. Clin Chim Acta. 2005;360:81–6.PubMedCrossRefGoogle Scholar
  62. Neumann T, Lodes S, Kastner B, Franke S, Kiehntopf M, Lehmann T, Muller UA, Wolf G, Samann A. High serum pentosidine but not esRAGE is associated with prevalent fractures in type 1 diabetes independent of bone mineral density and glycaemic control. Osteoporos Int. 2014;25:1527–33.PubMedCrossRefGoogle Scholar
  63. NIH BDWG. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69:89–95.CrossRefGoogle Scholar
  64. Nojiri H, Saita Y, Morikawa D, Kobayashi K, Tsuda C, Miyazaki T, Saito M, Marumo K, Yonezawa I, Kaneko K, Shirasawa T, Shimizu T. Cytoplasmic superoxide causes bone fragility owing to low-turnover osteoporosis and impaired collagen cross-linking. J Bone Miner Res. 2011;26:2682–94.PubMedCrossRefGoogle Scholar
  65. Nyman JS, Roy A, Tyler JH, Acuna RL, Gayle HJ, Wang X. Age-related factors affecting the postyield energy dissipation of human cortical bone. J Orthop Res. 2007;25:646–55.PubMedPubMedCentralCrossRefGoogle Scholar
  66. O’Brien FJ, Taylor D, Lee TC. Microcrack accumulation at different intervals during fatigue testing of compact bone. J Biomech. 2003;36:973–80.PubMedCrossRefGoogle Scholar
  67. Odetti P, Rossi S, Monacelli F, Poggi A, Cirnigliaro M, Federici M, Federici A. Advanced glycation end products and bone loss during aging. Ann N Y Acad Sci. 2005;1043:710–7.PubMedCrossRefGoogle Scholar
  68. Opsahl W, Zeronian H, Ellison M, Lewis D, Rucker RB, Riggins RS. Role of copper in collagen cross-linking and its influence on selected mechanical properties of chick bone and tendon. J Nutr. 1982;112:708–16.PubMedGoogle Scholar
  69. Oren TW, Botolin S, Williams A, Bucknell A, King KB. Arthroplasty in veterans: analysis of cartilage, bone, serum, and synovial fluid reveals differences and similarities in osteoarthritis with and without comorbid diabetes. J Rehabil Res Dev. 2011;48:1195–210.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Oxlund H, Barckman M, Ortoft G, Andreassen TT. Reduced concentrations of collagen cross-links are associated with reduced strength of bone. Bone. 1995;17:365S–71.PubMedGoogle Scholar
  71. Oxlund H, Mosekilde L, Ortoft G. Reduced concentration of collagen reducible cross links in human trabecular bone with respect to age and osteoporosis. Bone. 1996;19:479–84.PubMedCrossRefGoogle Scholar
  72. Oz SG, Guven GS, Kilicarslan A, Calik N, Beyazit Y, Sozen T. Evaluation of bone metabolism and bone mass in patients with type-2 diabetes mellitus. J Natl Med Assoc. 2006;98:1598–604.PubMedPubMedCentralGoogle Scholar
  73. Pacifici R, Rupich R, Vered I, Fischer KC, Griffin M, Susman N, Avioli LV. Dual energy radiography (DER): a preliminary comparative study. Calcif Tissue Int. 1988;43:189–91.PubMedCrossRefGoogle Scholar
  74. Papaioannou A, Morin S, Cheung AM, Atkinson S, Brown JP, Feldman S, Hanley DA, Hodsman A, Jamal SA, Kaiser SM, Kvern B, Siminoski K, Leslie WD. 2010 clinical practice guidelines for the diagnosis and management of osteoporosis in Canada: summary. CMAJ. 2010;182:1864–73.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Parfitt AM, Mathews CH, Villanueva AR, Kleerekoper M, Frame B, Rao DS. Relationships between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis. Implications for the microanatomic and cellular mechanisms of bone loss. J Clin Invest. 1983;72:1396–409.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Paschalis EP, Betts F, Dicarlo E, Mendelsohn R, Boskey AL. FTIR microspectroscopic analysis of human iliac crest biopsies from untreated osteoporotic bone. Calcif Tissue Int. 1997;61:487–92.PubMedCrossRefGoogle Scholar
  77. Paschalis EP, Tatakis DN, Robins S, Fratzl P, Manjubala I, Zoehrer R, Gamsjaeger S, Buchinger B, Roschger A, Phipps R, Boskey AL, Dall’Ara E, Varga P, Zysset P, Klaushofer K, Roschger P. Lathyrism-induced alterations in collagen cross-links influence the mechanical properties of bone material without affecting the mineral. Bone. 2011;49:1232–41.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Pritchard JM, Giangregorio LM, Atkinson SA, Beattie KA, Inglis D, Ioannidis G, Punthakee Z, Adachi JD, Papaioannou A. Association of larger holes in the trabecular bone at the distal radius in postmenopausal women with type 2 diabetes mellitus compared to controls. Arthritis Care Res. 2012;64:83–91.CrossRefGoogle Scholar
  79. Pritchard JM, Papaioannou A, Tomowich C, Giangregorio LM, Atkinson SA, Beattie KA, Adachi JD, Debeer J, Winemaker M, Avram V, Schwarcz HP. Bone mineralization is elevated and less heterogeneous in adults with type 2 diabetes and osteoarthritis compared to controls with osteoarthritis alone. Bone. 2013;54:76–82.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Recker R, Lappe J, Davies KM, Heaney R. Bone remodeling increases substantially in the years after menopause and remains increased in older osteoporosis patients. J Bone Miner Res. 2004;19:1628–33.PubMedCrossRefGoogle Scholar
  81. Ritchie RO. How does human bone resist fracture? Ann N Y Acad Sci. 2010;1192:72–80.PubMedCrossRefGoogle Scholar
  82. Robbins SP, Bailey AJ. The chemistry of the collagen cross-links. Characterization of the products of reduction of skin, tendon and bone with sodium cyanoborohydride. Biochem J. 1977;163:339–46.CrossRefGoogle Scholar
  83. Saito M, Marumo K. Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos Int. 2010;21:195–214.PubMedCrossRefGoogle Scholar
  84. Saito M, Marumo K. Effects of collagen crosslinking on bone material properties in health and disease. Calcif Tissue Int. 2015;97:242–61.PubMedCrossRefGoogle Scholar
  85. Saito M, Marumo K, Fujii K, Ishioka N. Single-column high-performance liquid chromatographic-fluorescence detection of immature, mature, and senescent cross-links of collagen. Anal Biochem. 1997;253:26–32.PubMedCrossRefGoogle Scholar
  86. Saito M, Fujii K, Marumo K. Degree of mineralization-related collagen crosslinking in the femoral neck cancellous bone in cases of hip fracture and controls. Calcif Tissue Int. 2006a;79:160–8.PubMedCrossRefGoogle Scholar
  87. Saito M, Fujii K, Soshi S, Tanaka T. Reductions in degree of mineralization and enzymatic collagen cross-links and increases in glycation-induced pentosidine in the femoral neck cortex in cases of femoral neck fracture. Osteoporos Int. 2006b;17:986–95.PubMedCrossRefGoogle Scholar
  88. Saito M, Fujii K, Mori Y, Marumo K. Role of collagen enzymatic and glycation induced cross-links as a determinant of bone quality in spontaneously diabetic WBN/Kob rats. Osteoporos Int. 2006c;17:1514–23.PubMedCrossRefGoogle Scholar
  89. Saito M, Marumo K, Soshi S, Kida Y, Ushiku C, Shinohara A. Raloxifene ameliorates detrimental enzymatic and nonenzymatic collagen cross-links and bone strength in rabbits with hyperhomocysteinemia. Osteoporos Int. 2010;21:655–66.PubMedCrossRefGoogle Scholar
  90. Saito M, Marumo K, Kida Y, Ushiku C, Kato S, Takao-Kawabata R, Kuroda T. Changes in the contents of enzymatic immature, mature, and non-enzymatic senescent cross-links of collagen after once-weekly treatment with human parathyroid hormone (1–34) for 18 months contribute to improvement of bone strength in ovariectomized monkeys. Osteoporos Int. 2011a;22:2373–83.PubMedCrossRefGoogle Scholar
  91. Saito M, Marumo K, Ushiku C, Kato S, Sakai S, Hayakawa N, Mihara M, Shiraishi A. Effects of alfacalcidol on mechanical properties and collagen cross-links of the femoral diaphysis in glucocorticoid-treated rats. Calcif Tissue Int. 2011b;88:314–24.PubMedCrossRefGoogle Scholar
  92. Saito M, Kida Y, Nishizawa T, Arakawa S, Okabe H, Seki A, Marumo K. Effects of 18-month treatment with bazedoxifene on enzymatic immature and mature cross-links and non-enzymatic advanced glycation end products, mineralization, and trabecular microarchitecture of vertebra in ovariectomized monkeys. Bone. 2015;81:573–80.PubMedCrossRefGoogle Scholar
  93. Sanaka T, Funaki T, Tanaka T, Hoshi S, Niwayama J, Taitoh T, Nishimura H, Higuchi C. Plasma pentosidine levels measured by a newly developed method using ELISA in patients with chronic renal failure. Nephron. 2002;91:64–73.PubMedCrossRefGoogle Scholar
  94. Schwartz AV, Garnero P, Hillier TA, Sellmeyer DE, Strotmeyer ES, Feingold KR, Resnick HE, Tylavsky FA, Black DM, Cummings SR, Harris TB, Bauer DC. Pentosidine and increased fracture risk in older adults with type 2 diabetes. J Clin Endocrinol Metab. 2009;94:2380–6.PubMedPubMedCentralCrossRefGoogle Scholar
  95. Sell DR, Nagaraj RH, Grandhee SK, Odetti P, Lapolla A, Fogarty J, Monnier VM. Pentosidine: a molecular marker for the cumulative damage to proteins in diabetes, aging, and uremia. Diabetes Metab Rev. 1991;7:239–51.PubMedCrossRefGoogle Scholar
  96. Sell DR, Biemel KM, Reihl O, Lederer MO, Strauch CM, Monnier VM. Glucosepane is a major protein cross-link of the senescent human extracellular matrix. Relationship with diabetes. J Biol Chem. 2005;280:12310–5.PubMedCrossRefGoogle Scholar
  97. Sendur OF, Turan Y, Tastaban E, Serter M. Antioxidant status in patients with osteoporosis: a controlled study. Joint Bone Spine. 2009;76:514–8.PubMedCrossRefGoogle Scholar
  98. Shigdel R, Osima M, Ahmed LA, Joakimsen RM, Eriksen EF, Zebaze R, Bjornerem A. Bone turnover markers are associated with higher cortical porosity, thinner cortices, and larger size of the proximal femur and non-vertebral fractures. Bone. 2015;81:1–6.PubMedCrossRefGoogle Scholar
  99. Shiraki M, Kuroda T, Tanaka S, Saito M, Fukunaga M, Nakamura T. Nonenzymatic collagen cross-links induced by glycoxidation (pentosidine) predicts vertebral fractures. J Bone Miner Metab. 2008;26:93–100.PubMedCrossRefGoogle Scholar
  100. Shiraki M, Kuroda T, Shiraki Y, Tanaka S, Higuchi T, Saito M. Urinary pentosidine and plasma homocysteine levels at baseline predict future fractures in osteoporosis patients under bisphosphonate treatment. J Bone Miner Metab. 2011;29:62–70.PubMedCrossRefGoogle Scholar
  101. Silva MJ, Brodt MD, Lynch MA, Mckenzie JA, Tanouye KM, Nyman JS, Wang X. Type 1 diabetes in young rats leads to progressive trabecular bone loss, cessation of cortical bone growth, and diminished whole bone strength and fatigue life. J Bone Miner Res. 2009;24:1618–27.PubMedPubMedCentralCrossRefGoogle Scholar
  102. Sornay-Rendu E, Munoz F, Garnero P, Duboeuf F, Delmas PD. Identification of osteopenic women at high risk of fracture: the OFELY study. J Bone Miner Res. 2005;20:1813–9.PubMedCrossRefGoogle Scholar
  103. Starup-Linde J, Lykkeboe S, Gregersen S, Hauge EM, Langdahl BL, Handberg A, Vestergaard P. Differences in biochemical bone markers by diabetes type and the impact of glucose. Bone. 2016;83:149–55.PubMedCrossRefGoogle Scholar
  104. Szulc P, Delmas PD. Biochemical markers of bone turnover: potential use in the investigation and management of postmenopausal osteoporosis. Osteoporos Int. 2008;19:1683–704.PubMedCrossRefGoogle Scholar
  105. Takahashi M, Hoshino H, Kushida K, Kawana K, Inoue T. Direct quantification of pentosidine in urine and serum by HPLC with column switching. Clin Chem. 1996;42:1439–44.PubMedGoogle Scholar
  106. Tanaka S, Kuroda T, Saito M, Shiraki M. Urinary pentosidine improves risk classification using fracture risk assessment tools for postmenopausal women. J Bone Miner Res. 2011;26:2778–84.PubMedCrossRefGoogle Scholar
  107. Tang SY, Vashishth D. Non-enzymatic glycation alters microdamage formation in human cancellous bone. Bone. 2010;46:148–54.PubMedCrossRefGoogle Scholar
  108. Tang SY, Zeenath U, Vashishth D. Effects of non-enzymatic glycation on cancellous bone fragility. Bone. 2007;40:1144–51.PubMedCrossRefGoogle Scholar
  109. Tang SY, Sharan AD, Vashishth D. Effects of collagen crosslinking on tissue fragility. Clin Biomech (Bristol, Avon). 2008;23:122–3.CrossRefGoogle Scholar
  110. Tarride JE, Hopkins RB, Leslie WD, Morin S, Adachi JD, Papaioannou A, Bessette L, Brown JP, Goeree R. The burden of illness of osteoporosis in Canada. Osteoporos Int. 2012;23(11):2591–600.PubMedPubMedCentralCrossRefGoogle Scholar
  111. Tenenhouse A, Joseph L, Kreiger N, Poliquin S, Murray TM, Blondeau L, Berger C, Hanley DA, Prior JC. Estimation of the prevalence of low bone density in Canadian women and men using a population-specific DXA reference standard: the Canadian Multicentre Osteoporosis Study (CaMos). Osteoporos Int. 2000;11:897–904.PubMedCrossRefGoogle Scholar
  112. Uzawa K, Grzesik WJ, Nishiura T, Kuznetsov SA, Robey PG, Brenner DA, Yamauchi M. Differential expression of human lysyl hydroxylase genes, lysine hydroxylation, and cross-linking of type I collagen during osteoblastic differentiation in vitro. J Bone Miner Res. 1999;14:1272–80.PubMedCrossRefGoogle Scholar
  113. Vashishth D, Gibson GJ, Khoury JI, Schaffler MB, Kimura J, Fyhrie DP. Influence of nonenzymatic glycation on biomechanical properties of cortical bone. Bone. 2001;28:195–201.PubMedCrossRefGoogle Scholar
  114. Vasikaran S, Eastell R, Bruyere O, Foldes AJ, Garnero P, Griesmacher A, Mcclung M, Morris HA, Silverman S, Trenti T, Wahl DA, Cooper C, Kanis JA. Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: a need for international reference standards. Osteoporos Int. 2011;22:391–420.PubMedCrossRefGoogle Scholar
  115. Verzijl N, Bank RA, Tekoppele JM, Degroot J. AGEing and osteoarthritis: a different perspective. Curr Opin Rheumatol. 2003;15:616–22.PubMedCrossRefGoogle Scholar
  116. Viguet-Carrin S, Roux JP, Arlot ME, Merabet Z, Leeming DJ, Byrjalsen I, Delmas PD, Bouxsein ML. Contribution of the advanced glycation end product pentosidine and of maturation of type I collagen to compressive biomechanical properties of human lumbar vertebrae. Bone. 2006;39:1073–9.PubMedCrossRefGoogle Scholar
  117. Viguet-Carrin S, Farlay D, Bala Y, Munoz F, Bouxsein ML, Delmas PD. An in vitro model to test the contribution of advanced glycation end products to bone biomechanical properties. Bone. 2008;42:139–49.PubMedCrossRefGoogle Scholar
  118. Viguet-Carrin S, Follet H, Gineyts E, Roux JP, Munoz F, Chapurlat R, Delmas PD, Bouxsein ML. Association between collagen cross-links and trabecular microarchitecture properties of human vertebral bone. Bone. 2010;46:342–7.PubMedCrossRefGoogle Scholar
  119. Wang X, Bank RA, Tekoppele JM, Hubbard GB, Athanasiou KA, Agrawal CM. Effect of collagen denaturation on the toughness of bone. Clin Orthop Relat Res. 2000;371:228–39.CrossRefGoogle Scholar
  120. Wang X, Bank RA, Tekoppele JM, Agrawal CM. The role of collagen in determining bone mechanical properties. J Orthop Res. 2001;19:1021–6.PubMedCrossRefGoogle Scholar
  121. Wang X, Li X, Bank RA, Agrawal CM. Effects of collagen unwinding and cleavage on the mechanical integrity of the collagen network in bone. Calcif Tissue Int. 2002a;71:186–92.PubMedCrossRefGoogle Scholar
  122. Wang X, Shen X, Li X, Agrawal CM. Age-related changes in the collagen network and toughness of bone. Bone. 2002b;31:1–7.PubMedCrossRefGoogle Scholar
  123. Wang X, Li X, Shen X, Agrawal CM. Age-related changes of noncalcified collagen in human cortical bone. Ann Biomed Eng. 2003;31:1365–71.PubMedCrossRefGoogle Scholar
  124. Willett TL, Sutty S, Gaspar A, Avery N, Grynpas M. In vitro non-enzymatic ribation reduces post-yield strain accommodation in cortical bone. Bone. 2013;52:611–22.PubMedCrossRefGoogle Scholar
  125. Willett TL, Pasquale J, Grynpas MD. Collagen modifications in postmenopausal osteoporosis: advanced glycation endproducts may affect bone volume, structure and quality. Curr Osteoporos Rep. 2014;12:329–37.PubMedCrossRefGoogle Scholar
  126. Yamamoto M, Yamaguchi T, Yamauchi M, Yano S, Sugimoto T. Serum pentosidine levels are positively associated with the presence of vertebral fractures in postmenopausal women with type 2 diabetes. J Clin Endocrinol Metab. 2008;93:1013–9.PubMedCrossRefGoogle Scholar
  127. Yelin EH, Watkins-Castillo SI. Cost to treat musculoskeletal diseases [Online]; 2015. Available from: http://www.boneandjointburden.org/2014-report/xe1/cost-treat-musculoskeletal-diseases. Accessed 29 Jan 2016.
  128. Yoshihara K, Nakamura K, Kanai M, Nagayama Y, Takahashi S, Saito N, Nagata M. Determination of urinary and serum pentosidine and its application to elder patients. Biol Pharm Bull. 1998;21:1005–8.PubMedCrossRefGoogle Scholar
  129. Zebaze RM, Ghasem-Zadeh A, Bohte A, Iuliano-Burns S, Mirams M, Price RI, Mackie EJ, Seeman E. Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study. Lancet. 2010;375:1729–36.PubMedCrossRefGoogle Scholar
  130. Zioupos P. Ageing human bone: factors affecting its biomechanical properties and the role of collagen. J Biomater Appl. 2001;15:187–229.PubMedCrossRefGoogle Scholar
  131. Zioupos P, Currey JD, Hamer AJ. The role of collagen in the declining mechanical properties of aging human cortical bone. J Biomed Mater Res. 1999;45:108–16.PubMedCrossRefGoogle Scholar
  132. Zioupos P, Hansen U, Currey JD. Microcracking damage and the fracture process in relation to strain rate in human cortical bone tensile failure. J Biomech. 2008;41:2932–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Biomedical Engineering Program, Department of Systems Design EngineeringUniversity of WaterlooWaterlooCanada
  2. 2.Kinesiology and Interdisciplinary ScienceMcMaster UniversityHamiltonCanada

Personalised recommendations