Skip to main content

Bone Biomarkers in Intrauterine Growth Restriction

  • Reference work entry
  • First Online:
Book cover Biomarkers in Bone Disease

Abstract

Bone tissue is subject to remodeling during the lifetime of an individual. Through a continuous remodeling cycle, old bone is resorbed by osteoclasts with the formation of cavities that are subsequently filled by osteoblasts, which induce bone formation. Fetal life is associated with a high rate of skeletal growth and intense bone modeling activity. Both fetal and neonatal calcium and bone metabolism are uniquely adapted to meet the specific needs of these developmental periods. The fetus must actively receive sufficient calcium across the placenta to meet the large demands of the rapidly mineralizing skeleton, whereas the neonate must quickly adjust to loss of placental calcium transport, while continuing to undergo rapid skeletal growth. Biochemical markers of bone turnover are reliable indices for measuring changes of bone formation and resorption, reflecting the dynamics of bone metabolism at the cellular level. Due to limitations in the application of bone densitometry during the perinatal period, bone biomarkers are effective alternatives to estimate bone turnover. There is considerable evidence that impaired fetal skeletal growth predisposes to late-onset disorders and an accelerated rate of bone loss during later life. As for other adult diseases, intrauterine growth restriction (IUGR) is considered a risk factor for altered bone growth and osteoporosis development. This notion appears to be confirmed by animal data. However, this is less clear in human IUGR neonates. Some studies show a relationship of fetal growth with bone mineral density (BMD), whereas others do not. Similarly, reports determining bone biomarkers provide evidence of unaltered bone metabolism in IUGR fetuses/neonates, although data are not consistent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AGA:

Appropriate for gestational age

ALP:

Alkaline phosphatase

BALP:

Bone-specific alkaline phosphatase

BMC:

Bone mineral content

BMD:

Bone mineral density

Glu-OC:

Undercarboxylated osteocalcin

ICTP:

Cross-linked carboxyl terminal telopeptide of type I collagen

IUGR:

Intrauterine growth restriction

NTx:

N-telopeptide of type 1 collagen

OC:

Osteocalcin

OPG:

Osteoprotegerin

PICP:

Carboxy-terminal propeptide of type I collagen

PINP:

Amino-terminal propeptide of type I collagen

PTH:

Parathormone

RANKL:

Receptor activator of nuclear factor-kB ligand

SGA:

Small for gestational age

References

  • Akcakus M, Kurtoglu S, Koklu E, et al. The relationship between birth weight leptin and bone mineral status in newborn infants. Neonatology. 2007;91:101–6.

    Article  CAS  PubMed  Google Scholar 

  • Alexe DM, Syridou G, Petridou ET. Determinants of early life leptin levels and later life degenerative outcomes. Clin Med Res. 2006;4:326–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beltrand J, Alison M, Nicolescu R, et al. Bone mineral content at birth is determined both by birth weight and fetal growth pattern. Pediatr Res. 2008;64:86–90.

    Article  PubMed  Google Scholar 

  • Bhandari V, Fall P, Raisz L, et al. Potential biochemical growth markers in premature infants. Am J Perinatol. 1999;16:339–49.

    Article  CAS  PubMed  Google Scholar 

  • Bollen AM, Eyre DR. Bone resorption rates in children monitored by the urinary assay of collagen type I cross-linked peptides. Bone. 1994;15:31–4.

    Article  CAS  PubMed  Google Scholar 

  • Briana DD, Malamitsi-Puchner A. Intrauterine growth restriction and adult disease: the role of adipocytokines. Eur J Endocrinol. 2009;160:337–47.

    Article  CAS  PubMed  Google Scholar 

  • Briana DD, Gourgiotis D, Boutsikou M, et al. Perinatal bone turnover in term pregnancies: the influence of intrauterine growth restriction. Bone. 2008;42:307–13.

    Article  CAS  PubMed  Google Scholar 

  • Briana DD, Boutsikou M, Baka S, et al. Circulating osteoprotegerin and sRANKL concentrations in the perinatal period at term: the impact of intrauterine growth restriction. Neonatology. 2009;96:132–6.

    Article  CAS  PubMed  Google Scholar 

  • Briana DD, Gourgiotis D, Georgiadis A, et al. Intrauterine growth restriction may not suppress bone formation at term, as indicated by circulating concentrations of undercarboxylated osteocalcin and Dickkopf-1. Metabolism. 2012;61:335–40.

    Article  CAS  PubMed  Google Scholar 

  • Briana DD, Boutsikou M, Boutsikou T, et al. Associations of novel adipocytokines with bone biomarkers in intrauterine growth-restricted fetuses/neonates at term. J Matern Fetal Neonatal Med. 2014;27:984–8.

    Article  CAS  PubMed  Google Scholar 

  • Brodsky D, Christou H. Current concepts in intrauterine growth restriction. J Intensive Care Med. 2004;19:307–19.

    Article  PubMed  Google Scholar 

  • Cadogan J, Eastell R, Jones N, et al. Milk intake and bone mineral acquisition in adolescent girls: randomized, controlled intervention trial. BMJ. 1997;315:1255–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camozzi V, Tossi A, Simoni E, et al. Role of biochemical markers of bone remodeling in clinical practice. J Endocrinol Invest. 2007;30(6 Suppl):13–7.

    CAS  PubMed  Google Scholar 

  • Chen H, Miller S, Lane RH, et al. Intrauterine growth restriction decreases endochondral ossification and bone strength in female rats. Am J Perinatol. 2013;30:261–6.

    Article  PubMed  Google Scholar 

  • Chunga Vega F, Gomez de Tejada MJ, Gonzalez Hachero J, et al. Low bone mineral density in small for gestational age infants: correlation with cord blood zinc concentrations. Arch Dis Child Fetal Neonatal Ed. 1996;75:F126–129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper C, Cawley M, Bhalla A, et al. Childhood growth, physical activity, and peak bone mass in women. J Bone Miner Res. 1995;10:940–7.

    Article  CAS  PubMed  Google Scholar 

  • Cooper C, Fall C, Egger P, et al. Growth in infancy and bone mass in later life. Ann Rheum Dis. 1997;56:17–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper C, Javaid MK, Taylor P, et al. The fetal origins of osteoporotic fracture. Calcif Tissue Int. 2002;70:391–4.

    Article  CAS  PubMed  Google Scholar 

  • Engelbregt MJ, van Weissenbruch MM, Lips P, et al. Body composition and bone measurements in intra-uterine growth retarded and early postnatally undernourished male and female rats at the age of 6 months: comparison with puberty. Bone. 2004;34:180–6.

    Article  PubMed  Google Scholar 

  • Fall C, Hindmarsh P, Dennison E, et al. Programming of growth hormone secretion and bone mineral density in elderly men: a hypothesis. J Clin Endocrinol Metab. 1998;83:135–9.

    CAS  PubMed  Google Scholar 

  • Fujita K, Janz S. Attenuation of WNT signaling by DKK-1 and -2 regulates BMP2-induced osteoblast differentiation and expression of OPG, RANKL, and M-CSF. Mol Cancer. 2007;6:71.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gale CR, Martyn CN, Kellingray S, et al. Intrauterine programming of adult body composition. J Clin Endocrinol Metab. 2001;86:267–72.

    CAS  PubMed  Google Scholar 

  • Gourgiotis D, Briana DD, Georgiadis A, et al. Perinatal collagen turnover markers in intrauterine growth restriction. J Matern Fetal Neonatal Med. 2012;25:1719–22.

    Article  CAS  PubMed  Google Scholar 

  • Harrast SD, Kalkwarf HJ. Effects of gestational age, maternal diabetes, and intrauterine growth retardation on markers of fetal bone turnover in amniotic fluid. Calcif Tissue Int. 1998;62:205–8.

    Article  CAS  PubMed  Google Scholar 

  • Holroyd CR, Harvey NC, Crozier SR, et al. Placental size at 19 weeks predicts offspring bone mass at birth: findings from the Southampton women’s survey. Placenta. 2012;33:623–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hytinantti T, Rutanen EM, Turpeinen M, et al. Markers of collagen metabolism and insulin-like growth factor binding protein-1 in term infants. Arch Dis Child Fetal Neonatal Ed. 2000;83(1):F17–20.

    Google Scholar 

  • Kajantie E, Hytinantti T, Koistinen R, et al. Markers of type I and type III collagen turnover, insulin-like growth factors, and their binding proteins in cord plasma of small premature infants: relationships with fetal growth, gestational age, preeclampsia, and antenatal glucocorticoid treatment. Pediatr Res. 2001;49:481–9.

    Article  CAS  PubMed  Google Scholar 

  • Kaji T, Yasui T, Suto M, et al. Effect of bed rest during pregnancy on bone turnover markers in pregnant and postpartum women. Bone. 2007;40:1088–94.

    Article  CAS  PubMed  Google Scholar 

  • Khosla S. Minireview: the OPG/RANKL/RANK system. Endocrinology. 2001;142:5050–5.

    Article  CAS  PubMed  Google Scholar 

  • Krishnan V, Bryant HU, Macdougald OA. Regulation of bone mass by Wnt signaling. J Clin Invest. 2006;116:1202–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacey DL, Timms E, Tan HL, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 1998;93:165–76.

    Article  CAS  PubMed  Google Scholar 

  • Lanham SA, Roberts C, Perry MJ, et al. Intrauterine programming of bone. Part 2: alteration of skeletal structure. Osteoporos Int. 2008;19:157–67.

    Article  CAS  PubMed  Google Scholar 

  • Lapillonne A, Travers R, DiMaio M, et al. Urinary excretion of cross-linked N-telopeptides of type 1 collagen to assess bone resorption in infants from birth to 1 year of age. Pediatrics. 2002;110:105–9.

    Article  PubMed  Google Scholar 

  • Largo RH, Walli R, Duc G, et al. Evaluation of perinatal growth. Presentation of combined intra- and extrauterine growth standards for weight, length and head circumference. Helv Paediatr Acta. 1980;35:419–36.

    CAS  PubMed  Google Scholar 

  • Lian JB, Stein GS. Concepts of osteoblast growth and differentiation: basis for modulation of bone cell development and tissue formation. Crit Rev Oral Biol Med. 1992;3:269–305.

    Article  CAS  PubMed  Google Scholar 

  • Littner Y, Mandel D, Mimouni FB, et al. Bone ultrasound velocity of infants born small for gestational age. J Pediatr Endocrinol Metab. 2005;18:793–7.

    Article  PubMed  Google Scholar 

  • Magni P, Dozio E, Galliera E, et al. Molecular aspects of adipokine-bone interactions. Curr Mol Med. 2010;10:522–32.

    CAS  PubMed  Google Scholar 

  • McDevitt H, Ahmed SF. Quantitative ultrasound assessment of bone health in the neonate. Neonatology. 2007;91:2–11.

    Article  CAS  PubMed  Google Scholar 

  • Miller JR. The Wnts. Genome Biol. 2002;3:3001.

    Google Scholar 

  • Mongelli M, Gardosi J. Longitudinal study of fetal growth in subgroups of a low-risk population. Ultrasound Obstet Gynecol. 1995;6:340–4.

    Article  CAS  PubMed  Google Scholar 

  • Morvan F, Boulukos K, Clement-Lacroix P, et al. Deletion of a single allele of the Dkk 1 gene leads to an increase in bone formation and bone mass. J Bone Miner Res. 2006;21:934–45.

    Article  CAS  PubMed  Google Scholar 

  • Nakano K, Iwamatsu T, Wang CM, et al. High bone turnover of type I collagen depends on fetal growth. Bone. 2006;38:249–56.

    Article  CAS  PubMed  Google Scholar 

  • Namgung R, Tsang R. Factors affecting newborn bone mineral content in utero: effects on newborn bone mineralization. Proc Nutr Soc. 2000;59:55–63.

    Article  CAS  PubMed  Google Scholar 

  • Namgung R, Tsang RC. Bone in the pregnant mother and newborn at birth. Clin Chim Acta. 2003;333:1–11.

    Article  CAS  PubMed  Google Scholar 

  • Namgung R, Tsang RC, Specker BL, et al. Reduced serum osteocalcin and 1,25-dihydroxyvitamin D concentrations and low bone mineral content in small for gestational age infants: evidence of decreased bone formation rates. J Pediatr. 1993;122:269–75.

    Article  CAS  PubMed  Google Scholar 

  • Namgung R, Tsang RC, Sierra RI, et al. Normal serum indices of bone collagen biosynthesis and degradation in small for gestational age infants. J Pediatr Gastroenterol Nutr. 1996;23:224–8.

    Article  CAS  PubMed  Google Scholar 

  • Ogueh O, Khastgir G, Studd J, et al. The relationship of fetal serum markers of bone metabolism to gestational age. Early Hum Dev. 1998;51:109–12.

    Article  PubMed  Google Scholar 

  • Okesina AB, Donaldson D, Lascelles PT, et al. Effect of gestational age on levels of serum alkaline phosphatase isoenzymes in healthy pregnant women. Int J Gynaecol Obstet. 1995;48:25–9.

    Article  CAS  PubMed  Google Scholar 

  • Oliver H, Jameson KA, Sayer AA, et al. Growth in early life predicts bone strength in late adulthood: the Hertfordshire cohort study. Bone. 2007;41:400–5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Prockop DJ, Kivirikko KI, Tuderman L, et al. The biosynthesis of collagen and its disorders (second of two parts). N Engl J Med. 1979;301:77–85.

    Article  CAS  PubMed  Google Scholar 

  • Qiang YW, Barlogie B, Rudikoff S, et al. Dkk1-induced inhibition of Wnt signaling in osteoblast differentiation is an underlying mechanism of bone loss in multiple myeloma. Bone. 2008;42:669–80.

    Article  CAS  PubMed  Google Scholar 

  • Rodin A, Duncan A, Quartero HW, et al. Serum concentrations of alkaline phosphatase isoenzymes and osteocalcin in normal pregnancy. J Clin Endocrinol Metab. 1989;68:1123–7.

    Article  CAS  PubMed  Google Scholar 

  • Scariano JK, Vanderjagt DJ, Thacher T, et al. Calcium supplements increase the serum levels of crosslinked N-telopeptides of bone collagen and parathyroid hormone in rachitic Nigerian children. Clin Biochem. 1998;31:421–7.

    Article  CAS  PubMed  Google Scholar 

  • Schreuder M, Delemarre-van de Waal H, van Wijk A. Consequences of intrauterine growth restriction for the kidney. Kidney Blood Press Res. 2006;29:108–25.

    Article  CAS  PubMed  Google Scholar 

  • Shimizu N, Shima M, Hirai H, et al. Shift of serum osteocalcin components between cord blood and blood at day 5 of life. Pediatr Res. 2002;52:656–9.

    Article  CAS  PubMed  Google Scholar 

  • Simonet WS, Lacey DL, Dunstan CR, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell. 1997;89:309–19.

    Article  CAS  PubMed  Google Scholar 

  • Strid H, Bucht E, Jansson T, et al. ATP dependent Ca2+ transport across basal membrane of human syncytiotrophoblast in pregnancies complicated by intrauterine growth restriction or diabetes. Placenta. 2003;24:445–52.

    Article  CAS  PubMed  Google Scholar 

  • Tanner JM. Growth before birth. In: Tanner JM, editor. Foetus into man. Physical growth from conception to maturity. London: Castlemead; 1989. p. 36–50.

    Google Scholar 

  • Tenta R, Bourgiezi I, Aliferis E, et al. Bone metabolism compensates for the delayed growth in small for gestational age neonates. Organogenesis. 2013;9:55–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsang RC, Gigger M, Oh W, et al. Studies in calcium metabolism in infants with intrauterine growth retardation. J Pediatr. 1975;86:936–41.

    Article  CAS  PubMed  Google Scholar 

  • Uemura H, Yasui T, Kiyokawa M, et al. Serum osteoprotegerin/osteoclastogenesis-inhibitory factor during pregnancy and lactation and the relationship with calcium-regulating hormones and bone turnover markers. J Endocrinol. 2002;174:353–9.

    Article  CAS  PubMed  Google Scholar 

  • Verhaeghe J, Van Herck E, Bouillon R. Umbilical cord osteocalcin in normal pregnancies and pregnancies complicated by fetal growth retardation or diabetes mellitus. Biol Neonate. 1995;68:377–83.

    Article  CAS  PubMed  Google Scholar 

  • Wada S, Fukawa T, Kamiya S. Biochemical markers of bone turnover. New aspect. Bone metabolic markers available in daily practice. Clin Calcium. 2009;19:1075–82.

    CAS  PubMed  Google Scholar 

  • Wilkins BH. Renal function in sick very low birthweight infants: 1. Glomerular filtration rate. Arch Dis Child. 1992;67:1140–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariadne Malamitsi-Puchner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Briana, D.D., Malamitsi-Puchner, A. (2017). Bone Biomarkers in Intrauterine Growth Restriction. In: Patel, V., Preedy, V. (eds) Biomarkers in Bone Disease. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7693-7_30

Download citation

Publish with us

Policies and ethics