Skip to main content

Bone Turnover and Spinal Cord Injury

  • Reference work entry
  • First Online:
Biomarkers in Bone Disease
  • 1211 Accesses

Abstract

Spinal cord injury (SCI) causes rapid, severe osteoporosis with increased fracture risk. The pathogenesis of osteoporosis after SCI is a complex process and is usually attributed to “disuse” or “immobilization.” However, the exact pathophysiology of osteoporosis after SCI is still not clear. In SCI, bone remodeling becomes uncoupled with an initial decrease in bone formation and steadily increasing bone resorption. Osteoporosis after SCI can be evaluated by measuring BMD using DEXA, pQCT, and MRI; and estimating biochemical markers of bone turnover. Bone cell activity can be evaluated indirectly with techniques, such as specific serum and urine biochemical markers of bone turnover. An improved understanding of the natural history and risk factors for chronic bone loss following SCI is essential to designing therapies to reduce the rate of bone loss, define fracture risk, and ultimately prevent osteoporotic fractures and their associated morbidity. In conclusion, we are of the opinion that prospective randomized controlled trials should be conducted to evaluate, standardize, and find bone-specific biochemical marker of bone turnover, for the better understanding of the pathophysiology of osteoporosis in SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALP:

Alkaline phosphatase

B-ALP:

Bone-specific alkaline phosphatase

BMC:

Bone mineral content

BMD:

Bone mineral density

BMI:

Body mass index

CGRP:

Calcitonin gene-related polypeptide

Cre:

Creatinine

CTx:

C-Telopeptide cross-link of type I collagen

DEXA:

Dual energy X-ray absorptiometry

DPD:

Deoxypyridinoline

HYPRO:

Hydroxyproline

IL-6:

Interleukin-6

LHRH:

LH-releasing hormone

NDY:

Neuropeptide Y

NTx:

N-Telopeptide cross-link of type I collagen

OC:

Osteocalcin

OPG:

Osteoprotegerin

PICP:

Procollagen type I C-terminal peptide

PINP:

Procollagen type I N-terminal peptide

pQCT:

Peripheral quantitative computed tomography

PTH:

Parathyroid hormone

PYD:

Pyridinoline

RANKL:

NF-ĸB ligand

SCI:

Spinal cord injury

TSH:

Thyroid-stimulating hormone

VIP:

Vasoactive intestinal polypeptide

References

  • Astorino TA, Harness ET, Witzke KA. Effect of chronic activity based therapy on bone mineral density and bone turnover in persons with spinal cord injury. Eur J Appl Physiol. 2013;113:3027–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bagis S, Sahin G, Aybay C, Karag€oz A. Bone metabolism in patients with spinal cord injury. Turkish J Rheumatol. 2002;17:168–73.

    Google Scholar 

  • Balemans W, Ebeling M, Patel N, et al. Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet. 2001;10:537–43.

    Article  CAS  PubMed  Google Scholar 

  • Bauman WA, Spungen AM, Flangan S, et al. Blunted growth hormone response to intravenous arginine in subjects with a spinal cord injury. Horm Metab Res. 1994;26:152–6.

    Article  CAS  PubMed  Google Scholar 

  • Bauman WA, Zhong YG, Schwartz E. Vitamin D deficiency in veterans with chronic spinal cord injury. Metabolism. 1995;44(12):1612–6.

    Article  CAS  PubMed  Google Scholar 

  • Bauman WA, Spungen AM, Wang J, et al. Continuous loss of bone during chronic immobilization: a monozygotic twin study. Osteoporos Int. 1999;10:123–7.

    Article  CAS  PubMed  Google Scholar 

  • Bauman WA, Morrison NG, Spungen AM. Vitamin D replacement therapy in persons with spinal cord injury. J Spinal Cord Med. 2005;28(3):203–7.

    Article  PubMed  Google Scholar 

  • Belanger M, Stein RB, Wheeler GD, et al. Electrical stimulation: can it increase muscle strength and reverse osteopenia in spinal cord injured individuals? Arch Phys Med Rehabil. 2000;81:1090–8.

    Article  CAS  PubMed  Google Scholar 

  • Bergmann P, Heilporn A, Schoutens A, et al. Longitudinal study of calcium and bone metabolism in paraplegic patients. Paraplegia. 1977;15 suppl 2:147–59.

    Article  CAS  PubMed  Google Scholar 

  • Bergmann P, Body JJ, Boonen S, et al. Evidence-based guidelines for the use of biochemical markers of bone turnover in the selection and monitoring of bisphosphonate treatment in osteoporosis: a consensus document of the Belgian Bone Club. Int J Clin Pract. 2009;63:19–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bermudez F, Surks MI, Oppenheimer JH. High incidence of decreased serum triiodothyronine concentration in patients with nonthyroidal disease. J Clin Endocrinol Metab. 1975;41:27–40.

    Article  CAS  PubMed  Google Scholar 

  • Biering-Sorensen F, Bohr H, Schaadt O. Bone mineral content of the lumbar spine and lower extremities years after spinal cord lesion. Paraplegia. 1988;26:293–301.

    Article  CAS  PubMed  Google Scholar 

  • Biering-Sorensen F, Bohr H, Schaadt O. Longitudinal study of bone mineral content in the lumbar spine, the forearm and the lower extremities after spinal cord injury. Eur J Clin Invest. 1990;20:330–5.

    Article  CAS  PubMed  Google Scholar 

  • Bugaresti JM, Tator CH, Silverberg JD, et al. Changes in thyroid hormones, thyroid stimulating hormone and cortisol in acute spinal cord injury. Paraplegia. 1992;30(6):401–9.

    Article  CAS  PubMed  Google Scholar 

  • Chain A, Koury JC, Bezerra FF. Physical activity benefits bone density and bone-related hormones in adult men with cervical spinal cord injury. Eur J Appl Physiol. 2012;112:3179–86.

    Article  CAS  PubMed  Google Scholar 

  • Chantraine A, Heynen G, Franchimont P. Bone metabolism, parathyroid hormone, and calcitonin in paraplegia. Calcif Tissue Int. 1979;27:199–204.

    Article  CAS  PubMed  Google Scholar 

  • Chantraine A, Nusgens B, Lapiere CM. Bone remodeling during the development of osteoporosis in paraplegia. Calcif Tissue Int. 1986;38:323–7.

    Article  CAS  PubMed  Google Scholar 

  • Cheville AL, Kirshblum SC. Thyroid hormone changes in chronic spinal cord injury. J Spinal Cord Med. 1995;18:227–32.

    Article  CAS  PubMed  Google Scholar 

  • Chow YW, Inman C, Pollintine P, et al. Ultrasound bone densitometry and dual energy X-ray absorptiometry in patients with spinal cord injury: a cross-sectional study. Spinal Cord. 1996;34 suppl 12:736–41.

    Article  CAS  PubMed  Google Scholar 

  • Clark JM, Jelbart M, Rischbieth H, et al. Physiological effects of lower extremity functional electrical stimulation in early spinal cord injury: lack of efficacy to prevent bone loss. Spinal Cord. 2007;45:78–85.

    Article  CAS  PubMed  Google Scholar 

  • Clasey JL, Janowiak AL, Gater DR. Relationship between regional bone density measurements and the time since injury in adults with spinal cord injuries. Arch Phys Med Rehabil. 2004;85:59–64.

    Article  PubMed  Google Scholar 

  • Claus-Walker J, Carter RE, Di Ferrante M, et al. Immediate endocrine and metabolic consequences of traumatic quadriplegia in a young woman. Paraplegia. 1977;15:202–8.

    Article  CAS  PubMed  Google Scholar 

  • Darby AJ, Meunier PJ. Mean wall thickness and formation periods of trabecular bone packets in idiopathic osteoporosis. Calcif Tissue Int. 1981;33:199–204.

    Article  CAS  PubMed  Google Scholar 

  • Dauty M, Perrouin-Verbe B, Maugars Y, et al. Supralesional and sublesional bone mineral density in spinal cord-injured patients. Bone. 2000;27:305–9.

    Article  CAS  PubMed  Google Scholar 

  • de Bruin ED, Vanwanseele B, Dambacher MA, et al. Long-term changes in the tibia and radius bone mineral density following spinal cord injury. Spinal Cord. 2005;43:96–100.

    Article  PubMed  Google Scholar 

  • Demirel G, Yilmaz H, Paker N, et al. Osteoporosis after spinal cord injury. Spinal Cord. 1998;36:822–5.

    Article  CAS  PubMed  Google Scholar 

  • Demulder A, Guns M, Ismail A, et al. Increased osteoclast-like cells formation in long-term bone marrow cultures from patients with a spinal cord injury. Calcif Tissue Int. 1998;63:396–400.

    Article  CAS  PubMed  Google Scholar 

  • Elefteriou F. Neuronal signaling and the regulation of bone remodeling. Cell Mol Life Sci. 2005;62:2339–49.

    Article  CAS  PubMed  Google Scholar 

  • Eser P, Frotzler A, Zehnder Y, et al. Relationship between the duration of paralysis and bone structure: a pQCT study of spinal cord injured individuals. Bone. 2004;34:869–80.

    Article  CAS  PubMed  Google Scholar 

  • Finsen V, Indredavik B, Fougner KJ. Bone mineral and hormone status in paraplegics. Paraplegia. 1992;30:343–7.

    Article  CAS  PubMed  Google Scholar 

  • Frey-Rindova P, De Bruin ED, Stussi E, et al. Bone mineral density in upper and lower extremities during 12 months after spinal cord injury measured by peripheral quantitative computed tomography. Spinal Cord. 2000;38:26–32.

    Article  CAS  PubMed  Google Scholar 

  • Frost HM. Bone “mass” and the “mechanostat”: a proposal. Anat Rec. 1987;219:1–9.

    Article  CAS  PubMed  Google Scholar 

  • Frost HM. On our age-related bone loss: insights from a new paradigm. J Bone Miner Res. 1997;12:1539–46.

    Article  CAS  PubMed  Google Scholar 

  • Frost HM. Osteoporosis: a rationale for further definitions? Calcif Tissue Int. 1998;62:89–94.

    Article  CAS  PubMed  Google Scholar 

  • Frost HM. Bone’s mechanostat: a 2003 update. Anat Rec A Discov Mol Cell Evol Biol. 2003;275:1081–91.

    Article  PubMed  Google Scholar 

  • Frotzler A, Berger M, Knecht H, et al. Bone steady-state is established at reduced bone strength after spinal cord injury: a longitudinal study using peripheral quantitative computed tomography (pQCT). Bone. 2008;43:549–55.

    Article  PubMed  Google Scholar 

  • Garland DE, Adkins RH. Bone loss at the knee in spinal cord injury. Top Spinal Cord Inj Rehabil. 2001;6 suppl 3:37–46.

    Article  Google Scholar 

  • Garland DE, Stewart CA, Adkins RKH, et al. Osteoporosis after spinal cord injury. J Orthop Res. 1992;10:371–8.

    Article  CAS  PubMed  Google Scholar 

  • Garland DE, Foulkes GD, Adkins RH, Stewart CA, Yakura JS. Regional osteoporosis following incomplete spinal cord injury. Contemporary Orthop. 1994;28(suppl 2):134–139.

    Google Scholar 

  • Garland DE, Adkins RH, Stewart CA, et al. Regional osteoporosis in women who have a complete spinal cord injury. J Bone Joint Surg Am. 2001;83:1195–200.

    Article  PubMed  Google Scholar 

  • Garland DE, Adkins RH, Scott M, et al. Bone loss at the os calcis compared with bone loss at the knee in individuals with spinal cord injury. J Spinal Cord Med. 2004;27:207–11.

    Article  PubMed  Google Scholar 

  • Giangregorio L, McCartney N. Bone loss and muscle atrophy in spinal cord injury: epidemiology, fracture prediction, and rehabilitation strategies. J Spinal Cord Med. 2006;29:489–500.

    Article  PubMed  PubMed Central  Google Scholar 

  • Giangregorio LM, Hicks AL, Webber CE, et al. Body weight supported treadmill training in acute spinal cord injury: impact on muscle and bone. Spinal Cord. 2005;43:649–57.

    Article  CAS  PubMed  Google Scholar 

  • Hill EL, Martin RB, Gunther E, et al. Changes in bone in a model of spinal cord injury. J Orthop Res. 1993;11:537–47.

    Article  CAS  PubMed  Google Scholar 

  • Hjeltnes N, De Groot P, Birkeland KI. Tetraplegic subjects have hyperleptinaemia with marked circadian variation. Clin Endocrinol. 2005;62:223–7.

    Article  CAS  Google Scholar 

  • Huang TS, Wang YH, Lai JS, et al. The hypothalamus–pituitary–ovary and hypothalamus–pituitary–thyroid axes in spinal cord-injured women. Metabolism. 1996;45:718–22.

    Article  CAS  PubMed  Google Scholar 

  • Huang TS, Wang YH, Chen SY. The relation of serum leptin to body mass index and to serum cortisol in men with spinal cord injury. Arch Phys Med Rehabil. 2000;81:1582–6.

    Article  CAS  PubMed  Google Scholar 

  • Hummel K, Craven BC, Giangregorio L. Serum 25(OH)D, PTH and correlates of suboptimal 25(OH)D levels in persons with chronic spinal cord injury. Spinal Cord. 2012;50:812–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inceoglu S, Burghardt A, Akbay A, et al. Trabecular architecture of lumbar vertebral pedicle. Spine. 2005;30:1485–90.

    Article  PubMed  Google Scholar 

  • Jiang SD, Jiang LS, Dai LY. Mechanism of osteoporosis in spinal cord injury. Clin Endocrinol. 2006a;65:555–65.

    Article  CAS  Google Scholar 

  • Jiang SD, Dai LY, Jiang LS. Osteoporosis after spinal cord injury. Osteoporos Int. 2006b;17:180–92.

    Article  PubMed  Google Scholar 

  • Jilka RL. Biology of the basic multicellular unit and the pathophysiology of osteoporosis. Med Pediatr Oncol. 2003;41:182–5.

    Article  PubMed  Google Scholar 

  • Jones LM, Goulding A, Gerrard DF. DEXA: a practical and accurate tool to demonstrate total and regional bone loss, lean tissue loss and fat mass gain in paraplegia. Spinal Cord. 1998;36 suppl 9:637–40.

    Article  CAS  PubMed  Google Scholar 

  • Jones LM, Legge M, Goulding A. Intensive exercise may preserve bone mass of the upper limbs in spinal cord injured males but does not retard demineralisation of the lower body. Spinal Cord. 2002;40:230–5.

    Article  CAS  PubMed  Google Scholar 

  • Jones LM, Legge M. Biochemical markers of bone activity in active and sedentary spinal cord injured men. N Z J Med Lab Sci 2009; 63: 40–43.

    Google Scholar 

  • Kanis JA, McCloskey EV, Johansson H, et al. A reference standard for the description of osteoporosis. Bone. 2008;42:467–75.

    Article  CAS  PubMed  Google Scholar 

  • Kannisto M, Alaranta H, Merikanto J, et al. Bone mineral status after pediatric spinal cord injury. Spinal Cord. 1998;36 suppl 9:641–6.

    Article  CAS  PubMed  Google Scholar 

  • Kaya K, Aybay C, Ozel S, et al. Evaluation of bone mineral density in patients with spinal cord injury. J Spinal Cord Med. 2006;29:396–401.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kiratli BJ, Smith AE, Nauenberg T, et al. Bone mineral and geometric changes through the femur with immobilization due to spinal cord injury. J Rehabil Res Dev. 2000;37:225–33.

    CAS  PubMed  Google Scholar 

  • Kunkel CF, Scremin AM, Eisenberg B, et al. Effect of “standing” on spasticity, contracture, and osteoporosis in paralyzed males. Arch Phys Med Rehabil. 1993;74:73–8.

    CAS  PubMed  Google Scholar 

  • Lacey DL, Timms E, Tan HL, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 1998;93:165–76.

    Article  CAS  PubMed  Google Scholar 

  • Lazo MG, Shirazi P, Sam M, et al. Osteoporosis and risk of fracture in men with spinal cord injury. Spinal Cord. 2001;39:208–14.

    Article  CAS  PubMed  Google Scholar 

  • Leslie WD, Nance PW. Dissociated hip and spine demineralization: a specific finding in spinal cord injury. Arch Phys Med Rehabil. 1993;74:960–4.

    CAS  PubMed  Google Scholar 

  • Liu CC, Theodorou DJ, Theodorou SJ, et al. Quantitative computed tomography in the evaluation of spinal osteoporosis following spinal cord injury. Osteoporos Int. 2000;11:889–96.

    Article  CAS  PubMed  Google Scholar 

  • Maimoun L, Sultan C. Effects of physical activity on bone remodeling. Metabolism. 2011;60:373–88.

    Article  CAS  PubMed  Google Scholar 

  • Maimoun L, Couret I, Micallef JP, et al. Use of bone biochemical markers with dual-energy x-ray absorptiometry for early determination of bone loss in persons with spinal cord injury. Metabolism. 2002;51:958–63.

    Article  CAS  PubMed  Google Scholar 

  • Maimoun L, Puech AM, Manetta J, et al. Circulating leptin concentrations can be used as a surrogate marker of fat mass in acute spinal cord injury. Metabolism. 2004;53:989–94.

    Article  CAS  PubMed  Google Scholar 

  • Maimoun L, Couret I, Mariano-Goulart D, et al. Changes in osteoprotegerin/RANKL system, bone mineral density and bone biochemical markers in patients with recent spinal cord injury. Calcif Tissue Int. 2005;76:404–11.

    Article  CAS  PubMed  Google Scholar 

  • Maimoun L, Lumbroso S, Paris S, et al. The role of androgens or growth factors in the bone resorption process in with recent spinal cord injured patients: a cross-sectional study. Spinal Cord. 2006;44:791–7.

    Article  CAS  PubMed  Google Scholar 

  • Maimoun L, Fattal C, Sultan C. Bone remodeling and calcium homeostasis in patients with spinal cord injury: a review. Metabolism. 2011;60:1655–63.

    Article  CAS  PubMed  Google Scholar 

  • Maynard FM, Imai K. Immobilization hypercalcaemia in spinal cord injury. Arch Phys Med Rehabil 1977; 58: 16–24.

    CAS  PubMed  Google Scholar 

  • Maynard FM. Immobilization hypercalcemia following spinal cord injury. Arch Phys Med Rehabil. 1986;67:41–4.

    CAS  PubMed  Google Scholar 

  • Mechanick JI, Pomerantz F, Flanagan S, et al. Parathyroid hormone suppression in spinal cord injury patients is associated with the degree of neurologic impairment and not the level of injury. Arch Phys Med Rehabil. 1997;78:692–6.

    Article  CAS  PubMed  Google Scholar 

  • Mechanick JI, Liu K, Nierman DM, Stein A. Effect of a convenient single 90-mg pamidronate dose on biochemical markers of bone metabolism in patients with acute spinal cord injury. J Spinal Cord Med. 2006;29:406–12.

    Article  PubMed  PubMed Central  Google Scholar 

  • Minaire P, Neunier P, Edouard C, et al. Quantitative histological data on disuse osteoporosis: comparison with biological data. Calcif Tissue Res. 1974;17:57–73.

    Article  CAS  PubMed  Google Scholar 

  • Modlesky CM, Majumdar S, Narasimhan A, et al. Trabecular bone microarchitecture is deteriorated in men with spinal cord injury. J Bone Miner Res. 2004;19:48–55.

    Article  PubMed  Google Scholar 

  • Modlesky CM, Slade JM, Bickel CS, et al. Deteriorated geometric structure and strength of the midfemur in men with complete spinal cord injury. Bone. 2005;36:331–9.

    Article  PubMed  Google Scholar 

  • Morley JE, Distiller LA, Lissoos I, et al. Testicular function in patients with spinal cord damage. Horm Metab Res. 1979;11:679–82.

    Article  CAS  PubMed  Google Scholar 

  • Morse LR, Nguyen HP, Jain N, et al. Age and motor score predict osteoprotegerin level in chronic spinal cord injury. J Musculoskelet Neuronal Interact. 2008;8:50–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moynahan M, Betz RR, Triolo RJ, et al. Characterization of the bone mineral density of children with spinal cord injury. J Spinal Cord Med. 1996;19 suppl 4:249–54.

    Article  CAS  PubMed  Google Scholar 

  • Naderi AR, Safarinejad MR. Endocrine profiles and semen quality in spinal cord injured men. Clin Endocrinol. 2003;58:177–84.

    Article  CAS  Google Scholar 

  • Naftchi NE, Viau AT, Sell GH, et al. Pituitary-testicular axis dysfunction in spinal cord injury. Arch Phys Med Rehabil. 1980;61:402–5.

    CAS  PubMed  Google Scholar 

  • Nance PW, Shears AH, Givner ML, et al. Gonadal regulation in men with flaccid paraplegia. Arch Phys Med Rehabil. 1985;66:757–9.

    CAS  PubMed  Google Scholar 

  • Noreau L, Shephard RJ. Spinal cord injury, exercise and quality of life. Sports Med. 1995;20:226–50.

    Article  CAS  PubMed  Google Scholar 

  • Ogilvie C, Bowker P, Rowley DI. The physiological benefits of paraplegic orthotically aided walking. Paraplegia. 1993;31:111–5.

    Article  CAS  PubMed  Google Scholar 

  • Paker N, Bugdaycı D, Ersoy S, et al. Bone loss and bone turnover in acute and chronic spinal cord injured patients. Neurosciences (Riyadh). 2007;12:232–5.

    Google Scholar 

  • Pietschmann P, Pils P, Woloszczuk W, et al. Increased serum osteocalcin levels in patients with paraplegia. Paraplegia. 1992;30:204–9.

    Article  CAS  PubMed  Google Scholar 

  • Prakash V. Low serum 3,3′,5-triiodothyronine (T3) and reciprocally high serum 3,3′,5′-triiodothyronine (reverse T3) concentration in spinal cord injury patients. J Am Paraplegia Soc. 1983;6:56–8.

    Article  CAS  PubMed  Google Scholar 

  • Reiter AL, Volk A, Vollmar J, et al. Changes of basic bone turnover parameters in short-term and long-term patients with spinal cord injury. Eur Spine J. 2007;16:771–6.

    Article  PubMed  Google Scholar 

  • Rittweger J, Gerrits K, Altenburg T, et al. Bone adaptation to altered loading after spinal cord injury: a study of bone and muscle strength. J Musculoskelet Neuronal Interact. 2006;6:269–76.

    CAS  PubMed  Google Scholar 

  • Rittweger J, Goosey-Tolfrey VL, Cointry G, et al. Structural analysis of the human tibia in men with spinal cord injury by tomographic (pQCT) serial scans. Bone. 2010;47:511–8.

    Article  PubMed  Google Scholar 

  • Roberts D, Lee W, Cuneo RC, et al. Longitudinal study of bone turnover after acute spinal cord injury. J Clin Endocrinol Metab. 1998;83:415–22.

    CAS  PubMed  Google Scholar 

  • Rosenquist RC. Evaluation of 17-ketosteroid, oestrogen and gonadotrophin excretion in patients with spinal cord injury. Am J Med. 1950;8:534–5.

    Article  CAS  PubMed  Google Scholar 

  • Sabo D, Blaich S, Wenz W, et al. Osteoporosis in patients with paralysis after spinal cord injury: a cross-sectional study in 46 male patients with dual-energy X-ray absorptiometry. Arch Orthop Trauma Surg. 2001;121(suppl 1–2):75–8.

    Article  CAS  PubMed  Google Scholar 

  • Sabour H, Javidan AN, Latifi S. Bone biomarkers in patients with chronic traumatic spinal cord injury. Spine J. 2014;14:1132–8.

    Article  PubMed  Google Scholar 

  • Saltzstein RJ, Hardin S, Hastings J. Osteoporosis in spinal cord injury: using an index of mobility and its relationship to bone density. J Am Paraplegia Soc. 1992;15 suppl 4:232–4.

    Article  CAS  PubMed  Google Scholar 

  • Shetty KR, Sutton CH, Mattson DA, et al. Hyposomatomedinemia in quadriplegic men. Am J Med Sci. 1993;305:95–100.

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Rohilla RK, Saini G, et al. Bone mineral density and biochemical markers of bone turnover during first year of injury in SCI patients. J Orthop Trauma Rehabil. 2014a;18:2–6.

    Article  Google Scholar 

  • Singh R, Rohilla RK, Saini G, et al. Measurements of body composition in spinal cord injury patients during first year of injury. Indian J Orthop. 2014b;48(2):168–77.

    Article  PubMed  PubMed Central  Google Scholar 

  • Slade JM, Bickel CS, Modlesky CM, et al. Trabecular bone is more deteriorated in spinal cord injured versus estrogen-free postmenopausal women. Osteoporos Int. 2005;16:263–72.

    Article  PubMed  Google Scholar 

  • Sloan KE, Bremner LA, Byrne J, et al. Musculoskeletal effects of an electrical stimulation induced cycling programme in the spinal injured. Paraplegia. 1994;32:407–15.

    Article  CAS  PubMed  Google Scholar 

  • Staehling-Hampton K, Proll S, Paeper BW, et al. A 52-kb deletion in the SOST-MEOX1 intergenic region on 17q12-q21 is associated with van Buchem disease in the Dutch population. Am J Med Genet. 2002;110:144–52.

    Article  PubMed  Google Scholar 

  • Stewart AF, Adler M, Byers CM, et al. Calcium homeostasis in immobilization: an example of resorptive hypercalciuria. N Engl J Med. 1982;306:1136–40.

    Article  CAS  PubMed  Google Scholar 

  • Szollar SM, Martin EME, Sartoris DJ, et al. Bone mineral density and indexes of bone metabolism in spinal cord injury. Am J Phys Med Rehabil. 1998;77:28–35.

    Article  CAS  PubMed  Google Scholar 

  • Szulc P, Delmas P. Biochemical markers of bone turnover: potential use in the investigation and management of postmenopausal osteoporosis. Osteoporos Int. 2008;19:1683–704.

    Article  CAS  PubMed  Google Scholar 

  • Tsitouras PD, Zhong YG, Spungen AM, et al. Serum testosterone and growth hormone/insulin-like growth factor-I in adults with spinal cord injury. Horm Metab Res. 1995;27:287–92.

    Article  CAS  PubMed  Google Scholar 

  • Tsuzuku S, Ikegami Y, Yabe K. Bone mineral density differences between paraplegic and quadriplegic patients: a cross-sectional study. Spinal Cord. 1999;37:358–61.

    Article  CAS  PubMed  Google Scholar 

  • Uebelhart D, Hartmann D, Vuagnat H, et al. Early modifications of biochemical markers of bone metabolism in spinal cord injury patients: a preliminary study. Scand J Rehabil Med. 1994;26:197–202.

    CAS  PubMed  Google Scholar 

  • Uebelhart D, Demiaux-Domenech B, Roth M, Chantraine A. Bone metabolism in spinal cord injured individuals and in others who have prolonged immobilization. A review. Paraplegia. 1995;33:669–673.

    Article  CAS  PubMed  Google Scholar 

  • Vasikaran SD. Utility of biochemical markers of bone turnover and bone mineral density in management of osteoporosis. Crit Rev Clin Lab Sci. 2008;45:221–58.

    Article  CAS  PubMed  Google Scholar 

  • Vasikaran S, Eastell R, Bruyere O. Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: a need for international reference standards. Osteoporos Int. 2011;22:391–420.

    Article  CAS  PubMed  Google Scholar 

  • Vaziri ND, Pandian MR, Segal JL, et al. Vitamin D, parathormone and calcitonin profiles in persons with long-standing spinal cord injury. Arch Phys Med Rehabil. 1994;75:766–9.

    CAS  PubMed  Google Scholar 

  • Wang YH, Huang TS, Lien IN, et al. Hormone changes in men with spinal cord injuries. Am J Phys Med Rehabil. 1992;71:328–32.

    Article  CAS  PubMed  Google Scholar 

  • Wang YH, Huang TS, Liang HW, et al. Fasting serum levels of adiponectin, ghrelin, and leptin in men with spinal cord injury. Arch Phys Med Rehabil. 2005;86:1964–8.

    Article  PubMed  Google Scholar 

  • Warden SJ, Bennell KL, Matthews B, et al. Efficacy of low intensity pulsed ultrasound in the prevention of osteoporosis following spinal cord injury. Bone. 2001;29(5):431–6.

    Article  CAS  PubMed  Google Scholar 

  • Wijenayaka AR, Kogawa M, Lim HP, et al. Sclerostin stimulates osteocyte support of osteoclast activity by a RANKL-dependent pathway. PLoS One. 2011;6:e25900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilmet E, Ismail AA, Heilporn A, et al. Longitudinal study of the bone mineral content and of soft tissue composition after spinal cord section. Paraplegia. 1995;33:674–7.

    Article  CAS  PubMed  Google Scholar 

  • Zehnder Y, Luthi M, Michel D, et al. Long-term changes in bone metabolism, bone mineral density, quantitative ultrasound parameters, and fracture incidence after spinal cord injury: a cross-sectional observational study in 100 paraplegic men. Osteoporos Int. 2004;15:180–9.

    Article  PubMed  Google Scholar 

  • Zeitzer JM, Ayas NT, Shea SA, et al. Absence of detectable melatonin and preservation of cortisol and thyrotropin rhythms in tetraplegia. J Clin Endocrinol Metab. 2000;85:2189–96.

    CAS  PubMed  Google Scholar 

  • Zhou XJ, Vaziri ND, Segal JL, et al. Effects of chronic spinal cord injury and pressure ulcer on 25(OH)-vitamin D levels. J Am Paraplegia Soc. 1993;16:9–13.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roop Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Singh, R. (2017). Bone Turnover and Spinal Cord Injury. In: Patel, V., Preedy, V. (eds) Biomarkers in Bone Disease. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7693-7_3

Download citation

Publish with us

Policies and ethics