Skip to main content

Bone Biomarkers in Gestational Hypertension

  • Reference work entry
  • First Online:
Biomarkers in Bone Disease

Abstract

The skeletal system undergoes a continuous process of remodeling throughout life, which involves a delicate balance between bone resorption due to osteoclastic activation and new bone formation due to osteoblastic activity. Biochemical markers of bone turnover are reliable indices for measuring changes of bone formation and resorption, reflecting the dynamics of bone metabolism at the cellular level. During normal pregnancy, major changes occur in maternal calcium homeostasis and bone metabolism, in order to fulfill the calcium demand of the fetus for skeletal growth and mineralization. Fetal calcium requirements can be met by calcium mobilization from the maternal skeleton through hormone-mediated adjustment of maternal calcium metabolism. Due to limitations in the application of bone densitometry during pregnancy, biochemical markers are effective alternatives to estimate bone turnover. The diphasic changes in maternal bone histology (temporary loss of cancellous bone in early pregnancy restored by term gestation) are consistent with corresponding blood biochemistry changes: increased bone resorption markers in the first trimester, followed by elevated bone formation markers at term. Maternal bone turnover during pregnancy is reportedly enhanced in hypertensive disorders of pregnancy, including preeclampsia (PE) and pregnancy-induced hypertension (PIH), although data are not consistent. Biochemical markers provide evidence for increased maternal bone turnover in PE, probably leading to a further reduction in maternal bone mineral density (BMD). In contrast, in PIH, data are scarce and do not support considerable changes in maternal bone metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALP:

Alkaline phosphatase

BALP:

Bone-specific alkaline phosphatase

BMD:

Bone mineral density

BMI:

Body mass index

DPD:

Deoxypyridinoline

ICTP:

Cross-linked carboxyl-terminal telopeptide of type I collagen

IL-6:

Interleukin-6

NTx:

N-telopeptide of type I collagen

OC:

Osteocalcin

OPG:

Osteoprotegerin

PE:

Preeclampsia

PICP:

Carboxyl-terminal pro-peptide of type I collagen

PIH:

Pregnancy-induced hypertension

PTH:

Parathormone

RANKL:

Receptor activator of nuclear factor-kB ligand

TGF-β:

Transforming growth factor-β

TNF-alpha:

Tumor necrosis factor-alpha

References

  • Anim-Nyame N, Sooranna SR, Jones J, et al. Biochemical markers of maternal bone turnover are elevated in pre-eclampsia. BJOG. 2001;108:258–62.

    CAS  PubMed  Google Scholar 

  • Anim-Nyame N, Sooranna SR, Jones J, et al. A longitudinal study of biochemical markers of bone turnover during normal pregnancy and pregnancies complicated by pre-eclampsia. BJOG. 2002;109:708–13.

    Article  CAS  PubMed  Google Scholar 

  • Bhandari V, Fall P, Raisz L, et al. Potential biochemical growth markers in premature infants. Am J Perinatol. 1999;16:339–49.

    Article  CAS  PubMed  Google Scholar 

  • Briana DD, Gourgiotis D, Boutsikou M, et al. Perinatal bone turnover in term pregnancies: the influence of intrauterine growth restriction. Bone. 2008;42:307–13.

    Article  CAS  PubMed  Google Scholar 

  • Briana DD, Boutsikou M, Baka S, et al. Circulating osteoprotegerin and sRANKL concentrations in the perinatal period at term: the impact of intrauterine growth restriction. Neonatology. 2009;96:132–6.

    Article  CAS  PubMed  Google Scholar 

  • Briana DD, Boutsikou M, Boutsikou T, et al. Relationships between maternal novel adipocytokines and bone biomarkers in complicated by gestational hypertensive disorders and normal pregnancies. J Matern Fetal Neonatal Med. 2013;26:1219–22.

    Article  CAS  PubMed  Google Scholar 

  • Brown MA. The physiology of pre-eclampsia. Clin Exp Pharmacol Physiol. 1995;22:781–91.

    Article  CAS  PubMed  Google Scholar 

  • Camozzi V, Tossi A, Simoni E, et al. Role of biochemical markers of bone remodeling in clinical practice. J Endocrinol Invest. 2007;30 Suppl 6:13–7.

    CAS  PubMed  Google Scholar 

  • Djurovic S, Schjetlein R, Wisloff F, et al. Plasma concentrations of Lp(a) lipoprotein and TGF-beta1 are altered in preeclampsia. Clin Genet. 1997;52:371–6.

    Article  CAS  PubMed  Google Scholar 

  • Dorota DK, Bogdan KG, Mieczyslaw G, et al. The concentrations of markers of bone turnover in normal pregnancy and preeclampsia. Hypertens Pregnancy. 2012;31:166–76.

    Article  CAS  PubMed  Google Scholar 

  • Eriksen EF, Charles P, Melsen F, et al. Serum markers of type I collagen formation and degradation in metabolic bone disease: correlation with bone histomorphometry. J Bone Miner Res. 1993;8:127–32.

    Article  CAS  PubMed  Google Scholar 

  • Gorzelak M, Darmochwal-Kolarz D, Jablonski M, et al. The concentrations of osteocalcin and degradation products of type I collagen in pregnant women with pre-eclampsia. Eur J Obstet Gynecol Reprod Biol. 2001;98:23–7.

    Article  CAS  PubMed  Google Scholar 

  • Graves SW, Wood RJ, Brown EM, et al. Calcium and calciotropic hormones in transient hypertension of pregnancy versus pre-eclampsia. Hypertens Pregnancy. 1994;13:87–95.

    Article  Google Scholar 

  • Greer IA, Lyall F, Perera T, et al. Increased concentrations of cytokines interleukin-6 and interleukin-1 receptor antagonist in plasma of women with preeclampsia: a mechanism for endothelial dysfunction? Obstet Gynecol. 1994;84:937–40.

    CAS  PubMed  Google Scholar 

  • Gu Y, Lewis DF, Deere K, et al. Elevated maternal IL-16 levels, enhanced IL-16 expressions in endothelium and leukocytes, and increased IL-16 production by placental trophoblasts in woman with preeclampsia. J Immunol. 2008;181:4418–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong JS, Santolaya-Forgas J, Romero R, et al. Maternal plasma osteoprotegerin concentration in normal pregnancy. Am J Obstet Gynecol. 2005;193:1011–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubel CA. Oxidative stress in the pathogenesis of preeclampsia. Proc Soc Exp Biol Med. 1999;222:222–35. Fetal Mat Med Rev. 1997;9:73–101.

    Article  CAS  PubMed  Google Scholar 

  • Khovidhunkit W, Epstein S. Osteoporosis in pregnancy. Osteoporos Int. 1996;6:345–54.

    Article  CAS  PubMed  Google Scholar 

  • Kiechl S, Schett G, Wenning G, et al. Osteoprotegerin is a risk factor for progressive atherosclerosis and cardiovascular disease. Circulation. 2004;109:2175–80.

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Devi SG, Prasad S, et al. Bone turnover in preeclampsia-complicated pregnancy in North Indian women. J Obstet Gynaecol Res. 2012;38:172–9.

    Article  PubMed  Google Scholar 

  • Kumtepe Y, Aksoy H, Ingec M. Bone turnover in preeclamptic and normotensive pregnancy. Int J Gynaecol Obstet. 2005;88:323–4.

    Article  CAS  PubMed  Google Scholar 

  • Lalau JD, Jans I, el Esper N, et al. Calcium metabolism, plasma parathyroid hormone, and calcitriol in transient hypertension of pregnancy. Am J Hypertens. 1993;6(6 Pt1):522–7.

    Article  CAS  PubMed  Google Scholar 

  • Leinbbrandt A, Penninger JM. RANK/RANKL: regulators of immune responses and bone physiology. Ann N Y Acad Sci. 2008;1143:123–50.

    Article  Google Scholar 

  • Low MG. Biochemistry of the glycosyl-phosphatidylinositol membrane protein anchors. Biochem J. 1987;244:1–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magni P, Dozio E, Galliera E, et al. Molecular aspects of adipokine-bone interactions. Curr Mol Med. 2010;10:522–32.

    CAS  PubMed  Google Scholar 

  • McLean RR. Proinflammatory cytokines and osteoporosis. Curr Osteoporos Rep. 2009;7:134–9.

    Article  PubMed  Google Scholar 

  • More C, Bhattoa HP, Bettembuk P, et al. The effects of pregnancy and lactation on hormonal status and biochemical markers of bone turnover. Eur J Obstet Gynecol Reprod Biol. 2003;106:209–13.

    Article  CAS  PubMed  Google Scholar 

  • Mori M. Beta-crosslaps. Nippon Rinsho. 2004;62:247–9.

    PubMed  Google Scholar 

  • Morikawa H, Chough SY, Ohara N, et al. Pregnancy induced hypertension (PIH) and osteoporosis. Nippon Naibunpi Gakkai Zasshi. 1989;65:1123–34.

    CAS  PubMed  Google Scholar 

  • Mundy GR. The effects of TGF-beta on bone. Ciba Found Symp. 1991;157:137–43.

    CAS  PubMed  Google Scholar 

  • Namgung R, Tsang RC. Bone in the pregnant mother and newborn at birth. Clin Chim Acta. 2003;333:1–11.

    Article  CAS  PubMed  Google Scholar 

  • Naylor KE, Rogers A, Fraser RB, et al. Serum osteoprotegerin as a determinant of bone metabolism in a longitudinal study of human pregnancy and lactation. J Clin Endocrinol Metab. 2003;88:5361–5.

    Article  CAS  PubMed  Google Scholar 

  • Ogueh O, Khastgir G, Abbas A, et al. The feto-placental unit stimulates the pregnancy-associated increase in maternal bone metabolism. Hum Reprod. 2000;15:1834–7.

    Article  CAS  PubMed  Google Scholar 

  • Pitkin RM. Calcium metabolism in pregnancy and the perinatal period: a review. Am J Obstet Gynecol. 1985;151:99–109.

    Article  CAS  PubMed  Google Scholar 

  • Puistola U, Risteli L, Kauppilla A, et al. Markers of type I and type III collagen synthesis in serum as indicators of tissue growth during pregnancy. J Clin Endocrinol Metab. 1993;77:178–82.

    CAS  PubMed  Google Scholar 

  • Raisz LG. Physiology and pathophysiology of bone remodeling. Clin Chem. 1999;45:1353–8.

    CAS  PubMed  Google Scholar 

  • Reid P, Holen I. Pathophysiological roles of osteoprotegerin (OPG). Eur J Cell Biol. 2009;88:1–17.

    Article  CAS  PubMed  Google Scholar 

  • Roodman GD. Role of cytokines in the regulation of bone resorption. Calcif Tissue Int. 1993;53:94–8.

    Article  Google Scholar 

  • Roodman GD. Cell biology of the osteoclast. Exp Hematol. 1999;27:1229–41.

    Article  CAS  PubMed  Google Scholar 

  • Ross PD, Knowlton W. Rapid bone loss is associated with increased levels of biochemical markers. J Bone Miner Res. 1998;13:297–302.

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Ramos L, Sandroni S, Andres FJ, et al. Calcium excretion in pre-eclampsia. Obstet Gynecol. 1991;77:510–3.

    CAS  PubMed  Google Scholar 

  • Shaarawy M, Zaki S, Ramzi AM, et al. Feto-maternal bone remodeling in normal pregnancy and preeclampsia. J Soc Gynecol Investig. 2005;12:343–8.

    Article  CAS  PubMed  Google Scholar 

  • Simonet WS, Lacey DL, Dunstan CR, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell. 1997;89:309–19.

    Article  CAS  PubMed  Google Scholar 

  • Sowers M, Scholl T, Grewal J, et al. IGF-I, osteocalcin and bone change in pregnant normotensive and pre-eclamptic women. J Clin Endocrinol Metab. 2001;86:5898–903.

    Article  CAS  PubMed  Google Scholar 

  • To WW, Wong WN. Bone mineral density changes in pregnancies with gestational hypertension: a longitudinal study using quantitative ultrasound measurements. Arch Gynecol Obstet. 2011;284:45.

    Article  Google Scholar 

  • To WW, Wong MW, Leung TW. Relationship between bone mineral density changes in pregnancy and maternal and pregnancy characteristics: a longitudinal study. Acta Obstet Gynecol Scand. 2003;82:820–7.

    Article  PubMed  Google Scholar 

  • Uemura H, Yasui T, Kiyokawa M, et al. Serum osteoprotegerin/osteoclastogenesis-inhibitory factor during pregnancy and lactation and the relationship with calcium-regulating hormones and bone turnover markers. J Endocrinol. 2002;174:353–9.

    Article  CAS  PubMed  Google Scholar 

  • Vitoratos N, Lambrinoudaki I, Rizos D, et al. Maternal circulating osteoprotegerin and soluble RANKL in pre-eclamptic women. Eur J Obstet Gynecol Reprod Biol. 2011;154:141–5.

    Article  CAS  PubMed  Google Scholar 

  • Wada S, Fukawa T, Kamiya S. Biochemical markers of bone turnover. new aspect. Bone metabolic markers available in daily practice. Clin Calcium. 2009;19:1075–82.

    CAS  PubMed  Google Scholar 

  • Walsh MC, Choi Y. Biology of the TRANCE axis. Cytokine Growth Factor Rev. 2003;14:251–63.

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Xu S, Zan Z. The relation of parathyroid function to pregnancy-induced hypertensen. Chin Med J. 1995;108:576–78.

    Google Scholar 

  • Wild J, Pateisky P, Kussel L, et al. Preeclampsia – a risk factor for osteoporosis? Analysis of maternal Sclerostin levels and markers of bone turnover in patients with pre-eclampsia. Hypertens Pregnancy. 2014;33:333–40.

    Article  CAS  PubMed  Google Scholar 

  • Yamaga A, Taga M, Minaguchi H, et al. Changes in bone mass as determined by ultrasound and biochemical markers of bone turnover during pregnancy and puerperium: a longitudinal study. J Clin Endocrinol Metab. 1996;81:752–6.

    CAS  PubMed  Google Scholar 

  • Yasuda H, Shima N, Nakagawa N, et al. Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinology. 1998;139:1329–37.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariadne Malamitsi-Puchner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Briana, D.D., Malamitsi-Puchner, A. (2017). Bone Biomarkers in Gestational Hypertension. In: Patel, V., Preedy, V. (eds) Biomarkers in Bone Disease. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7693-7_29

Download citation

Publish with us

Policies and ethics