Advertisement

Quantitative Ultrasound as a Biomarker Tool in Newborn Infants for the Bone

  • Paola Gaio
  • Marco Daverio
  • Margherita Fantinato
  • Giovanna VerlatoEmail author
Reference work entry
  • 834 Downloads
Part of the Biomarkers in Disease: Methods, Discoveries and Applications book series (BDMDA)

Abstract

Early nutrition and adequate growth can influence future adult health. Nonetheless, recommended nutrient intakes, which can affect growth and bone health, are rarely achieved in preterm infants during the first weeks of life. Peak fetal accretion of bone growth occurs during the last trimester of gestation, and preterm infants are exposed to a higher risk of developing metabolic bone disease with an increased bone fragility, a higher fracture risk, and a long-term reduced linear growth and childhood height. MBD has consequences either in the medium or long term. In the medium term, fractures are reported in 10% of VLBWI, and in the long term, children who were born prematurely had a decreased weight and height at the age of 7–8 years, and compared to controls they had a lower bone mineral content. Monitoring bone growth has become mandatory in neonatology. Quantitative ultrasound technique is an inexpensive, portable, noninvasive, and radiation-free method of evaluating bone status and can be applied to monitor premature bone health.

Most of the studies, by applying QUS, report a positive correlation of bone status with gestational age but an inverse correlation with postconceptional age. Former preterm has lower bone growth at term compared to term infants suggesting that perinatal factors after birth are still limiting preterm bone health.

There are no established guidelines on the timing of monitoring bone disease in preterms, and different monitoring protocols are suggested.

QUS, though it is necessary to establish universal normative values, could be an easy, painless, and rapidly performing method to monitor patient bone health from birth till infanthood. Further studies are necessary to evaluate the influence of perinatal factors on long-term bone health.

Keywords

Bone development Early nutrition Metabolic bone disease Neonatology Preterm newborns Quantitative ultrasound 

List of Abbreviations

ALP

Alkaline phosphatase

BPD

Bronchopulmonary dysplasia

BTT

Bone transmission time

BW

Birth weight

CRIB

Clinical risk index for babies

DEXA

Dual-energy X-ray absorptiometry

ELBWI

Extremely low birth weight infant

GA

Gestational age

mc-SOS

Metacarpal speed of sound

mc-BTT

Metacarpal bone transmission time

MBD

Metabolic bone disease

NEC

Necrotizing enterocolitis

QUS

Quantitative ultrasound

TPN

Total parenteral nutrition

VLBWI

Very low birth weight infant

References

  1. AbouSamra H, Stevens D, Binkley T, Specker B. Determinants of bone mass and size in 7-year-old former term, late-preterm, and preterm boys. Osteoporos Int. 2009;20(11):1903–10.CrossRefGoogle Scholar
  2. Abrams SA, Committee on Nutrition. Calcium and vitamin d requirements of enterally fed preterm infants. Pediatrics. 2013;131(5):e1676–83.CrossRefPubMedGoogle Scholar
  3. Aggett PJ, Bresson J, Haschke F, Hernell O, Koletzko B, Lafeber HN, Michaelsen KF, Micheli J, Ormisson A, Rey J, Salazar de Sousa J, Weaver L. Recommended dietary allowances (RDAs), recommended dietary intakes (RDIs), recommended nutrient intakes (RNIs), and population reference intakes (PRIs) are not “recommended intakes”. J Pediatr Gastroenterol Nutr. 1997;25(2):236–41.CrossRefPubMedGoogle Scholar
  4. Agostoni C, Buonocore G, Carnielli VP, De Curtis M, Darmaun D, Decsi T, Domellöf M, Embleton ND, Fusch C, Genzel-Boroviczeny O, Goulet O, Kalhan SC, Kolacek S, Koletzko B, Lapillonne A, Mihatsch W, Moreno L, Neu J, Poindexter B, Puntis J, Putet G, Rigo J, Riskin A, Salle B, Sauer P, Shamir R, Szajewska H, Thureen P, Turck D, van Goudoever JB, Ziegler EE, ESPGHAN Committee on Nutrition. Enteral nutrient supply for preterm infants: commentary from the European society of paediatric gastroenterology, hepatology and nutrition committee on nutrition. J Pediatr Gastroenterol Nutr. 2010;50(1):85–91.CrossRefPubMedGoogle Scholar
  5. Altuncu E, Akman I, Yurdakul Z, Ozdoğan T, Solakoğlu M, Selim N, Bilgen H, Ozek E, Bereket A. Quantitative ultrasound and biochemical parameters for the assessment of osteopenia in preterm infants. J Matern Fetal Neonatal Med. 2007;20(5):401–5.CrossRefPubMedGoogle Scholar
  6. Backström MC, Kouri T, Kuusela AL, Sievänen H, Koivisto AM, Ikonen RS, Mäki M. Bone isoenzyme of serum alkaline phosphatase and serum inorganic phosphate in metabolic bone disease of prematurity. Acta Paediatr. 2000;89(7):867–73.CrossRefPubMedGoogle Scholar
  7. Baran DT. Quantitative ultrasound: a technique to target women with low bone mass for preventive therapy. Am J Med. 1995;98(2A):48S–51.CrossRefPubMedGoogle Scholar
  8. Barker DJ, Gluckman PD, Robinson JS. Conference report: fetal origins of adult disease – report of the First International Study Group, Sydney, 29–30 October 1994. Placenta. 1995;16(3):317–20.CrossRefPubMedGoogle Scholar
  9. Betto M, Gaio P, Ferrini I, De Terlizzi F, Zambolin M, Scattolin S, Pasinato A, Verlato G. Assessment of bone health in preterm infants through quantitative ultrasound and biochemical markers. J Matern Fetal Neonatal Med. 2014;27(13):1343–7.CrossRefPubMedGoogle Scholar
  10. Bishop N, Fewtrell M. Metabolic bone disease of prematurity. In: Glorieux FH, Juppner HA, Pettifor JM, editors. Pediatric bone: biology & diseases. California: Academic; 2003.Google Scholar
  11. Bowden LS, Jones CJ, Ryan SW. Bone mineralisation in ex-preterm infants aged 8 years. Eur J Pediatr. 1999;158(8):658–61.CrossRefPubMedGoogle Scholar
  12. Chan GM, Armstrong C, Moyer-Mileur L, Hoff C. Growth and bone mineralization in children born prematurely. J Perinatol. 2008;28(9):619–23.CrossRefPubMedGoogle Scholar
  13. Chen HL, Lee CL, Tseng HI, Yang SN, Yang RC, Jao HC. Assisted exercise improves bone strength in very low birthweight infants by bone quantitative ultrasound. J Paediatr Child Health. 2010;46(11):653–9.CrossRefPubMedGoogle Scholar
  14. Chen HL, Tseng HI, Yang SN, Yang RC. Bone status and associated factors measured by quantitative ultrasound in preterm and full-term newborn infants. Early Hum Dev. 2012;88(8):617–22.CrossRefPubMedGoogle Scholar
  15. Cooper C, Eriksson JG, Forsén T, Osmond C, Tuomilehto J, Barker DJ. Maternal height, childhood growth and risk of hip fracture in later life: a longitudinal study. Osteoporos Int. 2001;12(8):623–9.CrossRefPubMedGoogle Scholar
  16. Dabezies EJ, Warren PD. Fractures in very low birth weight infants with rickets. Clin Orthop Relat Res. 1997;335:233–9.Google Scholar
  17. Eelloo JA, Roberts SA, Emmerson AJ, Ward KA, Adams JE, Mughal MZ. Bone status of children aged 5–8 years, treated with dexamethasone for chronic lung disease of prematurity. Arch Dis Child Fetal Neonatal Ed. 2008;93(3):F222–4.CrossRefPubMedGoogle Scholar
  18. Ehrenkranz RA. Early, aggressive nutritional management for very low birth weight infants: what is the evidence? Semin Perinatol. 2007;31(2):48–55.CrossRefPubMedGoogle Scholar
  19. Ehrenkranz RA, Dusick AM, Vohr BR, Wright LL, Wrage LA, Poole WK. Growth in the neonatal intensive care unit influences neurodevelopmental and growth outcomes of extremely low birth weight infants. Pediatrics. 2006;117(4):1253–61.CrossRefPubMedGoogle Scholar
  20. Erdem E, Tosun Ö, Bayat M, Korkmaz Z, Halis H, Güneş T. Daily physical activity in low-risk extremely low birth weight preterm infants: positive impact on bone mineral density and anthropometric measurements. J Bone Miner Metab. 2015;33(3):329–34.CrossRefPubMedGoogle Scholar
  21. Faerk J, Peitersen B, Petersen S, Michaelsen KF. Bone mineralisation in premature infants cannot be predicted from serum alkaline phosphatase or serum phosphate. Arch Dis Child Fetal Neonatal Ed. 2002;87(2):F133–6.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Fewtrell MS, Loh KL, Chomtho S, Kennedy K, Hawdon J, Khakoo A. Quantitative ultrasound (QUS): a useful tool for monitoring bone health in preterm infants? Acta Paediatr. 2008;97(12):1625–30.CrossRefPubMedGoogle Scholar
  23. Fewtrell MS, Williams JE, Singhal A, Murgatroyd PR, Fuller N, Lucas A. Early diet and peak bone mass: 20 year follow-up of a randomized trial of early diet in infants born preterm. Bone. 2009;45(1):142–9.CrossRefPubMedGoogle Scholar
  24. Figueras-Aloy J, Álvarez-Domínguez E, Pérez-Fernández JM, Moretones-Suñol G, Vidal-Sicart S, Botet-Mussons F. Metabolic bone disease and bone mineral density in very preterm infants. J Pediatr. 2014;164(3):499–504.CrossRefPubMedGoogle Scholar
  25. Foldes AJ, Rimon A, Keinan DD, Popovtzer MM. Quantitative ultrasound of the tibia: a novel approach for assessment of bone status. Bone. 1995;17(4):363–7.CrossRefPubMedGoogle Scholar
  26. Harrison CM, Gibson AT. Osteopenia in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2013;98(3):F272–5.CrossRefPubMedGoogle Scholar
  27. Hay Jr WW, Brown LD, Denne SC. Energy requirements, protein-energy metabolism and balance, and carbohydrates in preterm infants. In: Koletzko B, Poindexter B, Uauy R, editors. Nutritional care of preterm infants scientific basis and practical guidelines. Basel: Karger; 2014.Google Scholar
  28. Hernandez CJ, Beaupré GS, Carter DR. A theoretical analysis of the relative influences of peak BMD, age-related bone loss and menopause on the development of osteoporosis. Osteoporos Int. 2003;14(10):843–7.CrossRefPubMedGoogle Scholar
  29. Holland PC, Wilkinson AR, Diez J, Lindsell DR. Prenatal deficiency of phosphate, phosphate supplementation, and rickets in very-low-birthweight infants. Lancet. 1990;335(8691):697–701.CrossRefPubMedGoogle Scholar
  30. Hung YL, Chen PC, Jeng SF, Hsieh CJ, Peng SS, Yen RF, Chou HC, Chen CY, Tsao PN, Hsieh WS. Serial measurements of serum alkaline phosphatase for early prediction of osteopaenia in preterm infants. J Paediatr Child Health. 2011;47(3):134–9.CrossRefPubMedGoogle Scholar
  31. Javaid MK, Cooper C. Prenatal and childhood influences on osteoporosis. Best Pract Res Clin Endocrinol Metab. 2002;16(2):349–67.CrossRefPubMedGoogle Scholar
  32. Jensen EA, White AM, Liu P, Yee K, Waber B, Monk HM, Zhang H. Determinants of severe metabolic bone disease in very low-birth-weight infants with severe bronchopulmonary dysplasia admitted to a tertiary referral center. Am J Perinatol. 2016;33(1):107–13.PubMedGoogle Scholar
  33. Kelly A, Kovatch KJ, Garber SJ. Metabolic bone disease screening practices among U.S. neonatologists. Clin Pediatr (Phila). 2014;53(11):1077–83.CrossRefGoogle Scholar
  34. Lawlor DA, Wills AK, Fraser A, Sayers A, Fraser WD, Tobias JH. Association of maternal vitamin D status during pregnancy with bone-mineral content in offspring: a prospective cohort study. Lancet. 2013;381(9884):2176–83.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Liao XP, Zhang WL, He J, Sun JH, Huang P. Bone measurements of infants in the first 3 months of life by quantitative ultrasound: the influence of gestational age, season, and postnatal age. Pediatr Radiol. 2005;35(9):847–53.CrossRefPubMedGoogle Scholar
  36. Littner Y, Mandel D, Mimouni FB, Dollberg S. Bone ultrasound velocity curves of newly born term and preterm infants. J Pediatr Endocrinol Metab. 2003;16(1):43–7.CrossRefPubMedGoogle Scholar
  37. McDevitt H, Ahmed SF. Quantitative ultrasound assessment of bone health in the neonate. Neonatology. 2007;91(1):2–11.CrossRefPubMedGoogle Scholar
  38. McDevitt H, Tomlinson C, White MP, Ahmed SF. Quantitative ultrasound assessment of bone in preterm and term neonates. Arch Dis Child Fetal Neonatal Ed. 2005;90(4):F341–2.CrossRefPubMedPubMedCentralGoogle Scholar
  39. McDevitt H, Tomlinson C, White MP, Ahmed SF. Changes in quantitative ultrasound in infants born at less than 32 weeks’ gestation over the first 2 years of life: influence of clinical and biochemical changes. Calcif Tissue Int. 2007;81(4):263–9.CrossRefPubMedGoogle Scholar
  40. Meneghelli M, Pasinato A, Salvadori S, Gaio P, Fantinato M, Vanzo V, De Terlizzi F, Verlato G. Bone status in preterm infant: influences of different nutritional regimens and possible markers of bone disease. J Perinatol. 2016. doi: 10.1038/jp.2015.212.PubMedGoogle Scholar
  41. Mimouni FB, Mandel D, Lubetzky R, Senterre T. Calcium, phosphorus, magnesium and vitamin D requirements of the preterm infant. In: Koletzko B, Poindexter B, Uauy R, editors. Nutritional care of preterm infants scientific basis and practical guidelines. Basel: Karger; 2014.Google Scholar
  42. Mitchell SM, Rogers SP, Hicks PD, Hawthorne KM, Parker BR, Abrams SA. High frequencies of elevated alkaline phosphatase activity and rickets exist in extremely low birth weight infants despite current nutritional support. BMC Pediatr. 2009;9:47.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Moyer-Mileur LJ, Brunstetter V, McNaught TP, Gill G, Chan GM. Daily physical activity program increases bone mineralization and growth in preterm very low birth weight infants. Pediatrics. 2000;106(5):1088–92.CrossRefPubMedGoogle Scholar
  44. Mussolino ME, Looker AC, Madans JH, Langlois JA, Orwoll ES. Risk factors for hip fracture in white men: the NHANES I epidemiologic follow-up study. J Bone Miner Res. 1998;13(6):918–24.CrossRefPubMedGoogle Scholar
  45. Nemet D, Dolfin T, Wolach B, Eliakim A. Quantitative ultrasound measurements of bone speed of sound in premature infants. Eur J Pediatr. 2001;160(12):736–40.CrossRefPubMedGoogle Scholar
  46. Njeh CF, Boivin CM, Langton CM. The role of ultrasound in the assessment of osteoporosis: a review. Osteoporos Int. 1997;7(1):7–22.CrossRefPubMedGoogle Scholar
  47. Pereira-da-Silva L, Costa A, Pereira L, Filipe A, Virella D, Leal E, Moreira A, Rosa M, Mendes L, Serelha M. Early high calcium and phosphorus intake by parenteral nutrition prevents short-term bone strength decline in preterm infants. J Pediatr Gastroenterol Nutr. 2011;52(2):203–9.CrossRefPubMedGoogle Scholar
  48. Rack B, Lochmüller EM, Janni W, Lipowsky G, Engelsberger I, Friese K, Küster H. Ultrasound for the assessment of bone quality in preterm and term infants. J Perinatol. 2012;32(3):218–26.CrossRefPubMedGoogle Scholar
  49. Ritschl E, Wehmeijer K, De Terlizzi F, Wipfler E, Cadossi R, Douma D, Urlesberger B, Müller W. Assessment of skeletal development in preterm and term infants by quantitative ultrasound. Pediatr Res. 2005;58(2):341–6.CrossRefPubMedGoogle Scholar
  50. Rubinacci A, Moro GE, Boehm G, De Terlizzi F, Moro GL, Cadossi R. Quantitative ultrasound for the assessment of osteopenia in preterm infants. Eur J Endocrinol. 2003;149(4):307–15.CrossRefPubMedGoogle Scholar
  51. Scattolin S, Gaio P, Betto M, Palatron S, De Terlizzi F, Intini F, Visintin G, Verlato G. Parenteral amino acid intakes: possible influences of higher intakes on growth and bone status in preterm infants. J Perinatol. 2013;33(1):33–9.CrossRefPubMedGoogle Scholar
  52. Schulzke SM, Kaempfen S, Trachsel D, Patole SK. Physical activity programs for promoting bone mineralization and growth in preterm infants. Cochrane Database Syst Rev. 2014;22:4.Google Scholar
  53. Senterre T, Terrin G, De Curtis M, Rigo J. Parenteral nutrition in preterm neonates. In: Guandalini S, editor. Pediatric gastroenterology, hepatology and nutrition. New York: Springer; 2014.Google Scholar
  54. Sievänen H, Backström MC, Kuusela AL, Ikonen RS, Mäki M. Dual energy x-ray absorptiometry of the forearm in preterm and term infants: evaluation of the methodology. Pediatr Res. 1999;45(1):100–5.CrossRefPubMedGoogle Scholar
  55. Simmer K. Aggressive nutrition for preterm infants – benefits and risks. Early Hum Dev. 2007;83(10):631–4.CrossRefPubMedGoogle Scholar
  56. Stephens BE, Walden RV, Gargus RA, Tucker R, McKinley L, Mance M, Nye J, Vohr BR. First-week protein and energy intakes are associated with 18-month developmental outcomes in extremely low birth weight infants. Pediatrics. 2009;123(5):1337–43.CrossRefPubMedGoogle Scholar
  57. Tinnion RJ, Embleton ND. How to use… alkaline phosphatase in neonatology. Arch Dis Child Educ Pract Ed. 2012;97(4):157–63.CrossRefPubMedGoogle Scholar
  58. Tomlinson C, McDevitt H, Ahmed SF, White MP. Longitudinal changes in bone health as assessed by the speed of sound in very low birth weight preterm infants. J Pediatr. 2006;148(4):450–5.CrossRefPubMedGoogle Scholar
  59. Viswanathan S, Khasawneh W, McNelis K, Dykstra C, Amstadt R, Super DM, Groh-Wargo S, Kumar D. Metabolic bone disease: a continued challenge in extremely low birth weight infants. JPEN J Parenter Enteral Nutr. 2014;38(8):982–90.CrossRefPubMedGoogle Scholar
  60. Ziegler EE, O'Donnell AM, Nelson SE, Fomon SJ. Body composition of the reference fetus. Growth. 1976;40(4):329–41.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Paola Gaio
    • 1
  • Marco Daverio
    • 1
  • Margherita Fantinato
    • 1
  • Giovanna Verlato
    • 1
    Email author
  1. 1.Neonatal Intensive Care, Department of Woman and Child’s HealthAzienda Ospedaliera University of PadovaPadovaItaly

Personalised recommendations