Skip to main content

Bone Markers Throughout Sexual Development: Epidemiological Significance and Population-Based Findings

  • Reference work entry
  • First Online:
  • 1234 Accesses

Abstract

Bone markers are used in adults to predict fracture risk and to monitor anabolic or catabolic therapies. Much less is known about their usefulness during childhood and adolescence when, besides remodeling, bone markers also reflect modeling and linear growth of the skeleton. Adolescence is a sensitive period for bone health during which a substantial proportion of bone mass is accrued. Therefore, it is important to understand the significance of bone markers at this stage, mainly in identifying individuals at increased risk of bone fragility. Sections of this chapter focus on the trajectories of bone markers during sexual development, as well as their normative values, determinants, and clinical significance. In general, both resorption and formation markers peak at puberty, decreasing from this point onward. In girls, peak metabolism rate occurs earlier and decreases faster than in boys. In both genders, markers are weakly associated with bone physical properties. Few studies have addressed modifiable determinants of bone markers, and the effect of behaviors on bone metabolism is far from consensual. Some successful attempts have been made to use bone markers in the clinical setting to diagnose and monitor pediatric diseases. Today, even though the measurement of bone markers in children and adolescents can be useful in the clinical setting, lack of standardized methods for determination still limits their widespread use.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

BALP:

Bone-specific alkaline phosphatase

BMC:

Bone mineral content

BMD:

Bone mineral density

CTX-I:

Cross-linked C-terminal telopeptide of type I collagen

DXA:

Dual-energy X-ray absorptiometry

ECLIA:

Electrochemiluminescence immunoassay

ELISA:

Enzyme-linked immunosorbent assay

EPITeen study:

Epidemiological Health Investigation of Teenagers in Porto

ICMA:

Immunochemiluminometric assay

ICTP:

C-Terminal cross-linking telopeptide of type I collagen

IRMA:

Immunoradiometric assay

NTX:

Cross-linked N-terminal telopeptide of type I collagen

OC:

Osteocalcin

OPG:

Osteoprotegerin

PBM:

Peak bone mass

PICP:

Procollagen type I carboxy terminal propeptide

PINP:

Procollagen type I amino terminal propeptide

RANK:

Receptor activator of nuclear factor kB

RANKL:

Receptor activator of nuclear factor kB ligand

RIA:

Radioimmunoassay

TRACP:

Tartrate-resistant acid phosphatase

References

  • Ambroszkiewicz J, Gajewska J, Klepacka T, et al. Clinical utility of biochemical bone turnover markers in children and adolescents with osteosarcoma. Adv Med Sci. 2010;55:266–72.

    Article  CAS  PubMed  Google Scholar 

  • Arabi A, Nabulsi M, Maalouf J, et al. Bone mineral density by age, gender, pubertal stages, and socioeconomic status in healthy Lebanese children and adolescents. Bone. 2004;35:1169–79.

    Article  PubMed  Google Scholar 

  • Bayer M. Reference values of osteocalcin and procollagen type I N-propeptide plasma levels in a healthy Central European population aged 0–18 years. Osteoporos Int. 2014;25:729–36.

    Article  CAS  PubMed  Google Scholar 

  • Bennell KL, Malcolm SA, Khan KM, et al. Bone mass and bone turnover in power athletes, endurance athletes, and controls: a 12-month longitudinal study. Bone. 1997;20:477–84.

    Article  CAS  PubMed  Google Scholar 

  • Bliuc D, Nguyen ND, Milch VE, et al. Mortality risk associated with low-trauma osteoporotic fracture and subsequent fracture in men and women. JAMA. 2009;301:513–21.

    Article  CAS  PubMed  Google Scholar 

  • Bouxsein ML. Determinants of skeletal fragility. Best Pract Res Clin Rheumatol. 2005;19:897–911.

    Article  PubMed  Google Scholar 

  • Boyce BF, Xing L. Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys. 2008;473:139–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyce AM, Tosi LL, Paul SM. Bisphosphonate treatment for children with disabling conditions. PM R. 2014;6:427–36.

    Article  PubMed  Google Scholar 

  • Čepelak I, Čvorišćec D. Biochemical markers of bone remodeling-review. Biochem Med. 2009;19:17–35.

    Article  Google Scholar 

  • Chahla SE, Frohnert BI, Thomas W, et al. Higher daily physical activity is associated with higher osteocalcin levels in adolescents. Prev Med Rep. 2015;2:568–71.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chao TY, Wu YY, Janckila AJ. Tartrate-resistant acid phosphatase isoform 5b (TRACP 5b) as a serum maker for cancer with bone metastasis. Clin Chim Acta. 2010;411:1553–64.

    Article  CAS  PubMed  Google Scholar 

  • Chubb SP. Measurement of C-terminal telopeptide of type I collagen (CTX) in serum. Clin Biochem. 2012;45:928–35.

    Article  CAS  PubMed  Google Scholar 

  • Civitelli R, Armamento-Villareal R, Napoli N. Bone turnover markers: understanding their value in clinical trials and clinical practice. Osteoporos Int. 2009;20:843–51.

    Article  CAS  PubMed  Google Scholar 

  • Davies JH, Evans BA, Gregory JW. Bone mass acquisition in healthy children. Arch Dis Child. 2005;90:373–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dimitri P, Wales JK, Bishop N. Adipokines, bone-derived factors and bone turnover in obese children; evidence for altered fat-bone signalling resulting in reduced bone mass. Bone. 2011;48:189–96.

    Article  CAS  PubMed  Google Scholar 

  • Doyon A, Fischer DC, Bayazit AK, et al. Markers of bone metabolism are affected by renal function and growth hormone therapy in children with chronic kidney disease. PLoS One. 2015;10:e0113482.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dreyer P, Vieira JGH. Bone turnover assessment: a good surrogate marker? Arq Bras Endocrinol Metabol. 2010;54:99–105.

    Article  PubMed  Google Scholar 

  • Eapen E, Grey V, Don-Wauchope A, et al. Bone health in childhood: usefulness of biochemical biomarkers. eJIFCC. 2008;19:2.

    Google Scholar 

  • Fischer DC, Mischek A, Wolf S, et al. Paediatric reference values for the C-terminal fragment of fibroblast-growth factor-23, sclerostin, bone-specific alkaline phosphatase and isoform 5b of tartrate-resistant acid phosphatase. Ann Clin Biochem. 2012;49:546–53.

    Article  CAS  PubMed  Google Scholar 

  • Foley S, Quinn S, Jones G. Tracking of bone mass from childhood to adolescence and factors that predict deviation from tracking. Bone. 2009;44:752–7.

    Article  PubMed  Google Scholar 

  • Fortes CM, Goldberg TB, Kurokawa CS, et al. Relationship between chronological and bone ages and pubertal stage of breasts with bone biomarkers and bone mineral density in adolescents. J Pediatr (Rio J). 2014;90:624–31.

    Article  Google Scholar 

  • Gafni RI, Baron J. Childhood bone mass acquisition and peak bone mass may not be important determinants of bone mass in late adulthood. Pediatrics. 2007;119 Suppl 2:S131–6.

    Article  PubMed  Google Scholar 

  • Garnero P, Carlier MC, Bianchi F, et al. Biochemical markers of bone turnover: preanalytical variability and recommendations for use. Ann Biol Clin (Paris). 2002;60:339–41.

    CAS  Google Scholar 

  • Ginty F, Cavadini C, Michaud PA, et al. Effects of usual nutrient intake and vitamin D status on markers of bone turnover in Swiss adolescents. Eur J Clin Nutr. 2004;58:1257–65.

    Article  CAS  PubMed  Google Scholar 

  • Glendenning P. Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: a need for international reference standards. Osteoporos Int. 2011;22:391–420. Clin Biochem Rev. 2011;32:45–7.

    Article  Google Scholar 

  • Gracia-Marco L, Vicente-Rodriguez G, Valtuena J, et al. Bone mass and bone metabolism markers during adolescence: the HELENA Study. Horm Res Paediatr. 2010;74:339–50.

    Article  CAS  PubMed  Google Scholar 

  • Guo B, Xu Y, Gong J, et al. Age trends of bone mineral density and percentile curves in healthy Chinese children and adolescents. J Bone Miner Metab. 2013;31:304–14.

    Article  PubMed  Google Scholar 

  • Hadjidakis DJ, Androulakis II. Bone remodeling. Ann N Y Acad Sci. 2006;1092:385–96.

    Article  CAS  PubMed  Google Scholar 

  • Halleen JM, Alatalo SL, Janckila AJ, et al. Serum tartrate-resistant acid phosphatase 5b is a specific and sensitive marker of bone resorption. Clin Chem. 2001;47:597–600.

    CAS  PubMed  Google Scholar 

  • Hannon R, Eastell R. Preanalytical variability of biochemical markers of bone turnover. Osteoporos Int. 2000;11 Suppl 6:S30–44.

    Article  PubMed  Google Scholar 

  • Harel Z, Gold M, Cromer B, et al. Bone mineral density in postmenarchal adolescent girls in the United States: associated biopsychosocial variables and bone turnover markers. J Adolesc Health. 2007;40:44–53.

    Article  PubMed  Google Scholar 

  • Heaney RP, Abrams S, Dawson-Hughes B, et al. Peak bone mass. Osteoporos Int. 2000;11:985–1009.

    Article  CAS  PubMed  Google Scholar 

  • Hernandez CJ, Beaupre GS, Carter DR. A theoretical analysis of the relative influences of peak BMD, age-related bone loss and menopause on the development of osteoporosis. Osteoporos Int. 2003;14:843–7.

    Article  CAS  PubMed  Google Scholar 

  • Hernlund E, Svedbom A, Ivergard M, et al. Osteoporosis in the European Union: medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos. 2013;8(1–2):1–115.

    Google Scholar 

  • Hill KM, Laing EM, Hausman DB, et al. Bone turnover is not influenced by serum 25-hydroxyvitamin D in pubertal healthy black and white children. Bone. 2012;51:795–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Eapen E, Steele S, et al. Establishment of reference intervals for bone markers in children and adolescents. Clin Biochem. 2011;44:771–8.

    Article  CAS  PubMed  Google Scholar 

  • Iuliano-Burns S, Mirwald RL, Bailey DA. Timing and magnitude of peak height velocity and peak tissue velocities for early, average, and late maturing boys and girls. Am J Hum Biol. 2001;13:1–8.

    Article  CAS  PubMed  Google Scholar 

  • Ivaska KK, Kakonen SM, Gerdhem P, et al. Urinary osteocalcin as a marker of bone metabolism. Clin Chem. 2005;51:618–28.

    Article  CAS  PubMed  Google Scholar 

  • Jeddi M, Roosta MJ, Dabbaghmanesh MH, et al. Normative data and percentile curves of bone mineral density in healthy Iranian children aged 9–18 years. Arch Osteoporos. 2013;8:1–11.

    Article  Google Scholar 

  • Johansson H, Kanis JA, Oden A, et al. BMD, clinical risk factors and their combination for hip fracture prevention. Osteoporos Int. 2009;20:1675–82.

    Article  CAS  PubMed  Google Scholar 

  • Johnell O, Kanis J. Epidemiology of osteoporotic fractures. Osteoporos Int. 2005;16 Suppl 2:S3–7.

    Article  PubMed  Google Scholar 

  • Jones G, Dwyer T, Hynes KL, et al. Vitamin D insufficiency in adolescent males in Southern Tasmania: prevalence, determinants, and relationship to bone turnover markers. Osteoporos Int. 2005;16:636–41.

    Article  CAS  PubMed  Google Scholar 

  • Jordan KM, Cooper C. Epidemiology of osteoporosis. Best Pract Res Clin Rheumatol. 2002;16:795–806.

    Article  CAS  PubMed  Google Scholar 

  • Jürimäe J. Interpretation and application of bone turnover markers in children and adolescents. Curr Opin Pediatr. 2010;22:494–500.

    Article  PubMed  Google Scholar 

  • Jürimäe J, Pomerants T, Tillmann V, et al. Bone metabolism markers and ghrelin in boys at different stages of sexual maturity. Acta Paediatr. 2009;98:892–6.

    Article  PubMed  Google Scholar 

  • Kandemir N, Gonc EN, Yordam N. Responses of bone turnover markers and bone mineral density to growth hormone therapy in children with isolated growth hormone deficiency and multiple pituitary hormone deficiencies. J Pediatr Endocrinol Metab. 2002;15:809–16.

    Article  CAS  PubMed  Google Scholar 

  • Kardinaal A, Hoorneman G, Väänänen K, et al. Determinants of bone mass and bone geometry in adolescent and young adult women. Calcif Tissue Int. 2000;66:81–9.

    Article  CAS  PubMed  Google Scholar 

  • Karlsson KM, Karlsson C, Ahlborg HG, et al. Bone turnover responses to changed physical activity. Calcif Tissue Int. 2003;72:675–80.

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi T, Hashimoto N, Kawasaki T, et al. Plasma levels of carboxy terminal propeptide of type I procollagen and pyridinoline cross‐linked telopeptide of type I collagen in healthy school children. Acta Paediatr. 1998;87:825–9.

    Article  CAS  PubMed  Google Scholar 

  • Kini U, Nandeesh B. Physiology of bone formation, remodeling, and metabolism. In: Fogelman I et al., editors. Radionuclide and hybrid bone imaging. Berlin: Springer; 2012. p. 29–57.

    Chapter  Google Scholar 

  • Lee NK, Karsenty G. Reciprocal regulation of bone and energy metabolism. J Musculoskelet Neuronal Interact. 2008;19:161–6.

    CAS  Google Scholar 

  • Lucas R, Ramos E, Prata M, et al. Changes in serum RANKL and OPG with sexual development and their associations with bone turnover and bone mineral density in a cohort of girls. Clin Biochem. 2014;47:1040–6.

    Article  CAS  PubMed  Google Scholar 

  • Magnusson P, Hager A, Larsson L. Serum osteocalcin and bone and liver alkaline phosphatase isoforms in healthy children and adolescents. Pediatr Res. 1995;38:955–61.

    Article  CAS  PubMed  Google Scholar 

  • Martin TJ, Sims NA. RANKL/OPG; Critical role in bone physiology. Rev Endocr Metab Disord. 2015;16:131–9.

    Article  CAS  PubMed  Google Scholar 

  • Mora S, Prinster C, Proverbio M, et al. Urinary markers of bone turnover in healthy children and adolescents: age-related changes and effect of puberty. Calcif Tissue Int. 1998;63:369–74.

    Article  CAS  PubMed  Google Scholar 

  • Mora S, Cafarelli L, Erba P, et al. Differential effect of age, gender and puberty on bone formation rate assessed by measurement of bone-specific alkaline phosphatase in healthy Italian children and adolescents. J Bone Miner Metab. 2009;27:721–6.

    Article  CAS  PubMed  Google Scholar 

  • Morgan EF, Barnes GL, Einhorn TA. The bone organ system: form and function. In: Marcus R et al., editors. Fundamentals of osteoporosis. 1st ed. Academic Press- Elsevier, Cambridge, MA; 2010. p. 1–23.

    Google Scholar 

  • Neu CM, Manz F, Rauch F, et al. Bone densities and bone size at the distal radius in healthy children and adolescents: a study using peripheral quantitative computed tomography. Bone. 2001;28:227–32.

    Article  CAS  PubMed  Google Scholar 

  • NIH Consensus Development Panel on Osteoporosis Prevention Diagnosis and Therapy. Osteoporosis prevention, diagnosis, and therapy. JAMA. 2001;285:785–95.

    Article  Google Scholar 

  • Nilsson O, Baron J. Fundamental limits on longitudinal bone growth: growth plate senescence and epiphyseal fusion. Trends Endocrinol Metab. 2004;15:370–4.

    Article  CAS  PubMed  Google Scholar 

  • Nishizawa Y, Ohta H, Miura M, et al. Guidelines for the use of bone metabolic markers in the diagnosis and treatment of osteoporosis (2012 edition). J Bone Miner Metab. 2013;31:1–15.

    Article  CAS  PubMed  Google Scholar 

  • Orito S, Kuroda T, Onoe Y, et al. Age-related distribution of bone and skeletal parameters in 1,322 Japanese young women. J Bone Miner Metab. 2009;27:698–704.

    Article  CAS  PubMed  Google Scholar 

  • Paul C. The burden of musculoskeletal conditions at the start of the new millennium. Report of a WHO scientific group, WHO technical report series, vol. 919. Geneva: World Health Organization; 2003. p. 218. Int J Epidemiol. 2005;34:228–9.

    Google Scholar 

  • Raisz LG. Physiology and pathophysiology of bone remodeling. Clin Chem. 1999;45:1353–8.

    CAS  PubMed  Google Scholar 

  • Ramos E, Barros H. Family and school determinants of overweight in 13-year-old Portuguese adolescents. Acta Paediatr. 2007;96:281–6.

    Article  PubMed  Google Scholar 

  • Rauch F, Schoenau E. The developing bone: slave or master of its cells and molecules? Pediatr Res. 2001;50:309–14.

    Article  CAS  PubMed  Google Scholar 

  • Rauchenzauner M, Schmid A, Heinz-Erian P, et al. Sex- and age-specific reference curves for serum markers of bone turnover in healthy children from 2 months to 18 years. J Clin Endocrinol Metab. 2007;92:443–9.

    Article  CAS  PubMed  Google Scholar 

  • Rijks EB, Bongers BC, Vlemmix MJ, et al. Efficacy and safety of bisphosphonate therapy in children with osteogenesis imperfecta: a systematic review. Horm Res Paediatr. 2015;84:26–42.

    Article  CAS  PubMed  Google Scholar 

  • Robling AG, Castillo AB, Turner CH. Biomechanical and molecular regulation of bone remodeling. Annu Rev Biomed Eng. 2006;8:455–98.

    Article  CAS  PubMed  Google Scholar 

  • Rooney M, Davies UM, Reeve J, et al. Bone mineral content and bone mineral metabolism: changes after growth hormone treatment in juvenile chronic arthritis. J Rheumatol. 2000;27:1073–81.

    CAS  PubMed  Google Scholar 

  • Rotteveel J, Schoute E, Delemarre-Van De Waal HA. Serum procollagen I carboxyterminal propeptide (PICP) levels through puberty: relation to height velocity and serum hormone levels. Acta Paediatr. 1997;86:143–7.

    Article  CAS  PubMed  Google Scholar 

  • Sato J, Hasegawa K, Tanaka H, et al. Urinary N-telopeptides of type I collagen in healthy children. Pediatr Int. 2010;52:398–401.

    Article  CAS  PubMed  Google Scholar 

  • Seeman E. Structural basis of growth-related gain and age-related loss of bone strength. Rheumatology (Oxford). 2008;47 Suppl 4:iv2–8.

    Google Scholar 

  • Seibel MJ, Lang M, Geilenkeuser WJ. Interlaboratory variation of biochemical markers of bone turnover. Clin Chem. 2001;47:1443–50.

    CAS  PubMed  Google Scholar 

  • Shao J, Wang Z, Yang T, et al. Bone regulates glucose metabolism as an endocrine organ through osteocalcin. Int J Endocrinol. 2015;2015:967673. doi: 10.1155/2015/967673.

    Google Scholar 

  • Simm PJ, Johannesen J, Briody J, et al. Zoledronic acid improves bone mineral density, reduces bone turnover and improves skeletal architecture over 2 years of treatment in children with secondary osteoporosis. Bone. 2011;49:939–43.

    Article  CAS  PubMed  Google Scholar 

  • Sims NA, Martin TJ. Coupling the activities of bone formation and resorption: a multitude of signals within the basic multicellular unit. Bonekey Rep. 2014;3:481. doi: 10.1038/bonekey.2013.215.

    Google Scholar 

  • Singer FR, Eyre DR. Using biochemical markers of bone turnover in clinical practice. Cleve Clin J Med. 2008;75:739–50.

    Article  PubMed  Google Scholar 

  • Tanner JM, Whitehouse RH. Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty. Arch Dis Child. 1976;51:170–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai KS, Jang MH, Hsu SH, et al. Bone alkaline phosphatase isoenzyme and carboxy-terminal propeptide of type-I procollagen in healthy Chinese girls and boys. Clin Chem. 1999;45:136–8.

    CAS  PubMed  Google Scholar 

  • Van Der Sluis IM, Hop WC, Van Leeuwen J, et al. A cross-sectional study on biochemical parameters of bone turnover and vitamin D metabolites in healthy Dutch children and young adults. Horm Res. 2001;57:170–9.

    Google Scholar 

  • Vasikaran S, Eastell R, Bruyere O, et al. Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: a need for international reference standards. Osteoporos Int. 2011;22:391–420.

    Article  CAS  PubMed  Google Scholar 

  • Vega D, Maalouf NM, Sakhaee K. The role of receptor activator of nuclear factor-kappaB (RANK)/RANK ligand/osteoprotegerin: clinical implications. J Clin Endocrinol Metab. 2007;92:4514–21.

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Pei F, Tu C, et al. Serum bone turnover markers in patients with primary bone tumors. Oncology. 2007;72:338–42.

    Article  CAS  PubMed  Google Scholar 

  • Warriner AH, Patkar NM, Yun H, et al. Minor, major, low-trauma, and high-trauma fractures: what are the subsequent fracture risks and how do they vary? Curr Osteoporos Rep. 2011;9:122–8.

    Article  PubMed  Google Scholar 

  • Yang L, Grey V. Pediatric reference intervals for bone markers. Clin Biochem. 2006;39:561–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Henrique Barros and Elisabete Ramos (ISPUP, Portugal) for the scientific coordination of the EPITeen cohort study and Isabel Maia for her contribution to this chapter.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Raquel Lucas , Ana Martins , Teresa Monjardino , Joana Caetano-Lopes or João Eurico Fonseca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Lucas, R., Martins, A., Monjardino, T., Caetano-Lopes, J., Fonseca, J.E. (2017). Bone Markers Throughout Sexual Development: Epidemiological Significance and Population-Based Findings. In: Patel, V., Preedy, V. (eds) Biomarkers in Bone Disease. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7693-7_26

Download citation

Publish with us

Policies and ethics