Advertisement

Overview of Biochemical Markers of Bone Metabolism

  • Pamela MaffioliEmail author
  • Giuseppe Derosa
Reference work entry
  • 899 Downloads
Part of the Biomarkers in Disease: Methods, Discoveries and Applications book series (BDMDA)

Abstract

The bone has the function of supporting the body; the bone is a tissue characterized by its rigidity, hardness, and power of regeneration and repair. The bone has several functions including protection of the vital organs, environment for marrow, mineral reservoir for calcium homeostasis, reservoir of growth factors and cytokines, and taking part in acid–base balance. Bone metabolism is a dynamic and continuous remodeling process that is normally maintained in a tightly coupled balance between resorption of old or injured bone and formation of new bone. Several hormones and factors are involved in bone metabolism, which regulation depends from the complex interaction among them. Considering the various phases of the bone cycle, markers of bone metabolism may be classified either as markers of bone formation, markers of bone resorption, and markers of bone metabolism regulation. The aim of this chapter will be to examine biochemical markers in bone metabolism in order to give readers a guide about the normal physiological process to better understand the mechanisms underlying bone diseases.

Keywords

Biomarkers Bone diseases Bone metabolism Calcium Regulation 

List of Abbreviations

D-Pyr

Deoxypyridinoline

FGF

Fibroblast growth factors

IGF

Insulin-like growth factors

IL-1

Interleukin-1

IL-6

Interleukin-6

PG

Prostaglandins

PTH

Parathyroid hormone

Pyr

Pyridinoline

TGF-β

Transforming growth factor-β

TNF-α

Tumor necrosis factor-α

References

  1. Canalis E. Effect of cortisol on periosteal and nonperiosteal collagen and DNA synthesis in cultured rat calvariae. Calcif Tissue Int. 1984;36(2):158–66.CrossRefPubMedGoogle Scholar
  2. Clarke BL, Khosla S. Androgens and bone. Steroids. 2009;74(3):296–305.CrossRefPubMedGoogle Scholar
  3. Corathers SD. Focus on diagnosis: the alkaline phosphatase level: nuances of a familiar test. Pediatr Rev. 2006;27:382–4.CrossRefPubMedGoogle Scholar
  4. Delmas PD, Eastell R, Garnero P, Seibel MJ, Stepan J. The use of biochemical markers of bone turnover in osteoporosis. Committee of Scientific Advisors of the International Osteoporosis Foundation. Osteoporos Int. 2000;11(6):S2–17.CrossRefPubMedGoogle Scholar
  5. Derynck R, Akhurst RJ. Differentiation plasticity regulated by TGF-beta family proteins in development and disease. Nat Cell Biol. 2007;9:1000–4.CrossRefPubMedGoogle Scholar
  6. Donangelo I, Braunstein GD. Update on subclinical hyperthyroidism. Am Fam Physician. 2011;83:933–8.PubMedGoogle Scholar
  7. Foley KF. Urine calcium: laboratory measurement and clinical utility. Lab Med. 2010;41:683–6.CrossRefGoogle Scholar
  8. Fottrell PF, Power MJ. Osteocalcin: diagnostic methods and clinical applications. Crit Rev Clin Lab Sci. 1991;28:287–335.CrossRefPubMedGoogle Scholar
  9. Fromigué O, Modrowski D, Marie PJ. Growth factors and bone formation in osteoporosis: roles for fibroblast growth factor and transforming growth factor beta. Curr Pharm Des. 2004;10(21):2593–603.CrossRefPubMedGoogle Scholar
  10. Gimenex-Gallego G, Conn G, Hatcher VB, Thomas KA. Human brain-derived acidic and basic fibroblast growth factors: amino terminal sequences and specific mitogenic activities. Biochem Biophys Res Commun. 1986;135:541–8.CrossRefGoogle Scholar
  11. Garabedian M, Tanaka Y, Holick MF, DeLuca HF. Response of intestinal calcium transport and bone calcium mobilization to 1,25-dihydroxyvitamin D3 in thyroparathyroidectomized rats. Endocrinology. 1974;94:1022–7.CrossRefPubMedGoogle Scholar
  12. Harris SS, Soteriades E, Dawson-Hughes B. Secondary hyperparathyroidism and bone turnover in elderly blacks and whites. J Clin Endocrinol Metab. 2001;86(8):3801–4.CrossRefPubMedGoogle Scholar
  13. Hatayama K, Ichikawa Y, Nishihara Y, Goto K, Nakamura D, Wakita A, et al. Serum alkaline phosphatase isoenzymes in SD rats detected by polyacrylamide-gel disk electrophoresis. Toxicol Mech Methods. 2012;22:289–95.CrossRefPubMedGoogle Scholar
  14. Hernández-Sánchez C, Blakesley V, Kalebic T, Helman L, LeRoith D. The role of the tyrosine kinase domain of the insulin-like growth factor-I receptor in intracellular signaling, cellular proliferation, and tumorigenesis. J Biol Chem. 1995;270:29176–81.CrossRefPubMedGoogle Scholar
  15. Holick MF. Vitamin D, deficiency. N Engl J Med. 2007;357(3):266–8.CrossRefPubMedGoogle Scholar
  16. Hu CA, Khalil S, Zhaorigetu S, Liu Z, Tyler M, Wan G, et al. Human D1-pyrroline-5-carboxylate synthase: function and regulation. Amino Acids. 2008;35:665–72.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Jackson JA, Riggs MW, Spiekerman AM. Testosterone deficiency as a risk factor for hip fractures in men: a case–control study. Am J Med Sci. 1992;304:4–8.CrossRefPubMedGoogle Scholar
  18. Kapustin AN, Shanahan CM. Osteocalcin. A novel vascular metabolic and osteoinductive factor? Arterioscler Thromb Vasc Biol. 2011;31:2169–71.CrossRefPubMedGoogle Scholar
  19. Kaul S, Sharma SS, Mehta IK. Free radical scavenging potential of L-proline: evidence from in vitro assays. Amino Acids. 2008;34:315–20.CrossRefPubMedGoogle Scholar
  20. Kenny AM, Prestwood KM, Gruman CA, Marcello KM, Raisz LG. Effects of transdermal testosterone on bone and muscle in older men with low bioavailable testosterone levels.J Gerontol A Biol Sci Med Sci. 2001;56:M266–72.CrossRefPubMedGoogle Scholar
  21. Kivrikko K. Excretion of urinary hydroxyproline peptide in the assessment of bone collagen deposition and resorption. In: Frame B, Potts Jr JT, editors. Clinical disorders of bone and mineral metabolism. Amsterdam: Excerpta Medica; 1983. p. 105–7.Google Scholar
  22. Klein GL. Insulin and bone: recent developments. World J Diab. 2014;5(1):14–6.CrossRefGoogle Scholar
  23. Kress BC. Bone alkaline phosphatase: methods of quantitation and clinical utility. J Clin Ligand Assay. 1998;21(2):139–48.Google Scholar
  24. Kwan Tat S, Padrines M, Théoleyre S, Heymann D, Fortun Y. IL-6, RANKL, TNF-alpha/IL-1: interrelations in bone resorption pathophysiology. Cytokine Growth Factor Rev. 2004;15(1):49–60.CrossRefPubMedGoogle Scholar
  25. Kubo K, Yuki K, Ikebukuro T. Changes in bone alkaline phosphatase and procollagen type-1 C-peptide after static and dynamic exercises. Res Q Exerc Sport. 2012;83:49–54.CrossRefPubMedGoogle Scholar
  26. Laitinen O, Nikkila EA, Kivirikko KI. Hydroxyproline in the serum and urine. Normal values and clinical significance. Acta Med Scand. 1966;179(3):275–84.CrossRefPubMedGoogle Scholar
  27. Lee YM, Fujikado N, Manaka H, Yasuda H, Iwakura Y. IL-1 plays an important role in the bone metabolism under physiological conditions. Int Immunol. 2010;22(10):805–16.CrossRefPubMedGoogle Scholar
  28. Mancini T, Doga M, Mazziotti G, Giustina A. Cushing’s syndrome and bone. Pituitary. 2004;7:249–52.CrossRefPubMedGoogle Scholar
  29. Mohan S, Kesavan C. Role of insulin-like growth factor-1 in the regulation of skeletal growth. Curr Osteoporos Rep. 2012;10(2):178–86.CrossRefPubMedGoogle Scholar
  30. Moss DW, Henderson AR. Enzymes. In: Burtis CA, Ashwood ER, editors. Tietz textbook of clinical chemistry. 2nd ed. Philadelphia: W.B. Saunders Co; 1994. p. 882–90.Google Scholar
  31. Nelson DL, Cox MM. Lehninger’s principles of biochemistry. 4th ed. New York: W. H. Freeman and Company; 2005.Google Scholar
  32. Nicoll DC. Appendix: therapeutic drug monitoring and laboratory reference ranges. In: Stephen JM, Maxine AP, editors. Current medical diagnosis and treatment. 46th ed. New York: Mc Graw Hill; 2007. p. 1767–75.Google Scholar
  33. Risteli L, Risteli J. Biochemical markers of bone metabolism. Ann Med. 1993;25:385–93.CrossRefPubMedGoogle Scholar
  34. Roodman GD. Interleukin-6: an osteotropic factor? J Bone Miner Res. 1992;7:475–8.CrossRefPubMedGoogle Scholar
  35. Ross PD, Knowlton W. Rapid bone loss is associated with increased levels of biochemical markers. J Bone Miner Res. 1998;13:297–302.CrossRefPubMedGoogle Scholar
  36. Simko V. Alkaline phosphatase in biology and medicine. Dig Dis. 1991;9:189–209.CrossRefPubMedGoogle Scholar
  37. Stevenson JC. Regulation of calcitonin and parathyroid hormone secretion by oestrogens. Maturitas. 1982;4(1):1–7.CrossRefPubMedGoogle Scholar
  38. Suda T, Ueno Y, Fujii K, Shinki T. Vitamin D and bone. J Cell Biochem. 2002;88:259–66.CrossRefGoogle Scholar
  39. Taichman RS. Blood and bone: two tissues whose fates are intertwined to create the hematopoietic stem cell niche. Blood. 2005;105:2631–9.CrossRefPubMedGoogle Scholar
  40. Tarantino G, Savastano S, Colao A. Hepatic steatosis, low-grade chronic inflammation and hormone/growth factor/adipokine imbalance. World J Gastroenterol. 2010;16:4773–83.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Tóth M, Grossman A. Glucocorticoid-induced osteoporosis: lessons from Cushing’s syndrome. Clin Endocrinol (Oxf). 2013;79(1):1–11.CrossRefGoogle Scholar
  42. Underwood JL, DeLuca HF. Vitamin D is not directly necessary for bone growth and mineralization. Am J Physiol. 1984;246:E493–8.PubMedGoogle Scholar
  43. Väänänen HK, Härkönen PL. Estrogen and bone metabolism. Maturitas. 1996;23:S65–9.CrossRefPubMedGoogle Scholar
  44. Von Domarus C, Brown J, Barvencik F, Amling M, Pogoda P. How much vitamin D do we need for skeletal health? Clin Orthop Relat Res. 2011;469(11):3127–33.CrossRefGoogle Scholar
  45. Yamamoto M, Kawanobe Y, Takahashi H, Shimazawa E, Kimura S, Ogata E. Vitamin D deficiency and renal calcium transport in the rat. J Clin Invest. 1984;74:507–13.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Watts NB. Clinical utility of biochemical markers of bone remodeling. Clin Chem. 1999;45(8 Pt 2):1359–68.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of Internal Medicine and TherapeuticsUniversity of Pavia, Fondazione IRCCS Policlinico S. MatteoPaviaItaly
  2. 2.PhD School in Experimental MedicineUniversity of PaviaPaviaItaly
  3. 3.Center for Prevention, Surveillance, Diagnosis and Treatment of Rare DiseasesFondazione IRCCS Policlinico San MatteoPaviaItaly
  4. 4.Center for the Study of Endocrine-Metabolic Pathophysiology and Clinical ResearchUniversity of PaviaPaviaItaly
  5. 5.Laboratory of Molecular MedicineUniversity of PaviaPaviaItaly

Personalised recommendations