Skip to main content

Chitinases as Biomarkers in Bone Studies

  • Reference work entry
  • First Online:
Biomarkers in Bone Disease

Abstract

Despite the hardness and strength characteristic, the bone is not a static tissue, but is constantly changing and constantly repairing. This process is called bone remodeling. In this cyclical process, the oldest bone tissue is removed and replaced with another new tissue. There are two types of cells responsible for the bone turnover: osteoclasts and osteoblasts. The different phases of bone remodeling are controlled by numerous local and systemic factors. The alteration of balance between these factors can lead to different types of bone disorders. In the recent years, the bone turnover markers underwent extensive development. Pathological bone resorption is a cause of significant morbidity in diseases affecting the skeleton, such as rheumatoid arthritis, osteoporosis, periodontitis, and cancer metastasis. Biochemical monitoring of bone metabolism depends upon the measurement of enzymes and proteins released during bone formation and of degradation products formed during bone resorption. The mammalian chitinases can be considered new bone resorption markers. These molecules belong to the families 18 glycosyl hydrolase (GH) superfamily. Although, these enzymes have been widely implicated in a variety of diseases involving immune dysfunction, their biologic role in bone resorption is poorly understood.

Herein we will focus on what is known in the role chitinase family in bone disease development, as well as the potential of some of the engaged molecules as prognostic or diagnostic markers and their perspective in developing new therapeutic strategies against bone disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BSP:

Bone sialoprotein

Ca:

Calcium

CBM18:

Carbohydrate-binding module family 18

CCL2:

Chemokine (C-C motif) ligand 2

CHI3L1:

Chitinase 3 like 1

CHI3L2:

Chitinase 3 like 2

CHIA:

Chitinase, acidic

CHID1:

Chitinase domain containing 1

CHIT1:

Chitotriosidase

CLPs:

Chitinase-like-proteins

CPhoDs:

Calcium phosphate thin film disks

CTX and NTX:

C-telopeptide of type 1 collagen and cross-linked N-terminal telopeptide of type 1 collagen

CXCL2:

Chemokine (C-X-C motif) ligand 2

DDs:

Dentin disks

GH:

Glycosyl hydrolase

GlcNAc:

β-1,4-linked N-acetyl-d-glucosamine

GMCSF:

Granulocyte-macrophage colony-stimulating factor

IL-6:

Interleukin 6

MMP9:

Matrix metallopeptidase 9

MØs:

Macrophages

OA:

Osteoarthritis

OC:

Osteoclast

OVGP1:

Oviductin

P:

Phosphate

P1CP and P1NP:

C- and N-terminal pro-peptides of procollagen type 1

PDB:

Protein data bank

PTH:

Parathyroid hormone

RA:

Rheumatoid arthritis

RANKL:

Receptor activator of nuclear factor kappa-B ligand

siRNA:

Small interfering RNA

Th1:

Lymphocyte T helper 1

TNFα:

Tumor necrosis factor alpha

TRAP:

Tartrate-resistant acid phosphatase

References

  • Aguilera B, Ghauharali-Van Der Vlugt K, Helmond MT, Out JM, Donker-Koopman WE, Groener JE, Boot RG, Renkema GH, Van Der Marel GA, Van Boom JH, Overkleeft HS, Aerts JM. Transglycosidase activity of chitotriosidase: improved enzymatic assay for the human macrophage chitinase. J Biol Chem. 2003;278:40911–6.

    Article  CAS  PubMed  Google Scholar 

  • Arias EB, Verhage HG, Jaffe RC. Complementary deoxyribonucleic acid cloning and molecular characterization of an estrogen-dependent human oviductal glycoprotein. Biol Reprod. 1994;51:685–94.

    Article  CAS  PubMed  Google Scholar 

  • Arnett T. Regulation of bone cell function by acid–base balance. Proc Nutr Soc. 2003;62:511–20.

    Article  CAS  PubMed  Google Scholar 

  • Boot RG, Renkema GH, Strijland A, Van Zonneveld AJ, Aerts JM. Cloning of a cDNA encoding chitotriosidase, a human chitinase produced by macrophages. J Biol Chem. 1995;270:26252–6.

    Article  CAS  PubMed  Google Scholar 

  • Boot RG, Renkema GH, Verhoek M, Strijland A, Bliek J, De Meulemeester TM, Mannens MM, Aerts JM. The human chitotriosidase gene. Nature of inherited enzyme deficiency. J Biol Chem. 1998;273:25680–5.

    Article  CAS  PubMed  Google Scholar 

  • Boot RG, Blommaart EF, Swart E, Ghauharali-Van Der Vlugt K, Bijl N, Moe C, Place A, Aerts JM. Identification of a novel acidic mammalian chitinase distinct from chitotriosidase. J Biol Chem. 2001;276:6770–8.

    Article  CAS  PubMed  Google Scholar 

  • Boven LA, Van Meurs M, Boot RG, Mehta A, Boon L, Aerts JM, Laman JD. Gaucher cells demonstrate a distinct macrophage phenotype and resemble alternatively activated macrophages. Am J Clin Pathol. 2004;122:359–69.

    Article  CAS  PubMed  Google Scholar 

  • Buckwalter JA, Glimcher MJ, Cooper RR, Recker R. Bone biology. II: formation, form, modeling, remodeling, and regulation of cell function. Instr Course Lect. 1996;45:387–99.

    CAS  PubMed  Google Scholar 

  • Buhi WC. Characterization and biological roles of oviduct-specific, oestrogen-dependent glycoprotein. Reproduction. 2002;123:355–62.

    Article  CAS  PubMed  Google Scholar 

  • Bussink AP, Speijer D, Aerts JM, Boot RG. Evolution of mammalian chitinase(-like) members of family 18 glycosyl hydrolases. Genetics. 2007;177:959–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campeau PM, Rafei M, Boivin MN, Sun Y, Grabowski GA, Galipeau J. Characterization of Gaucher disease bone marrow mesenchymal stromal cells reveals an altered inflammatory secretome. Blood. 2009;114:3181–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen JH, Liu C, You L, Simmons CA. Boning up on Wolff’s law: mechanical regulation of the cells that make and maintain bone. J Biomech. 2010;43:108–18.

    Article  PubMed  Google Scholar 

  • Chen CC, Llado V, Eurich K, Tran HT, Mizoguchi E. Carbohydrate-binding motif in chitinase 3-like 1 (CHI3L1/YKL-40) specifically activates Akt signaling pathway in colonic epithelial cells. Clin Immunol. 2011;140:268–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox LG, Van Rietbergen B, Van Donkelaar CC, Ito K. Analysis of bone architecture sensitivity for changes in mechanical loading, cellular activity, mechanotransduction, and tissue properties. Biomech Model Mechanobiol. 2011;10:701–12.

    Article  CAS  PubMed  Google Scholar 

  • de Vernejoul MC. Dynamics of bone remodelling: biochemical and pathophysiological basis. Eur J Clin Chem Clin Biochem. 1996;34:729–34.

    PubMed  Google Scholar 

  • Di Rosa M, Musumeci M, Scuto A, Musumeci S, Malaguarnera L. Effect of interferon-gamma, interleukin-10, lipopolysaccharide and tumor necrosis factor-alpha on chitotriosidase synthesis in human macrophages. Clin Chem Lab Med. 2005;43:499–502.

    PubMed  Google Scholar 

  • Di Rosa M, Szychlinska MA, Tibullo D, Malaguarnera L, Musumeci G. Expression of CHI3L1 and CHIT1 in osteoarthritic rat cartilage model. A morphological study. Eur J Histochem. 2014a;58:2423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Rosa M, Tibullo D, Vecchio M, Nunnari G, Saccone S, Di Raimondo F, Malaguarnera L. Determination of chitinases family during osteoclastogenesis. Bone. 2014b;61:55–63.

    Article  PubMed  Google Scholar 

  • Ehrlich PJ, Lanyon LE. Mechanical strain and bone cell function: a review. Osteoporos Int. 2002;13:688–700.

    Article  CAS  PubMed  Google Scholar 

  • Fisher KJ, Aronson Jr NN. Cloning and expression of the cDNA sequence encoding the lysosomal glycosidase di-N-acetylchitobiase. J Biol Chem. 1992;267:19607–16.

    CAS  PubMed  Google Scholar 

  • Funkhouser JD, Aronson Jr NN. Chitinase family GH18: evolutionary insights from the genomic history of a diverse protein family. BMC Evol Biol. 2007;7:96.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fusetti F, Pijning T, Kalk KH, Bos E, Dijkstra BW. Crystal structure and carbohydrate-binding properties of the human cartilage glycoprotein-39. J Biol Chem. 2003;278:37753–60.

    Article  CAS  PubMed  Google Scholar 

  • Gundberg CM, Markowitz ME, Mizruchi M, Rosen JF. Osteocalcin in human serum: a circadian rhythm. J Clin Endocrinol Metab. 1985;60:736–9.

    Article  CAS  PubMed  Google Scholar 

  • Hamilton G, Rath B, Burghuber O. Chitinase-3-like-1/YKL-40 as marker of circulating tumor cells. Transl Lung Cancer Res. 2015;4:287–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Henrissat B, Bairoch A. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 1993;293(Pt 3):781–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henrissat B, Davies G. Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol. 1997;7:637–44.

    Article  CAS  PubMed  Google Scholar 

  • Hollak CE, Van Weely S, Van Oers MH, Aerts JM. Marked elevation of plasma chitotriosidase activity. A novel hallmark of Gaucher disease. J Clin Invest. 1994;93:1288–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holtrop ME, King GJ. The ultrastructure of the osteoclast and its functional implications. Clin Orthop Relat Res. 1977;123:177–96.

    Google Scholar 

  • Hu B, Trinh K, Figueira WF, Price PA. Isolation and sequence of a novel human chondrocyte protein related to mammalian members of the chitinase protein family. J Biol Chem. 1996;271:19415–20.

    Article  CAS  PubMed  Google Scholar 

  • Jilka RL, Takahashi K, Munshi M, Williams DC, Roberson PK, Manolagas SC. Loss of estrogen upregulates osteoblastogenesis in the murine bone marrow. Evidence for autonomy from factors released during bone resorption. J Clin Invest. 1998;101:1942–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin T, Lu Y, He QX, Wang H, Li BF, Zhu LY, Xu QY. The role of microRNA, miR-24, and its target CHI3L1 in osteomyelitis caused by Staphylococcus aureus. J Cell Biochem. 2015;116:2804–13.

    Article  CAS  PubMed  Google Scholar 

  • Johansen JS. Studies on serum YKL-40 as a biomarker in diseases with inflammation, tissue remodelling, fibroses and cancer. Dan Med Bull. 2006;53:172–209.

    CAS  PubMed  Google Scholar 

  • Johansen JS, Williamson MK, Rice JS, Price PA. Identification of proteins secreted by human osteoblastic cells in culture. J Bone Miner Res. 1992;7:501–12.

    Article  CAS  PubMed  Google Scholar 

  • Johansen JS, Jensen HS, Price PA. A new biochemical marker for joint injury. Analysis of YKL-40 in serum and synovial fluid. Br J Rheumatol. 1993;32:949–55.

    Article  CAS  PubMed  Google Scholar 

  • Johansen JS, Jensen BV, Roslind A, Nielsen D, Price PA. Serum YKL-40, a new prognostic biomarker in cancer patients? Cancer Epidemiol Biomarkers Prev. 2006;15:194–202.

    Article  CAS  PubMed  Google Scholar 

  • Kaneko K, Ito M, Naoe Y, Lacy-Hulbert A, Ikeda K. Integrin alphav in the mechanical response of osteoblast lineage cells. Biochem Biophys Res Commun. 2014;447:352–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawada M, Hachiya Y, Arihiro A, Mizoguchi E. Role of mammalian chitinases in inflammatory conditions. Keio J Med. 2007;56:21–7.

    Article  CAS  PubMed  Google Scholar 

  • Kawada M, Seno H, Kanda K, Nakanishi Y, Akitake R, Komekado H, Kawada K, Sakai Y, Mizoguchi E, Chiba T. Chitinase 3-like 1 promotes macrophage recruitment and angiogenesis in colorectal cancer. Oncogene. 2012;31:3111–23.

    Article  CAS  PubMed  Google Scholar 

  • Koulouvaris P, Ly K, Ivashkiv LB, Bostrom MP, Nestor BJ, Sculco TP, Purdue PE. Expression profiling reveals alternative macrophage activation and impaired osteogenesis in periprosthetic osteolysis. J Orthop Res. 2008;26:106–16.

    Article  CAS  PubMed  Google Scholar 

  • Kruit A, Grutters JC, Ruven HJ, Van Moorsel CC, Van Den Bosch JM. A CHI3L1 gene polymorphism is associated with serum levels of YKL-40, a novel sarcoidosis marker. Respir Med. 2007;101:1563–71.

    Article  PubMed  Google Scholar 

  • Kular J, Tickner J, Chim SM, Xu J. An overview of the regulation of bone remodelling at the cellular level. Clin Biochem. 2012;45:863–73.

    Article  CAS  PubMed  Google Scholar 

  • Kzhyshkowska J, Gratchev A, Martens JH, Pervushina O, Mamidi S, Johansson S, Schledzewski K, Hansen B, He X, Tang J, Nakayama K, Goerdt S. Stabilin-1 localizes to endosomes and the trans-Golgi network in human macrophages and interacts with GGA adaptors. J Leukoc Biol. 2004;76:1151–61.

    Article  CAS  PubMed  Google Scholar 

  • Kzhyshkowska J, Mamidi S, Gratchev A, Kremmer E, Schmuttermaier C, Krusell L, Haus G, Utikal J, Schledzewski K, Scholtze J, Goerdt S. Novel stabilin-1 interacting chitinase-like protein (SI-CLP) is up-regulated in alternatively activated macrophages and secreted via lysosomal pathway. Blood. 2006;107:3221–8.

    Article  CAS  PubMed  Google Scholar 

  • Le Noble F, Le Noble J. Bone biology: vessels of rejuvenation. Nature. 2014;507:313–4.

    Article  PubMed  Google Scholar 

  • Lee CG, Da Silva CA, Dela Cruz CS, Ahangari F, Ma B, Kang MJ, He CH, Takyar S, Elias JA. Role of chitin and chitinase/chitinase-like proteins in inflammation, tissue remodeling, and injury. Annu Rev Physiol. 2011;73:479–501.

    Article  CAS  PubMed  Google Scholar 

  • Ling H, Recklies AD. The chitinase 3-like protein human cartilage glycoprotein 39 inhibits cellular responses to the inflammatory cytokines interleukin-1 and tumour necrosis factor-alpha. Biochem J. 2004;380:651–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ljusberg J, Wang Y, Lang P, Norgard M, Dodds R, Hultenby K, Ek-Rylander B, Andersson G. Proteolytic excision of a repressive loop domain in tartrate-resistant acid phosphatase by cathepsin K in osteoclasts. J Biol Chem. 2005;280:28370–81.

    Article  CAS  PubMed  Google Scholar 

  • Malaguarnera L. Chitotriosidase: the yin and yang. Cell Mol Life Sci. 2006;63:3018–29.

    Article  CAS  PubMed  Google Scholar 

  • Malaguarnera L, Ohazuruike LN, Tsianaka C, Antic T, Di Rosa M, Malaguarnera M. Human chitotriosidase polymorphism is associated with human longevity in Mediterranean nonagenarians and centenarians. J Hum Genet. 2010;55:8–12.

    Article  CAS  PubMed  Google Scholar 

  • Martin TJ. Bone biology and anabolic therapies for bone: current status and future prospects. J Bone Metab. 2014;21:8–20.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mucci JM, Scian R, De Francesco PN, Garcia FS, Ceci R, Fossati CA, Delpino MV, Rozenfeld PA. Induction of osteoclastogenesis in an in vitro model of Gaucher disease is mediated by T cells via TNF-alpha. Gene. 2012;509:51–9.

    Article  CAS  PubMed  Google Scholar 

  • Nair MG, Gallagher IJ, Taylor MD, Loke P, Coulson PS, Wilson RA, Maizels RM, Allen JE. Chitinase and Fizz family members are a generalized feature of nematode infection with selective upregulation of Ym1 and Fizz1 by antigen-presenting cells. Infect Immun. 2005;73:385–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nam KS, Shon YH. Suppression of metastasis of human breast cancer cells by chitosan oligosaccharides. J Microbiol Biotechnol. 2009;19:629–33.

    Article  CAS  PubMed  Google Scholar 

  • Norberg AL, Karlsen V, Hoell IA, Bakke I, Eijsink VG, Sorlie M. Determination of substrate binding energies in individual subsites of a family 18 chitinase. FEBS Lett. 2010;584:4581–5.

    Article  CAS  PubMed  Google Scholar 

  • Pacheco N, Uribe A. Enzymatic analysis of biomarkers for the monitoring of Gaucher patients in Colombia. Gene. 2013;521:129–35.

    Article  CAS  PubMed  Google Scholar 

  • Pagani F, Francucci CM, Moro L. Markers of bone turnover: biochemical and clinical perspectives. J Endocrinol Invest. 2005;28:8–13.

    Article  CAS  PubMed  Google Scholar 

  • Pozzuoli A, Valvason C, Bernardi D, Plebani M, Fabris Monterumici D, Candiotto S, Aldegheri R, Punzi L. YKL-40 in human lumbar herniated disc and its relationships with nitric oxide and cyclooxygenase-2. Clin Exp Rheumatol. 2007;25:453–6.

    CAS  PubMed  Google Scholar 

  • Raisz LG. Hormonal regulation of bone growth and remodelling. Ciba Found Symp. 1988;136:226–38.

    CAS  PubMed  Google Scholar 

  • Rapisarda JJ, Mavrogianis PA, O’day-Bowman MB, Fazleabas AT, Verhage HG. Immunological characterization and immunocytochemical localization of an oviduct-specific glycoprotein in the human. J Clin Endocrinol Metab. 1993;76:1483–8.

    CAS  PubMed  Google Scholar 

  • Recklies AD, White C, Ling H. The chitinase 3-like protein human cartilage glycoprotein 39 (HC-gp39) stimulates proliferation of human connective-tissue cells and activates both extracellular signal-regulated kinase- and protein kinase B-mediated signalling pathways. Biochem J. 2002;365:119–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Recklies AD, Ling H, White C, Bernier SM. Inflammatory cytokines induce production of CHI3L1 by articular chondrocytes. J Biol Chem. 2005;280:41213–21.

    Article  CAS  PubMed  Google Scholar 

  • Rehli M, Krause SW, Andreesen R. Molecular characterization of the gene for human cartilage gp-39 (CHI3L1), a member of the chitinase protein family and marker for late stages of macrophage differentiation. Genomics. 1997;43:221–5.

    Article  CAS  PubMed  Google Scholar 

  • Renkema GH, Boot RG, Muijsers AO, Donker-Koopman WE, Aerts JM. Purification and characterization of human chitotriosidase, a novel member of the chitinase family of proteins. J Biol Chem. 1995;270:2198–202.

    Article  CAS  PubMed  Google Scholar 

  • Renkema GH, Boot RG, Strijland A, Donker-Koopman WE, Van Den Berg M, Muijsers AO, Aerts JM. Synthesis, sorting, and processing into distinct isoforms of human macrophage chitotriosidase. Eur J Biochem. 1997;244:279–85.

    Article  CAS  PubMed  Google Scholar 

  • Robertus JD, Monzingo AF, Marcotte EM, Hart PJ. Structural analysis shows five glycohydrolase families diverged from a common ancestor. J Exp Zool. 1998;282:127–32.

    Article  CAS  PubMed  Google Scholar 

  • Robling AG, Hinant FM, Burr DB, Turner CH. Improved bone structure and strength after long-term mechanical loading is greatest if loading is separated into short bouts. J Bone Miner Res. 2002;17:1545–54.

    Article  PubMed  Google Scholar 

  • Sims NA, Gooi JH. Bone remodeling: multiple cellular interactions required for coupling of bone formation and resorption. Semin Cell Dev Biol. 2008;19:444–51.

    Article  CAS  PubMed  Google Scholar 

  • Vaananen T, Koskinen A, Paukkeri EL, Hamalainen M, Moilanen T, Moilanen E, Vuolteenaho K. YKL-40 as a novel factor associated with inflammation and catabolic mechanisms in osteoarthritic joints. Mediators Inflamm. 2014;2014:215140.

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Bilsen JH, Van Dongen H, Lard LR, Van Der Voort EI, Elferink DG, Bakker AM, Miltenburg AM, Huizinga TW, De Vries RR, Toes RE. Functional regulatory immune responses against human cartilage glycoprotein-39 in health vs. proinflammatory responses in rheumatoid arthritis. Proc Natl Acad Sci U S A. 2004;101:17180–5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Viguet-Carrin S, Garnero P, Delmas PD. The role of collagen in bone strength. Osteoporos Int. 2006;17:319–36.

    Article  CAS  PubMed  Google Scholar 

  • Welch JS, Escoubet-Lozach L, Sykes DB, Liddiard K, Greaves DR, Glass CK. TH2 cytokines and allergic challenge induce Ym1 expression in macrophages by a STAT6-dependent mechanism. J Biol Chem. 2002;277:42821–9.

    Article  CAS  PubMed  Google Scholar 

  • Xiong C, Wu H, Wei P, Pan M, Tuo Y, Kusakabe I, Du Y. Potent angiogenic inhibition effects of deacetylated chitohexaose separated from chitooligosaccharides and its mechanism of action in vitro. Carbohydr Res. 2009;344:1975–83.

    Article  CAS  PubMed  Google Scholar 

  • Yavropoulou MP, Yovos JG. Osteoclastogenesis – current knowledge and future perspectives. J Musculoskelet Neuronal Interact. 2008;8:204–16.

    CAS  PubMed  Google Scholar 

  • Zaidi M. Skeletal remodeling in health and disease. Nat Med. 2007;13:791–801.

    Article  CAS  PubMed  Google Scholar 

  • Zhao W, Wu C, Dong Y, Ma Y, Jin Y, Ji Y. MicroRNA-24 regulates osteogenic differentiation via targeting T-Cell factor-1. Int J Mol Sci. 2015;16:11699–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michelino Di Rosa or Lucia Malaguarnera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Di Rosa, M., Malaguarnera, L. (2017). Chitinases as Biomarkers in Bone Studies. In: Patel, V., Preedy, V. (eds) Biomarkers in Bone Disease. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7693-7_11

Download citation

Publish with us

Policies and ethics