Chitinases as Biomarkers in Bone Studies

  • Michelino Di RosaEmail author
  • Lucia MalaguarneraEmail author
Reference work entry
Part of the Biomarkers in Disease: Methods, Discoveries and Applications book series (BDMDA)


Despite the hardness and strength characteristic, the bone is not a static tissue, but is constantly changing and constantly repairing. This process is called bone remodeling. In this cyclical process, the oldest bone tissue is removed and replaced with another new tissue. There are two types of cells responsible for the bone turnover: osteoclasts and osteoblasts. The different phases of bone remodeling are controlled by numerous local and systemic factors. The alteration of balance between these factors can lead to different types of bone disorders. In the recent years, the bone turnover markers underwent extensive development. Pathological bone resorption is a cause of significant morbidity in diseases affecting the skeleton, such as rheumatoid arthritis, osteoporosis, periodontitis, and cancer metastasis. Biochemical monitoring of bone metabolism depends upon the measurement of enzymes and proteins released during bone formation and of degradation products formed during bone resorption. The mammalian chitinases can be considered new bone resorption markers. These molecules belong to the families 18 glycosyl hydrolase (GH) superfamily. Although, these enzymes have been widely implicated in a variety of diseases involving immune dysfunction, their biologic role in bone resorption is poorly understood.

Herein we will focus on what is known in the role chitinase family in bone disease development, as well as the potential of some of the engaged molecules as prognostic or diagnostic markers and their perspective in developing new therapeutic strategies against bone disease.


Bone disease CHIT1 CHI3L1 Osteoclasts Osteoblasts Macrophages Monocytes 

List of Abbreviations


Bone sialoprotein




Carbohydrate-binding module family 18


Chemokine (C-C motif) ligand 2


Chitinase 3 like 1


Chitinase 3 like 2


Chitinase, acidic


Chitinase domain containing 1






Calcium phosphate thin film disks


C-telopeptide of type 1 collagen and cross-linked N-terminal telopeptide of type 1 collagen


Chemokine (C-X-C motif) ligand 2


Dentin disks


Glycosyl hydrolase


β-1,4-linked N-acetyl-d-glucosamine


Granulocyte-macrophage colony-stimulating factor


Interleukin 6


Matrix metallopeptidase 9











P1CP and P1NP

C- and N-terminal pro-peptides of procollagen type 1


Protein data bank


Parathyroid hormone


Rheumatoid arthritis


Receptor activator of nuclear factor kappa-B ligand


Small interfering RNA


Lymphocyte T helper 1


Tumor necrosis factor alpha


Tartrate-resistant acid phosphatase


  1. Aguilera B, Ghauharali-Van Der Vlugt K, Helmond MT, Out JM, Donker-Koopman WE, Groener JE, Boot RG, Renkema GH, Van Der Marel GA, Van Boom JH, Overkleeft HS, Aerts JM. Transglycosidase activity of chitotriosidase: improved enzymatic assay for the human macrophage chitinase. J Biol Chem. 2003;278:40911–6.CrossRefPubMedGoogle Scholar
  2. Arias EB, Verhage HG, Jaffe RC. Complementary deoxyribonucleic acid cloning and molecular characterization of an estrogen-dependent human oviductal glycoprotein. Biol Reprod. 1994;51:685–94.CrossRefPubMedGoogle Scholar
  3. Arnett T. Regulation of bone cell function by acid–base balance. Proc Nutr Soc. 2003;62:511–20.CrossRefPubMedGoogle Scholar
  4. Boot RG, Renkema GH, Strijland A, Van Zonneveld AJ, Aerts JM. Cloning of a cDNA encoding chitotriosidase, a human chitinase produced by macrophages. J Biol Chem. 1995;270:26252–6.CrossRefPubMedGoogle Scholar
  5. Boot RG, Renkema GH, Verhoek M, Strijland A, Bliek J, De Meulemeester TM, Mannens MM, Aerts JM. The human chitotriosidase gene. Nature of inherited enzyme deficiency. J Biol Chem. 1998;273:25680–5.CrossRefPubMedGoogle Scholar
  6. Boot RG, Blommaart EF, Swart E, Ghauharali-Van Der Vlugt K, Bijl N, Moe C, Place A, Aerts JM. Identification of a novel acidic mammalian chitinase distinct from chitotriosidase. J Biol Chem. 2001;276:6770–8.CrossRefPubMedGoogle Scholar
  7. Boven LA, Van Meurs M, Boot RG, Mehta A, Boon L, Aerts JM, Laman JD. Gaucher cells demonstrate a distinct macrophage phenotype and resemble alternatively activated macrophages. Am J Clin Pathol. 2004;122:359–69.CrossRefPubMedGoogle Scholar
  8. Buckwalter JA, Glimcher MJ, Cooper RR, Recker R. Bone biology. II: formation, form, modeling, remodeling, and regulation of cell function. Instr Course Lect. 1996;45:387–99.PubMedGoogle Scholar
  9. Buhi WC. Characterization and biological roles of oviduct-specific, oestrogen-dependent glycoprotein. Reproduction. 2002;123:355–62.CrossRefPubMedGoogle Scholar
  10. Bussink AP, Speijer D, Aerts JM, Boot RG. Evolution of mammalian chitinase(-like) members of family 18 glycosyl hydrolases. Genetics. 2007;177:959–70.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Campeau PM, Rafei M, Boivin MN, Sun Y, Grabowski GA, Galipeau J. Characterization of Gaucher disease bone marrow mesenchymal stromal cells reveals an altered inflammatory secretome. Blood. 2009;114:3181–90.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chen JH, Liu C, You L, Simmons CA. Boning up on Wolff’s law: mechanical regulation of the cells that make and maintain bone. J Biomech. 2010;43:108–18.CrossRefPubMedGoogle Scholar
  13. Chen CC, Llado V, Eurich K, Tran HT, Mizoguchi E. Carbohydrate-binding motif in chitinase 3-like 1 (CHI3L1/YKL-40) specifically activates Akt signaling pathway in colonic epithelial cells. Clin Immunol. 2011;140:268–75.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Cox LG, Van Rietbergen B, Van Donkelaar CC, Ito K. Analysis of bone architecture sensitivity for changes in mechanical loading, cellular activity, mechanotransduction, and tissue properties. Biomech Model Mechanobiol. 2011;10:701–12.CrossRefPubMedGoogle Scholar
  15. de Vernejoul MC. Dynamics of bone remodelling: biochemical and pathophysiological basis. Eur J Clin Chem Clin Biochem. 1996;34:729–34.PubMedGoogle Scholar
  16. Di Rosa M, Musumeci M, Scuto A, Musumeci S, Malaguarnera L. Effect of interferon-gamma, interleukin-10, lipopolysaccharide and tumor necrosis factor-alpha on chitotriosidase synthesis in human macrophages. Clin Chem Lab Med. 2005;43:499–502.PubMedGoogle Scholar
  17. Di Rosa M, Szychlinska MA, Tibullo D, Malaguarnera L, Musumeci G. Expression of CHI3L1 and CHIT1 in osteoarthritic rat cartilage model. A morphological study. Eur J Histochem. 2014a;58:2423.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Di Rosa M, Tibullo D, Vecchio M, Nunnari G, Saccone S, Di Raimondo F, Malaguarnera L. Determination of chitinases family during osteoclastogenesis. Bone. 2014b;61:55–63.CrossRefPubMedGoogle Scholar
  19. Ehrlich PJ, Lanyon LE. Mechanical strain and bone cell function: a review. Osteoporos Int. 2002;13:688–700.CrossRefPubMedGoogle Scholar
  20. Fisher KJ, Aronson Jr NN. Cloning and expression of the cDNA sequence encoding the lysosomal glycosidase di-N-acetylchitobiase. J Biol Chem. 1992;267:19607–16.PubMedGoogle Scholar
  21. Funkhouser JD, Aronson Jr NN. Chitinase family GH18: evolutionary insights from the genomic history of a diverse protein family. BMC Evol Biol. 2007;7:96.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Fusetti F, Pijning T, Kalk KH, Bos E, Dijkstra BW. Crystal structure and carbohydrate-binding properties of the human cartilage glycoprotein-39. J Biol Chem. 2003;278:37753–60.CrossRefPubMedGoogle Scholar
  23. Gundberg CM, Markowitz ME, Mizruchi M, Rosen JF. Osteocalcin in human serum: a circadian rhythm. J Clin Endocrinol Metab. 1985;60:736–9.CrossRefPubMedGoogle Scholar
  24. Hamilton G, Rath B, Burghuber O. Chitinase-3-like-1/YKL-40 as marker of circulating tumor cells. Transl Lung Cancer Res. 2015;4:287–91.PubMedPubMedCentralGoogle Scholar
  25. Henrissat B, Bairoch A. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 1993;293(Pt 3):781–8.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Henrissat B, Davies G. Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol. 1997;7:637–44.CrossRefPubMedGoogle Scholar
  27. Hollak CE, Van Weely S, Van Oers MH, Aerts JM. Marked elevation of plasma chitotriosidase activity. A novel hallmark of Gaucher disease. J Clin Invest. 1994;93:1288–92.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Holtrop ME, King GJ. The ultrastructure of the osteoclast and its functional implications. Clin Orthop Relat Res. 1977;123:177–96.Google Scholar
  29. Hu B, Trinh K, Figueira WF, Price PA. Isolation and sequence of a novel human chondrocyte protein related to mammalian members of the chitinase protein family. J Biol Chem. 1996;271:19415–20.CrossRefPubMedGoogle Scholar
  30. Jilka RL, Takahashi K, Munshi M, Williams DC, Roberson PK, Manolagas SC. Loss of estrogen upregulates osteoblastogenesis in the murine bone marrow. Evidence for autonomy from factors released during bone resorption. J Clin Invest. 1998;101:1942–50.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Jin T, Lu Y, He QX, Wang H, Li BF, Zhu LY, Xu QY. The role of microRNA, miR-24, and its target CHI3L1 in osteomyelitis caused by Staphylococcus aureus. J Cell Biochem. 2015;116:2804–13.CrossRefPubMedGoogle Scholar
  32. Johansen JS. Studies on serum YKL-40 as a biomarker in diseases with inflammation, tissue remodelling, fibroses and cancer. Dan Med Bull. 2006;53:172–209.PubMedGoogle Scholar
  33. Johansen JS, Williamson MK, Rice JS, Price PA. Identification of proteins secreted by human osteoblastic cells in culture. J Bone Miner Res. 1992;7:501–12.CrossRefPubMedGoogle Scholar
  34. Johansen JS, Jensen HS, Price PA. A new biochemical marker for joint injury. Analysis of YKL-40 in serum and synovial fluid. Br J Rheumatol. 1993;32:949–55.CrossRefPubMedGoogle Scholar
  35. Johansen JS, Jensen BV, Roslind A, Nielsen D, Price PA. Serum YKL-40, a new prognostic biomarker in cancer patients? Cancer Epidemiol Biomarkers Prev. 2006;15:194–202.CrossRefPubMedGoogle Scholar
  36. Kaneko K, Ito M, Naoe Y, Lacy-Hulbert A, Ikeda K. Integrin alphav in the mechanical response of osteoblast lineage cells. Biochem Biophys Res Commun. 2014;447:352–7.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kawada M, Hachiya Y, Arihiro A, Mizoguchi E. Role of mammalian chitinases in inflammatory conditions. Keio J Med. 2007;56:21–7.CrossRefPubMedGoogle Scholar
  38. Kawada M, Seno H, Kanda K, Nakanishi Y, Akitake R, Komekado H, Kawada K, Sakai Y, Mizoguchi E, Chiba T. Chitinase 3-like 1 promotes macrophage recruitment and angiogenesis in colorectal cancer. Oncogene. 2012;31:3111–23.CrossRefPubMedGoogle Scholar
  39. Koulouvaris P, Ly K, Ivashkiv LB, Bostrom MP, Nestor BJ, Sculco TP, Purdue PE. Expression profiling reveals alternative macrophage activation and impaired osteogenesis in periprosthetic osteolysis. J Orthop Res. 2008;26:106–16.CrossRefPubMedGoogle Scholar
  40. Kruit A, Grutters JC, Ruven HJ, Van Moorsel CC, Van Den Bosch JM. A CHI3L1 gene polymorphism is associated with serum levels of YKL-40, a novel sarcoidosis marker. Respir Med. 2007;101:1563–71.CrossRefPubMedGoogle Scholar
  41. Kular J, Tickner J, Chim SM, Xu J. An overview of the regulation of bone remodelling at the cellular level. Clin Biochem. 2012;45:863–73.CrossRefPubMedGoogle Scholar
  42. Kzhyshkowska J, Gratchev A, Martens JH, Pervushina O, Mamidi S, Johansson S, Schledzewski K, Hansen B, He X, Tang J, Nakayama K, Goerdt S. Stabilin-1 localizes to endosomes and the trans-Golgi network in human macrophages and interacts with GGA adaptors. J Leukoc Biol. 2004;76:1151–61.CrossRefPubMedGoogle Scholar
  43. Kzhyshkowska J, Mamidi S, Gratchev A, Kremmer E, Schmuttermaier C, Krusell L, Haus G, Utikal J, Schledzewski K, Scholtze J, Goerdt S. Novel stabilin-1 interacting chitinase-like protein (SI-CLP) is up-regulated in alternatively activated macrophages and secreted via lysosomal pathway. Blood. 2006;107:3221–8.CrossRefPubMedGoogle Scholar
  44. Le Noble F, Le Noble J. Bone biology: vessels of rejuvenation. Nature. 2014;507:313–4.CrossRefPubMedGoogle Scholar
  45. Lee CG, Da Silva CA, Dela Cruz CS, Ahangari F, Ma B, Kang MJ, He CH, Takyar S, Elias JA. Role of chitin and chitinase/chitinase-like proteins in inflammation, tissue remodeling, and injury. Annu Rev Physiol. 2011;73:479–501.CrossRefPubMedGoogle Scholar
  46. Ling H, Recklies AD. The chitinase 3-like protein human cartilage glycoprotein 39 inhibits cellular responses to the inflammatory cytokines interleukin-1 and tumour necrosis factor-alpha. Biochem J. 2004;380:651–9.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Ljusberg J, Wang Y, Lang P, Norgard M, Dodds R, Hultenby K, Ek-Rylander B, Andersson G. Proteolytic excision of a repressive loop domain in tartrate-resistant acid phosphatase by cathepsin K in osteoclasts. J Biol Chem. 2005;280:28370–81.CrossRefPubMedGoogle Scholar
  48. Malaguarnera L. Chitotriosidase: the yin and yang. Cell Mol Life Sci. 2006;63:3018–29.CrossRefPubMedGoogle Scholar
  49. Malaguarnera L, Ohazuruike LN, Tsianaka C, Antic T, Di Rosa M, Malaguarnera M. Human chitotriosidase polymorphism is associated with human longevity in Mediterranean nonagenarians and centenarians. J Hum Genet. 2010;55:8–12.CrossRefPubMedGoogle Scholar
  50. Martin TJ. Bone biology and anabolic therapies for bone: current status and future prospects. J Bone Metab. 2014;21:8–20.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Mucci JM, Scian R, De Francesco PN, Garcia FS, Ceci R, Fossati CA, Delpino MV, Rozenfeld PA. Induction of osteoclastogenesis in an in vitro model of Gaucher disease is mediated by T cells via TNF-alpha. Gene. 2012;509:51–9.CrossRefPubMedGoogle Scholar
  52. Nair MG, Gallagher IJ, Taylor MD, Loke P, Coulson PS, Wilson RA, Maizels RM, Allen JE. Chitinase and Fizz family members are a generalized feature of nematode infection with selective upregulation of Ym1 and Fizz1 by antigen-presenting cells. Infect Immun. 2005;73:385–94.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Nam KS, Shon YH. Suppression of metastasis of human breast cancer cells by chitosan oligosaccharides. J Microbiol Biotechnol. 2009;19:629–33.CrossRefPubMedGoogle Scholar
  54. Norberg AL, Karlsen V, Hoell IA, Bakke I, Eijsink VG, Sorlie M. Determination of substrate binding energies in individual subsites of a family 18 chitinase. FEBS Lett. 2010;584:4581–5.CrossRefPubMedGoogle Scholar
  55. Pacheco N, Uribe A. Enzymatic analysis of biomarkers for the monitoring of Gaucher patients in Colombia. Gene. 2013;521:129–35.CrossRefPubMedGoogle Scholar
  56. Pagani F, Francucci CM, Moro L. Markers of bone turnover: biochemical and clinical perspectives. J Endocrinol Invest. 2005;28:8–13.CrossRefPubMedGoogle Scholar
  57. Pozzuoli A, Valvason C, Bernardi D, Plebani M, Fabris Monterumici D, Candiotto S, Aldegheri R, Punzi L. YKL-40 in human lumbar herniated disc and its relationships with nitric oxide and cyclooxygenase-2. Clin Exp Rheumatol. 2007;25:453–6.PubMedGoogle Scholar
  58. Raisz LG. Hormonal regulation of bone growth and remodelling. Ciba Found Symp. 1988;136:226–38.PubMedGoogle Scholar
  59. Rapisarda JJ, Mavrogianis PA, O’day-Bowman MB, Fazleabas AT, Verhage HG. Immunological characterization and immunocytochemical localization of an oviduct-specific glycoprotein in the human. J Clin Endocrinol Metab. 1993;76:1483–8.PubMedGoogle Scholar
  60. Recklies AD, White C, Ling H. The chitinase 3-like protein human cartilage glycoprotein 39 (HC-gp39) stimulates proliferation of human connective-tissue cells and activates both extracellular signal-regulated kinase- and protein kinase B-mediated signalling pathways. Biochem J. 2002;365:119–26.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Recklies AD, Ling H, White C, Bernier SM. Inflammatory cytokines induce production of CHI3L1 by articular chondrocytes. J Biol Chem. 2005;280:41213–21.CrossRefPubMedGoogle Scholar
  62. Rehli M, Krause SW, Andreesen R. Molecular characterization of the gene for human cartilage gp-39 (CHI3L1), a member of the chitinase protein family and marker for late stages of macrophage differentiation. Genomics. 1997;43:221–5.CrossRefPubMedGoogle Scholar
  63. Renkema GH, Boot RG, Muijsers AO, Donker-Koopman WE, Aerts JM. Purification and characterization of human chitotriosidase, a novel member of the chitinase family of proteins. J Biol Chem. 1995;270:2198–202.CrossRefPubMedGoogle Scholar
  64. Renkema GH, Boot RG, Strijland A, Donker-Koopman WE, Van Den Berg M, Muijsers AO, Aerts JM. Synthesis, sorting, and processing into distinct isoforms of human macrophage chitotriosidase. Eur J Biochem. 1997;244:279–85.CrossRefPubMedGoogle Scholar
  65. Robertus JD, Monzingo AF, Marcotte EM, Hart PJ. Structural analysis shows five glycohydrolase families diverged from a common ancestor. J Exp Zool. 1998;282:127–32.CrossRefPubMedGoogle Scholar
  66. Robling AG, Hinant FM, Burr DB, Turner CH. Improved bone structure and strength after long-term mechanical loading is greatest if loading is separated into short bouts. J Bone Miner Res. 2002;17:1545–54.CrossRefPubMedGoogle Scholar
  67. Sims NA, Gooi JH. Bone remodeling: multiple cellular interactions required for coupling of bone formation and resorption. Semin Cell Dev Biol. 2008;19:444–51.CrossRefPubMedGoogle Scholar
  68. Vaananen T, Koskinen A, Paukkeri EL, Hamalainen M, Moilanen T, Moilanen E, Vuolteenaho K. YKL-40 as a novel factor associated with inflammation and catabolic mechanisms in osteoarthritic joints. Mediators Inflamm. 2014;2014:215140.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Van Bilsen JH, Van Dongen H, Lard LR, Van Der Voort EI, Elferink DG, Bakker AM, Miltenburg AM, Huizinga TW, De Vries RR, Toes RE. Functional regulatory immune responses against human cartilage glycoprotein-39 in health vs. proinflammatory responses in rheumatoid arthritis. Proc Natl Acad Sci U S A. 2004;101:17180–5.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Viguet-Carrin S, Garnero P, Delmas PD. The role of collagen in bone strength. Osteoporos Int. 2006;17:319–36.CrossRefPubMedGoogle Scholar
  71. Welch JS, Escoubet-Lozach L, Sykes DB, Liddiard K, Greaves DR, Glass CK. TH2 cytokines and allergic challenge induce Ym1 expression in macrophages by a STAT6-dependent mechanism. J Biol Chem. 2002;277:42821–9.CrossRefPubMedGoogle Scholar
  72. Xiong C, Wu H, Wei P, Pan M, Tuo Y, Kusakabe I, Du Y. Potent angiogenic inhibition effects of deacetylated chitohexaose separated from chitooligosaccharides and its mechanism of action in vitro. Carbohydr Res. 2009;344:1975–83.CrossRefPubMedGoogle Scholar
  73. Yavropoulou MP, Yovos JG. Osteoclastogenesis – current knowledge and future perspectives. J Musculoskelet Neuronal Interact. 2008;8:204–16.PubMedGoogle Scholar
  74. Zaidi M. Skeletal remodeling in health and disease. Nat Med. 2007;13:791–801.CrossRefPubMedGoogle Scholar
  75. Zhao W, Wu C, Dong Y, Ma Y, Jin Y, Ji Y. MicroRNA-24 regulates osteogenic differentiation via targeting T-Cell factor-1. Int J Mol Sci. 2015;16:11699–712.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of Biomedical and Biotechnological ScienceUniversity of CataniaCataniaItaly

Personalised recommendations