Skip to main content

Telomerase as Biomarker for Oral Cancer

  • Reference work entry
Biomarkers in Cancer

Abstract

Telomerase is a ribonucleoprotein enzyme that extends telomere DNA located in the chromosomal termini. Telomerase is known to specifically express in cancer cells, and telomerase activity was found in more than 80 % of cancer patients. Therefore, telomerase may represent a promising cancer biomarker and therapeutic target. The telomerase repeat amplification protocol (TRAP) assay is a polymerase chain reaction (PCR)-based method to detect telomerase activity. In this assay, the telomerase substrate (TS) primer is elongated and its extended DNA is amplified by PCR. Telomerase activity is evaluated by a ladder of bands differing by 6 bp after gel electrophoresis of the PCR products. Recently, non-PCR-based methods to detect telomerase activity have been reported by many researchers. Electrochemical telomerase assay (ECTA), which was developed by Takenaka’s group, is a simple and rapid PCR-free method to detect telomerase activity. ECTA consists of a TS primer-immobilized electrode and ferrocenylnaphthalene diimide derivative as a tetraplex binder. Takenaka’s group compared the efficacy of ECTA and TRAP methods in detecting telomerase activity in oral cancer screening. Telomerase activity was observed in 90 % and 30 % of oral cancer tissues and exfoliative cells using the TRAP method, respectively, whereas the ECTA method detected telomerase activity in 90 % and 85 % of oral cancer tissues and exfoliative cells, respectively. These findings suggested that the ECTA method is useful for oral cancer screening because exfoliative cells can be easily obtained by scraping the inside of the mouth. Because telomerase activity is specific to cancer cells, ligands that inhibit telomerase activity may show promise as anticancer drugs. ECTA has also been used to estimate the inhibitory activity of telomerase ligands in cancer cells by determining TS primer elongation in a concentration-dependent manner. The ECTA method was used to screen for the telomerase inhibitory activity of 10 ligands and demonstrated not only the inhibitory activity of the ligands but also their mechanisms of action. The drugs having non-elongating capability directly inhibited telomerase. On the other hand, another set of drugs that can elongate at a 24-mer expansion indirectly inhibited telomerase access by binding and stabilizing the tetraplex structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Ca9-22:

Human Gingival Squamous Cell Carcinoma Cell Lines

ECTA:

Electrochemical Telomerase Assay

EtBr:

Ethidium Bromide

FND:

Ferrocenylnaphthalene Diimide

HSC-2:

Human Oral Squamous Cell Carcinoma Cell Lines

HSC-3:

Human Tongue Squamous Cell Carcinoma Cell Lines

hTERT:

Human Telomerase Reverse Transcriptase

IC50 :

Half maximal (50 %) Inhibitory Concentration

Inhibitor III:

Hexameric Phosphorothioate Oligonucleotide, 5′-d(TTAGGG)-3′

Inhibitor V:

2,6-bis[3-(N-piperidino)propionamido]anthracene-9,10-dione

PCR:

Polymerase Chain Reaction

PIPER:

N,N′-bis [2-(1-piperidino)ethyl]-3,4,9,10-tetracarboxylic diimide

Q:

Charge Quantity

SAS:

Human Tongue Squamous Cell Carcinoma Cell Line

SPR:

Surface Plasmon Resonance

SWV:

Square Wave Voltammetry

TBM:

3,3′,5,5′-Tetramethylbenzidine

TER:

Telomerase RNA Component

TERT:

Telomerase Reverse Transcriptase

TMPyP4:

5,10,15,20-tetra-(N-methyl-4-pyridyl)porphine

TND:

Tri Naphthalene Diimide

TRAP:

Telomerase Repeat Amplification protocol

TS:

Primer Telomerase Substrate Primer

References

  • Arion D, Kaushik N, McCormick S, et al. Phenotypic mechanism of HIV-1 resistance to 3′-azido-3′-deoxythymidine (AZT): increased polymerization processivity and enhanced sensitivity to pyrophosphate of the mutant viral reverse transcriptase. Biochemistry. 1998;37:15908–17.

    Article  CAS  PubMed  Google Scholar 

  • Boon EM, Ceres DM, Drummond TG, et al. Mutation detection by electrocatalysis at DNA-modified electrodes. Nat Biotechnol. 2000;18:1096–100.

    Article  CAS  PubMed  Google Scholar 

  • Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162:156–9.

    Article  CAS  PubMed  Google Scholar 

  • Cian AD, Cristofari G, Reichenbach P, et al. Reevaluation of telomerase inhibition by quadruplex ligands and their mechanisms of action. Proc Natl Acad Sci U S A. 2007;104:17347–52.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cuenca F, Greciano O, Gunaratnam M, et al. Tri- and tetra-substituted naphthalene diimides as potent G-quadruplex ligands. Bioorg Med Chem Lett. 2008;18:1668–73.

    Article  CAS  PubMed  Google Scholar 

  • Drummond TG, Hill MG, Barton JK. Electrochemical DNA sensors. Nat Biotechnol. 2003;21:1192–9.

    Article  CAS  PubMed  Google Scholar 

  • Eskiocak U, Ozkan-Ariksoysal D, Ozsoz M, et al. Label-free detection of telomerase activity using guanine electrochemical oxidation signal. Anal Chem. 2007;79:8807–11.

    Article  CAS  PubMed  Google Scholar 

  • Fedoroff OY, Salazar M, Han H, et al. NMR-Based model of a telomerase-inhibiting compound bound to G-quadruplex DNA. Biochemistry. 1998;37:12367–74.

    Article  CAS  PubMed  Google Scholar 

  • Freeman R, Sharon E, Teller C, Henning A, Tzfati Y, Willner I, et al. DNAzyme-like activity of hemin-telomeric G-quadruplexes for the optical analysis of telomerase and its inhibitors. Chembiochem. 2010;11:2362–7.

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto R, Kamata N, Yokoyama K, et al. Expression of telomerase components in oral keratinocytes and squamous cell carcinomas. Oral Oncol. 2001;37:132–40.

    Article  CAS  PubMed  Google Scholar 

  • Gillis AJ, Schuller AP, Skordalakes E. Structure of the tribolium castaneum telomerase catalytic subunit TERT. Nature. 2008;455:633–7.

    Article  CAS  PubMed  Google Scholar 

  • Greider CW, Telomeres Do D-Loop-T-Loop. Cell. 1999;97:419–22.

    Article  CAS  PubMed  Google Scholar 

  • Greider CW, Blackburn EH. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell. 1985;43:405–13.

    Article  CAS  PubMed  Google Scholar 

  • Greider CW, Blackburn EH. A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature. 1989;337:331–7.

    Article  CAS  PubMed  Google Scholar 

  • Han FX, Wheelhouse RT, Hurley LH. Interactions of TMPyP4 and TMPyP2 with quadruplex DNA. Structural basis for the differential effects on telomerase inhibition. J Am Chem Soc. 1999;121:3562–9.

    Google Scholar 

  • Hiyama E, Hiyama K. Telomerase as tumor marker. Cancer Lett. 2003;194:221–33.

    Article  CAS  PubMed  Google Scholar 

  • Hukezalie KR, Wong JMY. Structure–function relationship and biogenesis regulation of the human telomerase holoenzyme. FEBS J. 2013;280:3194–204.

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Miracco EJ, Hong K, Ecket B, et al. The architecture of Tetrahymena telomerase holoenzyme. Nature. 2013;496:187–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato D, Sekioka N, Ueda A, et al. A nanocarbon film electrode as a platform for exploring DNA methylation. J Am Chem Soc. 2008;130:3716–7.

    Article  CAS  PubMed  Google Scholar 

  • Kim NW, Piatyszek MA, Prowse KR, et al. Specific association of human telomerase activity with immortal cells and cancer. Science. 1994;266:2011–5.

    Article  CAS  PubMed  Google Scholar 

  • Kulla E, Katz E. Biosensor techniques used for determination of telomerase activity in cancer cells. Sensors. 2008;8:347–69.

    Article  CAS  PubMed Central  Google Scholar 

  • Luo X, Hsing IM. Electrochemical techniques on sequence-specific PCR amplicon detection for point-of-care applications. Analyst. 2009;134:1957–64.

    Article  CAS  PubMed  Google Scholar 

  • Maesawa C, Inaba T, Sato H, et al. A rapid biosensor chip assay for measuring of telomerase activity using surface plasmon resonance. Nucleic Acids Res. 2003;31:E4–4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mao L, El-Naggar AK, Fan YH, et al. Telomerase activity in head and neck squamous cell carcinoma and adjacent tissues. Can Res Suppl. 1996;56:5600–4.

    CAS  Google Scholar 

  • Mergny JL, Riou JF, Mailliet P, Teulade-Fichou MP, Gilson E. Natural and pharmacological regulation of telomerase. Nucleic Acid Res. 2002;30:839–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyahara H, Yamashita K, Kanai M, et al. Electrochemical analysis of single nucleotide polymorphisms of p53 gene. Talanta. 2002;56:829–35.

    Article  CAS  PubMed  Google Scholar 

  • Mori K, Sato S, Kodama M, et al. Oral cancer diagnosis via a ferrocenylnaphthalene diimide-based electrochemical telomerase assay. Clin Chem. 2013;59:289–95.

    Article  CAS  PubMed  Google Scholar 

  • Mutirangura A, Supiyaphun P, Trirekapan S, et al. Telomerase activity in oral leukoplakia and head and neck squamous cell carcinoma. Can Res Suppl. 1996;56:3530–3.

    CAS  Google Scholar 

  • Olovnikov AM. A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol. 1973;41:181–90.

    Article  CAS  PubMed  Google Scholar 

  • Pavlov V, Willner I, Dishon A, et al. Amplified detection of telomerase activity using electrochemical and quartz crystal microbalance measurements. Biosens Bioelectron. 2004;20:1011–21.

    Article  CAS  PubMed  Google Scholar 

  • Perry PJ, Gowan SM, Reszka AP, et al. 1,4- and 2,6-disubstituted amidoanthracene-9,10-dione derivatives as inhibitors of human telomerase. J Med Chem. 1998;41:3253–60.

    Article  CAS  PubMed  Google Scholar 

  • Quach QH, Jung J, Kim H, et al. A simple, fast and highly sensitive assay for the detection of telomerase activity. Chem Commun. 2013;49:6596–8.

    Article  CAS  Google Scholar 

  • Raichlin S, Sharon E, Freeman R, Tzfati Y, Willner I. Electron-transfer quenching of nucleic acid-functionalized CdSe/ZnS quantum dots by doxorubicin: a versatile system for the optical detection of DNA, aptamer-substrate complexes and telomerase activity. Biosens Bioelectron. 2011;26:4681–9.

    Article  CAS  PubMed  Google Scholar 

  • Sanchini MA, Gunelli R, Nanni O, et al. Relevance of urine telomerase in the diagnosis of bladder cancer. JAMA. 2005;294:2052–6.

    Article  CAS  PubMed  Google Scholar 

  • Santoro SW, Joyce GF. A general purpose RNA-cleaving DNA enzyme. Proc Natl Acad Sci U S A. 1997;94:4262–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato S, Takenaka S. Linker effect of ferrocenylnaphthalene diimide ligands in the interaction with double stranded DNA. J Organomet Chem. 2008;693:1177–85.

    Article  CAS  Google Scholar 

  • Sato S, Takenaka S. PCR-free telomerase assay using chronocoulometry coupled with hexaammineruthenium(III) chloride. Anal Chem. 2012;84:1772–5.

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Kondo H, Nojima T, et al. Electrochemical telomerase assay with ferrocenylnaphthalene diimide as a tetraplex DNA-specific binder. Anal Chem. 2005a;77:7304–9.

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Nojima T, Waki M, et al. Supramolecular complex formation by beta-cyclodextrin and ferrocenylnaphthalene diimide-intercalated double stranded DNA and improved electrochemical gene detection. Molecules. 2005b;10:693–707.

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Hokazono K, Irie T, et al. Ferrocenylnaphthalene diimide-based electrochemical detection of methylated gene. Anal Chim Acta. 2006;578:82–7.

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Tsueda M, Kanezaki Y, et al. Detection of an aberrant methylation of CDH4 gene in PCR product by ferrocenylnaphthalene diimide-based electrochemical hybridization assay. Anal Chim Acta. 2012;715:42–8.

    Article  CAS  PubMed  Google Scholar 

  • Sauerwald A, Sandin S, Cristofari G, et al. Structure of active dimeric human telomerase. Nat Struct Mol Biol. 2013;20:454–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steel AB, Herne TM, Tarlov MJ. Electrochemical quantitation of DNA immobilized on gold. Anal Chem. 1998;70:4670–7.

    Article  CAS  PubMed  Google Scholar 

  • Takenaka S, Yamashita K, Takagi M, et al. DNA sensing on a DNA probe-modified electrode using ferrocenylnaphthalene diimide as the electrochemically active ligand. Anal Chem. 2000;72:1334–41.

    Article  CAS  PubMed  Google Scholar 

  • Thongprasom K, Mutirangura A, Cheerat S. Telomerase activity in oral lichen planus. J Oral Pathol Med. 1998;27:395–8.

    Article  CAS  PubMed  Google Scholar 

  • Tian T, Peng S, Xiao H, et al. Highly sensitive detection of telomerase based on a DNAzyme strategy. Chem Commun. 2013;49:2652–4.

    Article  CAS  Google Scholar 

  • Umek RM, Lin SW, Vielmetter J, et al. Electronic detection of nucleic acids: a versatile platform for molecular diagnostics. J Mol Diagn. 2001;3:74–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Patel DJ. Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex. Structure. 1993;1:263–82.

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Donovan MJ, Meng L, et al. DNAzyme-based probes for telomerase detection in early-stage cancer diagnosis. Chemistry. 2013;19:4633–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weng J, Zhang J, Li H, et al. Label-free DNA sensor by boron-doped diamond electrode using an ac impedimetric approach. Anal Chem. 2008;80:7075–83.

    Article  CAS  PubMed  Google Scholar 

  • Xiao Y, Lubin AA, Baker BR, et al. Single-step electronic detection of femtomolar DNA by target-induced strand displacement in an electrode-bound duplex. Proc Natl Acad Sci U S A. 2006;103:16677–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao Y, Pavlov V, Gill R, Bourenko T, Willner I. Lighting up biochemiluminescence by the surface self-assembly of DNA-hemin complexes. Chem Bio Chem. 2004;5:374–9.

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Noguchi Y, Sugiyama H. The new models of the human telomere d[AGGG(TTAGGG)3] in K+ solution. Bioorg Med Chem. 2006;14:5584–91.

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Zhu X, Liu Q, et al. Label-free detection of telomerase activity in HeLa cells using electrochemical impedance spectroscopy. Chem Commun. 2011;47:3129–31.

    Article  CAS  Google Scholar 

  • Yen SF, Gabbay EJ, Wilson WD. Interaction of aromatic imides with deoxyribonucleic acid. Spectrophotometric and viscometric studies. Biochemistry. 1982;21:2070–6.

    Article  CAS  PubMed  Google Scholar 

  • Zheng G, Patolsky F, Cui Y, et al. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol. 2005;23:1294–301.

    Article  CAS  PubMed  Google Scholar 

  • Zhong LP, Chen GF, Xu ZF, et al. Detection of telomerase activity in saliva from oral squamous cell carcinoma patients. Int J Oral Maxillofac Surg. 2005;34:566–70.

    Article  PubMed  Google Scholar 

  • Zhou X, Xing D. Assays for human telomerase activity: progress and prospects. Chem Soc Rev. 2012;41:4643–56.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeori Takenaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Takenaka, S., Sato, S. (2015). Telomerase as Biomarker for Oral Cancer. In: Preedy, V., Patel, V. (eds) Biomarkers in Cancer. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7681-4_8

Download citation

Publish with us

Policies and ethics