Skip to main content

DNA Methylation as a Biomarker in Nasopharyngeal Carcinoma

  • Reference work entry
  • 1926 Accesses

Abstract

Nasopharyngeal carcinoma (NPC) is a malignancy with remarkable ethnic and geographic distribution. Initially, point mutations and chromosomal deletions were considered to be the major events involved in the inactivation of tumor-suppressor genes in NPC. The discovery that many tumor-suppressor genes can also be inactivated by hypermethylation of the CpG islands in their promoter region clearly indicates that epigenetic events also play an important role as alternative mechanisms in NPC carcinogenesis.

In this chapter, we update current information on methylated genes associated with the development and progression of NPC. Promoter hypermethylation of critical genes could be potential biomarkers and therapeutic targets for NPC.

Several genes have been investigated for methylation in the promoter region in NPC. These methylated genes are involved in critical pathways, such as DNA repair, cell cycle regulation, and invasion/metastasis.

The role of hypermethylated genes in the deregulation of critical pathways in NPC is now well known. Besides their role on the pathogenesis of NPC, results from many investigations have provided additional information on the potential role of hypermethylated genes as predictive biomarkers in the development and progression of NPC.

This is a preview of subscription content, log in via an institution.

Abbreviations

CDH1:

Epithelial E-Cadherin

CGH:

Comparative Genomic Hybridization

DAB2:

Human Disabled-2

DAP-kinase:

Death-Associated Protein Kinase

DLC-1:

Deleted in Liver Cancer-1

DLEC1:

Deleted in Lung and Esophageal Cancer 1

DNMT:

DNA Methyltransferase

EBV:

Epstein–Barr Virus

GSTP1:

Glutathione S-Transferase P1

HIN-1:

High in Normal-1

HLA:

Histocompatibility Leukocyte Antigens

IARC:

International Agency for Research on Cancer

LARS2:

Leucyl-tRNA Synthetase 2, Mitochondrial

LOH:

Loss of Heterozygosity

MGMT:

O6-Methylguanine-DNA Methyltransferase

MSP:

Methylation-Specific PCR

NPC:

Nasopharyngeal Carcinoma

PCR:

Polymerase Chain Reaction

RARβ2:

Retinoic Acid Receptor β2

RASSF1A:

Ras Association Domain Family 1A

TFPI-2:

Tissue Factor Pathway Inhibitor-2

TIMP-3:

Tissue Inhibitor of Metalloproteinase-3

TSG:

Tumor-Suppressor Genes

TSLC1:

Tumor Suppressor in Lung Cancer 1

WHO:

World Health Organization

References

  • Agathanggelou A, Dallol A, Zöchbauer-Müller S, et al. Epigenetic inactivation of the candidate 3p21.3 suppressor gene BLU in human cancers. Oncogene. 2003;22:1580–8.

    Article  CAS  PubMed  Google Scholar 

  • Ayadi W, Karray-Hakim H, Khabir A, et al. Aberrant methylation of p16, DLEC1, BLU and E cadherin gene promoters in nasopharyngeal carcinoma biopsies from Tunisian patients. Anticancer Res. 2008;28:2161–7.

    CAS  PubMed  Google Scholar 

  • Bei JX, Jia WH, Zeng YX. Familial and large-scale case-control studies identify genes associated with nasopharyngeal carcinoma. Semin Cancer Biol. 2012;22:96–106.

    Article  CAS  PubMed  Google Scholar 

  • Challouf S, Ziadi S, Zaghdoudi R, et al. Patterns of aberrant DNA hypermethylation in nasopharyngeal carcinoma in Tunisian patients. Clin Chim Acta. 2012;413:795–802.

    Article  CAS  PubMed  Google Scholar 

  • Chan JKC, Pilch BZ, Kuo TT, et al. Tumors of the nasopharynx. In: Barnes L, Eveson JW, Reichart P, Sidransky D, editors. World Health Organization classification of tumors. Pathology and genetics of head and neck tumours. Lyon: IARC Press; 2005. p. 83–97.

    Google Scholar 

  • Chan KC, Hung EC, Woo JK, et al. Early detection of nasopharyngeal carcinoma by plasma Epstein-Barr virus DNA analysis in a surveillance program. Cancer. 2013;119:1838–44.

    Article  CAS  PubMed  Google Scholar 

  • Chang ET, Adami HO. The enigmatic epidemiology of nasopharyngeal carcinoma. Cancer Epidemiol Biomarkers Prev. 2006;15:1765–77.

    Article  CAS  PubMed  Google Scholar 

  • Chang HW, Chan A, Kwong DL, et al. Evaluation of hypermethylated tumor suppressor genes as tumor markers in mouth and throat rinsing fluid, nasopharyngeal swab and peripheral blood of nasopharyngeal carcinoma patient. Int J Cancer. 2003;105:851–5.

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Fu L, Zhang LY, et al. Tumor suppressor genes on frequently deleted chromosome 3p in nasopharyngeal carcinoma. Chin J Cancer. 2012;31:215–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chow LS, Lo KW, Kwong J, et al. RASSF1A is a target tumor suppressor from 3p21.3 in nasopharyngeal carcinoma. Int J Cancer. 2004;109:839–47.

    Article  CAS  PubMed  Google Scholar 

  • Cohen O, Feinstein E, Kimchi A. DAP-kinase is a Ca2+/calmodulin-dependent, cytoskeletal-associated protein kinase, with cell death-inducing functions that depend on its catalytic activity. EMBO J. 1997;16:998–1008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen O, Inbal B, Kissil JL, et al. DAP-kinase participates in TNF-alpha- and Fas-induced apoptosis and its function requires the death domain. J Cell Biol. 1999;146:141–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cottrell SE. Molecular diagnostic applications of DNA methylation technology. Clin Biochem. 2004;37:595–604.

    Article  CAS  PubMed  Google Scholar 

  • Dammann R, Schagdarsurengin U, Seidel C, et al. The tumor suppressor RASSF1A in human carcinogenesis: an update. Histol Histopathol. 2005;20:645–63.

    CAS  PubMed  Google Scholar 

  • Daniel V. Glutathione S-transferases: gene structure and regulation of expression. Crit Rev Biochem Mol Biol. 1993;28:173–207.

    Article  CAS  PubMed  Google Scholar 

  • Donninger H, Vos MD, Clark GJ. The RASSF1A tumor suppressor. J Cell Sci. 2007;120:3163–72.

    Article  CAS  PubMed  Google Scholar 

  • Esteller M. CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene. 2002;21:5427–40.

    Article  CAS  PubMed  Google Scholar 

  • Esteller M, Corn PG, Urena JM, et al. Inactivation of glutathione S-transferase P1 gene by promoter hypermethylation in human neoplasia. Cancer Res. 1998;58:4515–18.

    CAS  PubMed  Google Scholar 

  • Esteller M, Hamilton SR, Burger PC, et al. Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res. 1999;59:793–7.

    CAS  PubMed  Google Scholar 

  • Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature. 2002;420:629–35.

    Article  CAS  PubMed  Google Scholar 

  • Fendri A, Masmoudi A, Khabir A, et al. Inactivation of RASSF1A, RARbeta2 and DAP-kinase by promoter methylation correlates with lymph node metastasis in nasopharyngeal carcinoma. Cancer Biol Ther. 2009;8:444–51.

    Article  CAS  PubMed  Google Scholar 

  • Feng X, Ren C, Zhou W, et al. Promoter hypermethylation along with LOH, but not mutation, contributes to inactivation of DLC-1 in nasopharyngeal carcinoma. Mol Carcinog. 2013;12:53.

    Google Scholar 

  • Frappier L. Role of EBNA1 in NPC tumourigenesis. Semin Cancer Biol. 2012;22:154–61.

    Article  CAS  PubMed  Google Scholar 

  • Han BL, Xu XY, Zhang CZ, et al. Systematic review on Epstein-Barr virus (EBV) DNA in diagnosis of nasopharyngeal carcinoma in Asian populations. Asian Pac J Cancer Prev. 2012;13:2577–81.

    Article  PubMed  Google Scholar 

  • Hannon GJ, Beach D. p15INK4B is a potential effector of TGF-beta-induced cell cycle arrest. Nature. 1994;371:257–61.

    Article  CAS  PubMed  Google Scholar 

  • Hocevar BA, Mou F, Rennolds JL, et al. Regulation of the Wnt signaling pathway by disabled-2 (Dab2). EMBO J. 2003;22:3084–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hui AB, Lo KW, Kwong J, et al. Epigenetic inactivation of TSLC1 gene in nasopharyngeal carcinoma. Mol Carcinog. 2003;38:170–8.

    Article  CAS  PubMed  Google Scholar 

  • Jia WH, Luo XY, Feng BJ, et al. Traditional Cantonese diet and nasopharyngeal carcinoma risk: a large-scale case-control study in Guangdong, China. BMC Cancer. 2010;10:446.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim TY, Jong HS, Song SH, et al. Transcriptional silencing of the DLC-1 tumor suppressor gene by epigenetic mechanism in gastric cancer cells. Oncogene. 2003;22:3943–51.

    Article  CAS  PubMed  Google Scholar 

  • Kissil JL, Feinstein E, Cohen O, et al. DAP-kinase loss of expression in various carcinoma and B-cell lymphoma cell lines: possible implications for role as tumor suppressor gene. Oncogene. 1997;15:403–7.

    Article  CAS  PubMed  Google Scholar 

  • Kong WJ, Zhang S, Guo CK, et al. Effect of methylation-associated silencing of the death-associated protein kinase gene on nasopharyngeal carcinoma. Anticancer Drugs. 2006;17:251–9.

    Article  CAS  PubMed  Google Scholar 

  • Krishna SM, Kattoor J, Balaram P. Down regulation of adhesion protein E-cadherin in Epstein-Barr virus infected nasopharyngeal carcinomas. Cancer Biomark. 2005;1:271–7.

    CAS  PubMed  Google Scholar 

  • Krop IE, Sgroi D, Porter DA, et al. HIN-1, a putative cytokine highly expressed in normal but not cancerous mammary epithelial cells. Proc Natl Acad Sci U S A. 2001;98:9796–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwong J, Lo KW, To KF, et al. Promoter hypermethylation of multiple genes in nasopharyngeal carcinoma. Clin Cancer Res. 2002;8:131–7.

    CAS  PubMed  Google Scholar 

  • Kwong J, Chow LS, Wong AY, et al. Epigenetic inactivation of the deleted in lung and esophageal cancer 1 gene in nasopharyngeal carcinoma. Genes Chromosomes Cancer. 2007;46:171–80.

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Ren Y, Lin SX, et al. Association of E-cadherin and beta-catenin with metastasis in nasopharyngeal carcinoma. Chin Med J (Engl). 2004;117:1232–9.

    CAS  Google Scholar 

  • Li X, Wang E, Zhao YD, et al. Chromosomal imbalances in nasopharyngeal carcinoma: a meta-analysis of comparative genomic hybridization results. J Transl Med. 2006;4:4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X, Fasano R, Wang E, Marincola FM, et al. HLA associations with nasopharyngeal carcinoma. Curr Mol Med. 2009;9:751–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu XQ, Chen HK, Zhang XS, et al. Alterations of BLU, a candidate tumor suppressor gene on chromosome 3p21.3, in human nasopharyngeal carcinoma. Int J Cancer. 2003;106:60–5.

    Article  CAS  PubMed  Google Scholar 

  • Lo KW, Huang DP, Lau KM. p16 gene alterations in nasopharyngeal carcinoma. Cancer Res. 1995;55:2039–43.

    CAS  PubMed  Google Scholar 

  • Lo KW, Cheung ST, Leung SF, et al. Hypermethylation of the p16 gene in nasopharyngeal carcinoma. Cancer Res. 1996;56:2721–5.

    CAS  PubMed  Google Scholar 

  • Lo KW, Kwong J, Hui AB, et al. High frequency of promoter hypermethylation of RASSF1A in nasopharyngeal carcinoma. Cancer Res. 2001;61:3877–81.

    CAS  PubMed  Google Scholar 

  • Lodygin D, Hermeking H. The role of epigenetic inactivation of 14-3-3sigma in human cancer. Cell Res. 2005;15:237–46.

    Article  CAS  PubMed  Google Scholar 

  • Lung HL, Cheng Y, Kumaran MK, et al. Fine mapping of the 11q22-23 tumor suppressive region and involvement of TSLC1 in nasopharyngeal carcinoma. Int J Cancer. 2004;112:628–35.

    Article  CAS  PubMed  Google Scholar 

  • Mannello F, Gazzanelli G. Tissue inhibitors of metalloproteinases and programmed cell death: conundrums, controversies and potential implications. Apoptosis. 2001;6:479–82.

    Article  CAS  PubMed  Google Scholar 

  • Mark M, Ghyselinck NB, Chambon P. Function of retinoid nuclear receptors: lessons from genetic and pharmacological dissections of the retinoic acid signaling pathway during mouse embryogenesis. Annu Rev Pharmacol Toxicol. 2006;46:451–80.

    Article  CAS  PubMed  Google Scholar 

  • Masuda M, Yageta M, Fukuhara H, et al. The tumor suppressor protein TSLC1 is involved in cell-cell adhesion. J Biol Chem. 2002;277:31014–19.

    Article  CAS  PubMed  Google Scholar 

  • Murakami Y. Involvement of a cell adhesion molecule, TSLC1/IGSF4, in human oncogenesis. Cancer Sci. 2005;96:543–52.

    Article  CAS  PubMed  Google Scholar 

  • Niemhom S, Kitazawa S, Kitazawa R, et al. Hypermethylation of epithelial-cadherin gene promoter is associated with Epstein-Barr virus in nasopharyngeal carcinoma. Cancer Detect Prev. 2008;32:127–34.

    Article  CAS  PubMed  Google Scholar 

  • Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55:74–108.

    Article  PubMed  Google Scholar 

  • Pegg AE. Mammalian O6-alkylguanine-DNA alkyltransferase: regulation and importance in response to alkylating carcinogenic and therapeutic agents. Cancer Res. 1990;50:6119–29.

    CAS  PubMed  Google Scholar 

  • Peng D, Ren CP, Yi HM, et al. Genetic and epigenetic alterations of DLC-1, a candidate tumor suppressor gene, in nasopharyngeal carcinoma. Acta Biochim Biophys Sin (Shanghai). 2006;38:349–55.

    Article  CAS  Google Scholar 

  • Polesel J, Serraino D, Negri E, et al. Consumption of fruit, vegetables, and other food groups and the risk of nasopharyngeal carcinoma. Cancer Causes Control. 2013;24:1157–65.

    Article  PubMed  Google Scholar 

  • Qiu GH, Tan LK, Loh KS, et al. The candidate tumor suppressor gene BLU, located at the commonly deleted region 3p21.3, is an E2F-regulated, stress-responsive gene and inactivated by both epigenetic and genetic mechanisms in nasopharyngeal carcinoma. Oncogene. 2004;23:4793–806.

    Article  CAS  PubMed  Google Scholar 

  • Ran Y, Wu S, You Y. Demethylation of E-cadherin gene in nasopharyngeal carcinoma could serve as a potential therapeutic strategy. J Biochem. 2011;149:49–54.

    Article  CAS  PubMed  Google Scholar 

  • Robertson KD. DNA methylation and human disease. Nat Rev Genet. 2005;6:597–610.

    Article  CAS  PubMed  Google Scholar 

  • Seng TJ, Low JS, Li H, et al. The major 8p22 tumor suppressor DLC1 is frequently silenced by methylation in both endemic and sporadic nasopharyngeal, esophageal, and cervical carcinomas, and inhibits tumor cell colony formation. Oncogene. 2007;26:934–44.

    Article  CAS  PubMed  Google Scholar 

  • Simons MJ, Chao SM, Wee GD, et al. Nasopharyngeal carcinoma and histocompatibility antigens. In: de The G, Ito Y, editors. Nasopharyngeal carcinoma: etiology and control, IARC scientific publication N°20. Lyon: IARC; 1978. p. 271.

    Google Scholar 

  • Strathdee G. Epigenetic versus genetic alterations in the inactivation of E-cadherin. Semin Cancer Biol. 2002;12:373–9.

    Article  CAS  PubMed  Google Scholar 

  • Takeichi M. Cadherin cell adhesion receptors as a morphogenetic regulator. Science. 1991;251:1451–5.

    Article  CAS  PubMed  Google Scholar 

  • Tong JH, Tsang RK, Lo KA, et al. Quantitative Epstein-Barr virus DNA analysis and detection of gene promoter hypermethylation in nasopharyngeal (NP) brushing samples from patients with NP carcinoma. Clin Cancer Res. 2002;8:2612–19.

    CAS  PubMed  Google Scholar 

  • Tong JH, Ng DC, Chau SL, et al. Putative tumour-suppressor gene DAB2 is frequently down regulated by promoter hypermethylation in nasopharyngeal carcinoma. BMC Cancer. 2010;10:253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van der Weyden L, Adams DJ. The Ras-association domain family (RASSF) members and their role in human tumourigenesis. Biochim Biophys Acta. 2007;1776:58–85.

    PubMed  PubMed Central  Google Scholar 

  • Van Roy F, Berx G. The cell-cell adhesion molecule E-cadherin. Cell Mol Life Sci. 2008;65:3756–88.

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Xiao X, Zhou X, et al. TFPI-2 is a putative tumor suppressor gene frequently inactivated by promoter hypermethylation in nasopharyngeal carcinoma. BMC Cancer. 2010;10:617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei KR, Xu Y, Liu J, et al. Histopathological classification of nasopharyngeal carcinoma. Asian Pac J Cancer Prev. 2011;12:1141–1147.

    Google Scholar 

  • Wong TS, Chang HW, Tang KC, et al. High frequency of promoter hypermethylation of the death-associated protein-kinase gene in nasopharyngeal carcinoma and its detection in the peripheral blood of patients. Clin Cancer Res. 2002;8:433–7.

    CAS  PubMed  Google Scholar 

  • Wong CM, Lee JM, Ching YP, et al. Genetic and epigenetic alterations of DLC-1 gene in hepatocellular carcinoma. Cancer Res. 2003a;63:7646–51.

    CAS  PubMed  Google Scholar 

  • Wong TS, Kwong DL, Sham JS, et al. Promoter hypermethylation of high-in-normal 1 gene in primary nasopharyngeal carcinoma. Clin Cancer Res. 2003b;9:3042–6.

    CAS  PubMed  Google Scholar 

  • Wong CM, Ng YL, Lee JM, et al. Tissue factor pathway inhibitor-2 as a frequently silenced tumor suppressor gene in hepatocellular carcinoma. Hepatology. 2007;45:1129–38.

    Article  CAS  PubMed  Google Scholar 

  • Xu FH, Xiong D, Xu YF, et al. An epidemiological and molecular study of the relationship between smoking, risk of nasopharyngeal carcinoma, and Epstein-Barr virus activation. J Natl Cancer Inst. 2012;104:1396–410.

    Article  CAS  PubMed  Google Scholar 

  • Yi B, Tan SX, Tang CE, et al. Inactivation of 14-3-3 sigma by promoter methylation correlates with metastasis in nasopharyngeal carcinoma. J Cell Biochem. 2009;106:858–66.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Sun D, Van do N, et al. Inactivation of RASSF2A by promoter methylation correlates with lymph node metastasis in nasopharyngeal carcinoma. Int J Cancer. 2007;120:32–8.

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Jiang W, Ren C, et al. Frequent hypermethylation of RASSF1A and TSLC1, and high viral load of Epstein-Barr virus DNA in nasopharyngeal carcinoma and matched tumor-adjacent tissues. Neoplasia. 2005;7:809–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou W, Feng X, Li H, et al. Inactivation of LARS2, located at the commonly deleted region 3p21.3, by both epigenetic and genetic mechanisms in nasopharyngeal carcinoma. Acta Biochim Biophys Sin (Shanghai). 2009;41:54–62.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mounir Trimeche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Ksiâa, F., Trimeche, M. (2015). DNA Methylation as a Biomarker in Nasopharyngeal Carcinoma. In: Preedy, V., Patel, V. (eds) Biomarkers in Cancer. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7681-4_43

Download citation

Publish with us

Policies and ethics