Skip to main content

Lipids and Lipoproteins as Biomarkers of Vascular Complications in Diabetes and Their Modulation by Dietary Phytochemicals

  • Reference work entry
  • First Online:
Biomarkers in Cardiovascular Disease

Abstract

Lipids and lipoproteins are predictive biomarkers of vascular events in diabetes and play a critical role in the pathogenesis of macro- and microvascular complications associated with this condition. Diabetic dyslipidemia is principally characterized by quantitative and qualitative lipid abnormalities, such as elevated fasting and postprandial triglycerides, increased production of VLDL and chylomicrons, increased glycation and oxidation of LDL and production of small dense LDL particles that are taken up by macrophages, and low HDL-cholesterol (HDL-C) and increased triglyceride content of HDL. Plant-based diets and dietary phytochemical-containing functional foods and beverages and herbs and spices have been shown to reduce LDL-cholesterol (LDL-C) and triglycerides and/or increase HDL-C in clinical studies of patients with type 2 diabetes. Plant-based diets, especially the Mediterranean diet rich in monounsaturated fats, fiber, and polyphenols, functional foods and beverages such as berries, cocoa, pomegranates, soy, and tea rich in several classes of phytochemicals and soluble fiber, and spices such as cinnamon have been shown to improve atherogenic lipid profiles in clinical studies and thus deserve special attention in the nutritional management of diabetic dyslipidemia. These phytochemical-containing diets and functional foods and beverages have been shown to modulate many pathways of lipid and lipoprotein metabolism, such as inhibiting hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase, the rate-limiting step in cholesterol synthesis, inhibiting cholesterol absorption and chylomicron synthesis, inhibiting action of fat digestive enzymes, and via improving glycemic control in diabetes. These clinical observations need further research in larger studies of patients with diabetic vascular complications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADA:

American Diabetes Association

AER:

Albumin excretion rate

AHEI:

Alternate healthy eating index

ApoB:

Apolipoprotein B

BMI:

Body mass index

CAD:

Coronary artery disease

CAM:

Complementary and alternative medicine

CETP:

Cholesteryl ester transfer protein

CHD:

Coronary heart disease

CVD:

Cardiovascular disease

DASH:

Dietary Approaches to Stop Hypertension

FDA:

Food and Drug Administration (US)

GI:

Glycemic index

GSE:

Grape seed extracts

GTE:

Green tea extracts

HDL-C:

High-density lipoprotein cholesterol

HGI:

High glycemic index

HL:

Hepatic lipase

HMG-CoA:

Hydroxymethylglutaryl-coenzyme A

HOMA-IR:

Homeostatic model assessment of insulin resistance

IMT:

Intima-media thickness

LDL-C:

Low-density lipoprotein cholesterol

LGI:

Low glycemic index

LPL:

Lipoprotein lipase

MPD:

Modified prudent diet

MVC:

Microvascular complications

NMR:

Nuclear magnetic resonance

NPDR:

Nonproliferative diabetic retinopathy

PDR:

Proliferative diabetic retinopathy

PON1:

Paraoxonase 1

RCT:

Randomized controlled trial

RYR:

Red yeast rice

T1D:

Type 1 diabetes

T2D:

Type 2 diabetes

TG:

Triglycerides

WPJ:

Wonderful variety pomegranate juice

WPOMxl:

Wonderful variety pomegranate polyphenol extract

References

  • Allen RW, Schwartzman E, Baker WL, Coleman CI, Phung OJ. Cinnamon use in type 2 diabetes: an updated systematic review and meta-analysis. Ann Fam Med. 2013;11:452–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • American Diabetes Association. Economic costs of diabetes in the US in 2007. Diabetes Care. 2008;3:595–615.

    Google Scholar 

  • American Diabetes Association. Executive summary: standards of medical care in diabetes – 2014. Diabetes Care. 2014;37:S5–13.

    Article  Google Scholar 

  • Anderson JW, Bush HM. Soy protein effects on serum lipoproteins: a quality assessment and meta-analysis of randomized, controlled studies. J Am Coll Nutr. 2011;30:79–91.

    Article  CAS  PubMed  Google Scholar 

  • Arablou T, Aryaeian N, Valizadeh M, et al. The effect of ginger consumption on glycemic status, lipid profile and some inflammatory markers in patients with type 2 diabetes mellitus. Int J Food Sci Nutr. 2014;65:515–20.

    Article  CAS  PubMed  Google Scholar 

  • Awasthi H, Nath R, Usman K, et al. Effects of a standardized Ayurvedic formulation on diabetes control in newly diagnosed Type-2 diabetics; a randomized active controlled clinical study. Complement Ther Med. 2015;23:555–61.

    Article  PubMed  Google Scholar 

  • Azimi P, Ghiasvand R, Feizi A, Hariri M, Abbasi B. Effects of cinnamon, cardamom, saffron, and ginger consumption on markers of glycemic control, lipid profile, oxidative stress, and inflammation in type 2 diabetes patients. Rev Diabet Stud. 2014;11:258–66.

    Article  PubMed  Google Scholar 

  • Bagdade JD, Lane JT, Subbaiah PV, Otto ME, Ritter MC. Accelerated cholesteryl ester transfer in noninsulin-dependent diabetes mellitus. Atherosclerosis. 1993;104:69–77.

    Article  CAS  PubMed  Google Scholar 

  • Barnard RJ, Lattimore L, Holly RG, Cherny S, Pritikin N. Response of non-insulin-dependent diabetic patients to an intensive program of diet and exercise. Diabetes Care. 1982;5:370–4.

    Article  CAS  PubMed  Google Scholar 

  • Barnard ND, Cohen J, Jenkins DJ, et al. A low-fat vegan diet and a conventional diabetes diet in the treatment of type 2 diabetes: a randomized, controlled, 74-wk clinical trial. Am J Clin Nutr. 2009;89:1588S–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basu A, Newman ED, Bryant AL, Lyons TJ, Betts NM. Pomegranate polyphenols lower lipid peroxidation in adults with type 2 diabetes but have no effects in healthy volunteers: a pilot study. J Nutr Metab. 2013;2013:708381.

    Article  PubMed  PubMed Central  Google Scholar 

  • Beejmohun V, Peytavy-Izard M, Mignon C, et al. Acute effect of Ceylon cinnamon extract on postprandial glycemia: alpha-amylase inhibition, starch tolerance test in rats, and randomized crossover clinical trial in healthy volunteers. BMC Complement Altern Med. 2014;14:351.

    Article  PubMed  PubMed Central  Google Scholar 

  • Burke FM. Red yeast rice for the treatment of dyslipidemia. Curr Atheroscler Rep. 2015;17:495.

    Article  PubMed  Google Scholar 

  • Cannon CP, Braunwald E, McCabe CH, Pravastatin or Atorvastatin Evaluation and Infection Therapy-Thrombolysis in Myocardial Infarction 22 Investigators, et al. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med. 2004;350:1495–504.

    Article  CAS  PubMed  Google Scholar 

  • Chandalia M, Garg A, Lutjohann D, et al. Beneficial effects of high dietary fiber intake in patients with type 2 diabetes mellitus. N Engl J Med. 2000;342:1392–8.

    Article  CAS  PubMed  Google Scholar 

  • Clemens R, van Klinken BJ. The future of oats in the food and health continuum. Br J Nutr. 2014;112:S75–9.

    Article  CAS  PubMed  Google Scholar 

  • Curtis PJ, Sampson M, Potter J, et al. Chronic ingestion of flavan-3-ols and isoflavones improves insulin sensitivity and lipoprotein status and attenuates estimated 10-year CVD risk in medicated postmenopausal women with type 2 diabetes: a 1-year, double-blind, randomized, controlled trial. Diabetes Care. 2012;35:226–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabian E, Töscher S, Elmadfa I, Pieber TR. Use of complementary and alternative medicine supplements in patients with diabetes mellitus. Ann Nutr Metab. 2011;58:101–8.

    Article  CAS  PubMed  Google Scholar 

  • Hooper L, Kay C, Abdelhamid A, et al. Effects of chocolate, cocoa, and flavan-3-ols on cardiovascular health: a systematic review and meta-analysis of randomized trials. Am J Clin Nutr. 2012;95:740–51.

    Article  CAS  PubMed  Google Scholar 

  • Huo R, Du T, Xu Y, et al. Effects of Mediterranean-style diet on glycemic control, weight loss and cardiovascular risk factors among type 2 diabetes individuals: a meta-analysis. Eur J Clin Nutr. 2014. doi:10.1038/ejcn.2014.243.

    PubMed  Google Scholar 

  • Huseini HF, Kianbakht S, Hajiaghaee R, Dabaghian FH. Anti-hyperglycemic and anti-hypercholesterolemic effects of Aloe vera leaf gel in hyperlipidemic type 2 diabetic patients: a randomized double-blind placebo-controlled clinical trial. Planta Med. 2012;78:311–6.

    Article  CAS  PubMed  Google Scholar 

  • Jenkins AJ, Lyons TJ, Zheng D, et al. Lipoproteins in the DCCT/EDIC cohort: associations with diabetic nephropathy. Kidney Int. 2003;64:817–28.

    Article  CAS  PubMed  Google Scholar 

  • Kahleova H, Matoulek M, Malinska H, et al. Vegetarian diet improves insulin resistance and oxidative stress markers more than conventional diet in subjects with Type 2 diabetes. Diabet Med. 2011;28:549–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kar P, Laight D, Rooprai HK, Shaw KM, Cummings M. Effects of grape seed extract in Type 2 diabetic subjects at high cardiovascular risk: a double blind randomized placebo controlled trial examining metabolic markers, vascular tone, inflammation, oxidative stress and insulin sensitivity. Diabet Med. 2009;26:526–31.

    Article  CAS  PubMed  Google Scholar 

  • Keith M, Kuliszewski MA, Liao C, et al. A modified portfolio diet complements medical management to reduce cardiovascular risk factors in diabetic patients with coronary artery disease. Clin Nutr. 2015;34:541–8.

    Article  PubMed  Google Scholar 

  • Khan A, Safdar M, Ali Khan MM, Khattak KN, Anderson RA. Cinnamon improves glucose and lipids of people with type 2 diabetes. Diabetes Care. 2003;26:3215–8.

    Article  PubMed  Google Scholar 

  • Kumar R, Chhatwal S, Arora S, et al. Antihyperglycemic, antihyperlipidemic, anti-inflammatory and adenosine deaminase-lowering effects of garlic in patients with type 2 diabetes mellitus with obesity. Diabetes Metab Syndr Obes. 2013;6:49–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LaRosa JC, Grundy SM, Waters DD, Treating to New Targets (TNT) Investigators, et al. Intensive lipid lowering with atorvastatin in patients with stable coronary disease. N Engl J Med. 2005;352:1425–35.

    Article  CAS  PubMed  Google Scholar 

  • Law M. Plant sterol and stanol margarines and health. BMJ. 2000;320:861–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ley SH, Hamdy O, Mohan V, Hu FB. Prevention and management of type 2 diabetes: dietary components and nutritional strategies. Lancet. 2014;383:1999–2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lisowska A, Stawińska-Witoszyńska B, Bajerska J, Krzyżanowska P, Walkowiak J. Green tea influences intestinal assimilation of lipids in humans: a pilot study. Eur Rev Med Pharmacol Sci. 2015;19:209–14.

    CAS  PubMed  Google Scholar 

  • Liu CY, Huang CJ, Huang LH, et al. Effects of green tea extract on insulin resistance and glucagon-like peptide 1 in patients with type 2 diabetes and lipid abnormalities: a randomized, double-blinded, and placebo-controlled trial. PLoS One. 2014;9:e91163.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lyons TJ, Jenkins AJ, Zheng D, et al. Nuclear magnetic resonance-determined lipoprotein subclass profile in the DCCT/EDIC cohort: associations with carotid intima-media thickness. Diabet Med. 2006;23:955–66.

    Article  CAS  PubMed  Google Scholar 

  • Mang B, Wolters M, Schmitt B, et al. Effects of a cinnamon extract on plasma glucose, HbA, and serum lipids in diabetes mellitus type 2. Eur J Clin Invest. 2006;36:340–4.

    Article  CAS  PubMed  Google Scholar 

  • McDougall GJ, Stewart D. The inhibitory effects of berry polyphenols on digestive enzymes. Biofactors. 2005;23:189–95.

    Article  CAS  PubMed  Google Scholar 

  • Mellor DD, Sathyapalan T, Kilpatrick ES, Beckett S, Atkin SL. High-cocoa polyphenol-rich chocolate improves HDL cholesterol in Type 2 diabetes patients. Diabet Med. 2010;27:1318–21.

    Article  CAS  PubMed  Google Scholar 

  • Mozaffari-Khosravi H, Ahadi Z, Fallah Tafti M. The effect of green Tea versus sour tea on insulin resistance, lipids profiles and oxidative stress in patients with type 2 diabetes mellitus: a randomized clinical trial. Iran J Med Sci. 2014;39:424–32.

    PubMed  PubMed Central  Google Scholar 

  • Nikkilä EA, Huttunen JK, Ehnholm C. Postheparin plasma lipoprotein lipase and hepatic lipase in diabetes mellitus. Relationship to plasma triglyceride metabolism. Diabetes. 1977;26:11–21.

    Article  PubMed  Google Scholar 

  • Njajou OT, Kanaya AM, Holvoet P, et al. Association between oxidized LDL, obesity and type 2 diabetes in a population-based cohort, the Health, Aging and Body Composition Study. Diabetes Metab Res Rev. 2009;25:733–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pick ME, Hawrysh ZJ, Gee MI, et al. Oat bran concentrate bread products improve long-term control of diabetes: a pilot study. J Am Diet Assoc. 1996;96:1254–61.

    Article  CAS  PubMed  Google Scholar 

  • Rizkalla SW, Taghrid L, Laromiguiere M, et al. Improved plasma glucose control, whole-body glucose utilization, and lipid profile on a low-glycemic index diet in type 2 diabetic men: a randomized controlled trial. Diabetes Care. 2004;27:1866–72.

    Article  PubMed  Google Scholar 

  • Rock W, Rosenblat M, Miller-Lotan R, et al. Consumption of wonderful variety pomegranate juice and extract by diabetic patients increases paraoxonase 1 association with high-density lipoprotein and stimulates its catalytic activities. J Agric Food Chem. 2008;56:8704–13.

    Article  CAS  PubMed  Google Scholar 

  • Ruiz Ruiz JC, Betancur Ancona DA, Segura Campos MR. Bioactive vegetable proteins and peptides in lipid-lowering; nutraceutical potential. Nutr Hosp. 2014;29:776–84.

    PubMed  Google Scholar 

  • Sacks FM, Hermans MP, Fioretto P, et al. Association between plasma triglycerides and high-density lipoprotein cholesterol and microvascular kidney disease and retinopathy in type 2 diabetes mellitus: a global case-control study in 13 countries. Circulation. 2014;129:999–1008.

    Article  CAS  PubMed  Google Scholar 

  • Sobenin IA, Nedosugova LV, Filatova LV, et al. Metabolic effects of time-released garlic powder tablets in type 2 diabetes mellitus: the results of double-blinded placebo-controlled study. Acta Diabetol. 2008;45:1–6.

    Article  PubMed  Google Scholar 

  • Soedamah-Muthu SS, Chang YF, Otvos J, et al. Lipoprotein subclass measurements by nuclear magnetic resonance spectroscopy improve the prediction of coronary artery disease in Type 1 diabetes. A prospective report from the Pittsburgh Epidemiology of Diabetes Complications Study. Diabetologia. 2003;46:674–82.

    Article  CAS  PubMed  Google Scholar 

  • Sonmez A, Nikolic D, Dogru T, et al. Low- and high-density lipoprotein subclasses in subjects with nonalcoholic fatty liver disease. J Clin Lipidol. 2015;9:576–82.

    Article  PubMed  Google Scholar 

  • Taskinen MR. Diabetic dyslipidaemia: from basic research to clinical practice. Diabetologia. 2003;46:733–49.

    Article  PubMed  Google Scholar 

  • Temelkova-Kurktschiev T, Hanefeld M. The lipid triad in type 2 diabetes – prevalence and relevance of hypertriglyceridaemia/low high-density lipoprotein syndrome in type 2 diabetes. Exp Clin Endocrinol Diabetes. 2004;112:75–9.

    Article  CAS  PubMed  Google Scholar 

  • Tolonen N, Hietala K, Forsblom C, et al. Associations and interactions between lipid profiles, retinopathy and nephropathy in patients with type 1 diabetes: the FinnDiane Study. J Intern Med. 2013;274:469–79.

    Article  CAS  PubMed  Google Scholar 

  • Toth PP, Simko RJ, Palli SR, et al. The impact of serum lipids on risk for microangiopathy in patients with type 2 diabetes mellitus. Cardiovasc Diabetol. 2012;11:109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • US FDA. Food labeling: health claims: soluble fiber from whole oats and risk of coronary heart disease. Docket 95P–0197. Washington, DC: US FDA; 2001. p. 15343–4.

    Google Scholar 

  • US FDA. FDA authorizes heart disease health claim for nuts. Docket No. 02P–0505. Washington, DC: US FDA; 2003.

    Google Scholar 

  • Vafa M, Mohammadi F, Shidfar F, et al. Effects of cinnamon consumption on glycemic status, lipid profile and body composition in type 2 diabetic patients. Int J Prev Med. 2012;3:531–6.

    PubMed  PubMed Central  Google Scholar 

  • van Dam RM, Naidoo N, Landberg R. Dietary flavonoids and the development of type 2 diabetes and cardiovascular diseases: review of recent findings. Curr Opin Lipidol. 2013;24:25–33.

    Article  PubMed  Google Scholar 

  • Vazquez-Benitez G, Desai JR, Xu S, Goodrich GK, et al. Preventable major cardiovascular events associated with uncontrolled glucose, blood pressure, and lipids and active smoking in adults with diabetes with and without cardiovascular disease: a contemporary analysis. Diabetes Care. 2015;38:905–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vergès B. Pathophysiology of diabetic dyslipidaemia: where are we? Diabetologia. 2015;58:886–99.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wedick NM, Pan A, Cassidy A, Rimm EB, Sampson L, Rosner B, Willett W, Hu FB, Sun Q, van Dam RM. Dietary flavonoid intakes and risk of type 2 diabetes in US men and women. Am J Clin Nutr. 2012;95:925–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinbrenner T, Schröder H, Escurriol V, et al. Circulating oxidized LDL is associated with increased waist circumference independent of body mass index in men and women. Am J Clin Nutr. 2006;83:30–5.

    CAS  PubMed  Google Scholar 

  • Whitfield P, Parry-Strong A, Walsh E, Weatherall M, Krebs JD. The effect of a cinnamon-, chromium- and magnesium-formulated honey on glycaemic control, weight loss and lipid parameters in type 2 diabetes: an open-label cross-over randomised controlled trial. Eur J Nutr. 2015. doi:10.1007/s00394-015-0926-x.

    PubMed  Google Scholar 

  • Yadav D, Tiwari A, Mishra M, et al. Anti-hyperglycemic and anti-hyperlipidemic potential of a polyherbal preparation “Diabegon” in metabolic syndrome subject with type 2 diabetes. Afr J Tradit Complement Altern Med. 2014;11:249–56.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng XX, Xu YL, Li SH, et al. Green tea intake lowers fasting serum total and LDL cholesterol in adults: a meta-analysis of 14 randomized controlled trials. Am J Clin Nutr. 2011;94:601–10.

    Article  CAS  PubMed  Google Scholar 

  • Zoppini G, Negri C, Stoico V, et al. Triglyceride-high-density lipoprotein cholesterol is associated with microvascular complications in type 2 diabetes mellitus. Metabolism. 2012;61:22–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arpita Basu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Basu, A., Basu, P., Morris, S., Lyons, T.J. (2016). Lipids and Lipoproteins as Biomarkers of Vascular Complications in Diabetes and Their Modulation by Dietary Phytochemicals. In: Patel, V., Preedy, V. (eds) Biomarkers in Cardiovascular Disease. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7678-4_49

Download citation

Publish with us

Policies and ethics