Skip to main content

New Role of Biomarkers in Atrial Fibrillation

  • Reference work entry
  • First Online:
Book cover Biomarkers in Cardiovascular Disease

Abstract

Atrial fibrillation (AF) confers a raised risk of stroke, thromboembolism, and death, and this risk of adverse events is increased by the coexistence of other cardiovascular risk factors. Despite being easy to use for decision-making concerning oral anticoagulant therapy in AF, different clinical risk scores used for stratification have shown modest capability in predicting thromboembolic events, and biomarkers may improve our identification of “high-risk” patients. Biomarkers significantly improve risk stratification in addition to current clinical risk stratification models. These new findings may enable development of novel tools to improve clinical risk assessment in AF. This chapter will highlight novel associations of biomarkers and outcomes in AF as well as recent progress in the use of biomarkers for risk stratification, with focus on data from randomized prospective clinical trials and large community-based cohorts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AF:

Atrial fibrillation

ARISTOTLE trial:

Apixaban for the Prevention of Stroke in Subjects with Atrial Fibrillation trial

ATM:

Antithrombin III

BNP:

B-type natriuretic peptide

BTG:

Beta-thromboglobulin

BTP:

Beta-trace protein

CKD:

Chronic kidney disease

CRP:

C-reactive protein

DD:

D-dimer

F1+2:

Prothrombin fragment 1+2

FMD:

Flow-mediated dilatation

GDF-15:

Growth differentiation factor 15

GFR:

Glomerular filtration rate

IL-6:

Interleukin-6

INR:

International normalized ratio

LV:

Left ventricle

NT-proBNP:

The inactive N-terminal fragment of B-type natriuretic peptide

OAC:

Oral anticoagulation

PAI-1:

Plasminogen activator inhibitor

PAP complexes:

Plasmin–antiplasmin complexes

RE-LY trial:

Randomized Evaluation of Long-Term Anticoagulant Therapy trial

sE-sel:

Soluble E-selectin

SPAF III study:

The third Stroke Prevention in Atrial Fibrillation study

sTM:

Soluble thrombomodulin

TIA:

Transient ischemic attack

TnI:

Troponin I

TnT:

Troponin T

tPA:

Tissue plasminogen activator

vWF:

von Willebrand factor

References

  • Abrahamson M, Olafsson I, Palsdottir A, Ulvsback M, Lundwall A, Jensson O, Grubb A. Structure and expression of the human cystatin C gene. Biochem J. 1990;268:287–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ananthapanyasut W, Napan S, Rudolph EH, Harindhanavudhi T, Ayash H, Guglielmi KE, Lerma EV. Prevalence of atrial fibrillation and its predictors in non-dialysis patients with chronic kidney disease. Clin J Am Soc Nephrol. 2010;5:173–81.

    Article  PubMed  PubMed Central  Google Scholar 

  • Asakura H, Hifumi S, Jokaji H, Saito M, kumabashiri Uotani C, Morishita E, Yamakazi M, Shibata K, Mizuhashi K. Prothrombin fragment F1+2 and thrombin-antithrombin III complex are useful markers of the hypercoagulable state in atrial fibrillation. Blood Coagul Fibrinolysis. 1992;3:469–73.

    Article  CAS  PubMed  Google Scholar 

  • Astor BC, Shafi T, Hoogeveen RC, et al. Novel markers of kidney function as predictors of ESRD, cardiovascular disease, and mortality in the general population. Am J Kidney Dis. 2012;59(5):653–62.

    Article  CAS  PubMed  Google Scholar 

  • Aulin JKEM, Andersson U, Connolly SJ, Huber K, Reilly PA, Siegbahn A, Wallentin L, Yusuf S, Oldgren J. Interleukin-6 and C-reactive protein and risk for death and cardiovascular events in patients with atrial fibrillation. J Am Coll Cardiol. 2011;57:E91.

    Article  Google Scholar 

  • Benjamin EJ, Wolf PA, D’ Agostino RB, Silbershatz H, Kannel WB, Levy D. Impact of atrial fibrillation on the risk of death. The Framingham Heart Study. Circulation. 1998;98:946–52.

    Article  CAS  PubMed  Google Scholar 

  • Boomsma F, van den Meiracker AH. Plasma A- and B-type natriuretic peptides: physiology, methodology and clinical use. Cardiovasc Res. 2001;51:442–9.

    Article  CAS  PubMed  Google Scholar 

  • Camm JA, Lip GY, De Caterina R, Savelieva I, Atar D, Hohnloser SH, Gerhard Hindricks G, Kirchhof P. Focused update of the ESC guidelines for the management of atrial fibrillation: an update of the 2010 ESC guidelines for the management of atrial fibrillation – developed with the special contribution of the European Heart Rhythm Association. Europace. 2012;14(10):1385–413.

    Article  PubMed  Google Scholar 

  • Conway DS, Buggins P, Hughes E, Lip GY. Prognostic significance of raised plasma levels of interleukin-6 and C-reactive protein in atrial fibrillation. Am Heart J. 2004;148(3):462–6.

    Article  CAS  PubMed  Google Scholar 

  • Craig T, January L, Wann S, et al. AHA/ACC/HRS guideline for the management of patients with atrial fibrillation. J Am Coll Cardiol. 2014;64(21):2246–80.

    Article  Google Scholar 

  • Daniels LB, Maisel AS. Natriuretic peptides. J Am Coll Cardiol. 2007;50:2357–68.

    Article  CAS  PubMed  Google Scholar 

  • Daoud EG, Bogun F, Goyal R, Harvey M, Man KC, Strickberger SA, et al. Effect of atrial fibrillation on atrial refractoriness in humans. Circulation. 1996;94(7):1600–6.

    Article  CAS  PubMed  Google Scholar 

  • Deo R, Katz R, Kestenbaum B, Fried L, Sarnak MJ, Psaty BM, Siscovick DS, Shlipak MG. Impaired kidney function and atrial fibrillation in elderly subjects. J Card Fail. 2010;16:55–60.

    Article  CAS  PubMed  Google Scholar 

  • Dubin R, Cushman M, Folsom AR, Fried LF, Palmas W, Peralta CA, Wassel C, Shlipak MG. Kidney function and multiplate hemostatic markers: cross sectional associations in the multi-ethnic study of atherosclerosis. BMC Nephrol. 2011;12:3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Eikelboom J, Hijazi Z, Oldgren J, Andersson U, Connolly SJ, Ezekowitz MD, Reilly PA, Yusuf S, Wallentin L, Siegbahn A. D-dimer is prognostic for stroke, major bleeding and death during anticoagulation of atrial fibrillation-a RELY substudy. Circulation. 2010;122:A18321.

    Google Scholar 

  • Ellinor PT, Low AF, Patton KK, Shea MA, Macrae CA. Discordant atrial natriuretic peptide and brain natriuretic peptide levels in lone atrial fibrillation. J Am Coll Cardiol. 2005;45:82–6.

    Article  CAS  PubMed  Google Scholar 

  • Feinberg WM, Pearce LA, Hart RG, Cushman M, Cornell ES, Lip GY, Bovill EG. Markers of thrombin and platelet activity in patients with atrial fibrillation. Stroke. 1999a;30:2547–53.

    Article  CAS  PubMed  Google Scholar 

  • Feinberg WM, Pearce LA, Hart RG, Cushman M, Cornell ES, Lip GY, Bovill EG. Markers of thrombin and platelet activity in patients with atrial fibrillation: correlation with stroke among 1531 participants in the stroke prevention in atrial fibrillation III study. Stroke. 1999b;30(12):2547–53.

    Article  CAS  PubMed  Google Scholar 

  • Ferro D, Loffredo L, Polimeni L, et al. Soluble CD40 ligand predicts ischemic stroke and myocardial infarction in patients with nonvalvular atrial fibrillation. Arterioscler Thromb Vasc Biol. 2007;27:2763–8.

    Article  CAS  PubMed  Google Scholar 

  • Fonarow GC, Peacock WF, Phillips CO, Givertz MM, Lopatin M. Admission B-type natriuretic peptide levels and in-hospital mortality in acute decompensated heart failure. J Am Coll Cardiol. 2007;49:1943–50.

    Article  CAS  PubMed  Google Scholar 

  • Freestone B, Chong AY, Blann AD, Lip GY. The effects of direct current cardioversion for persistent atrial fibrillation on indices of endothelial damage/dysfunction. Thromb Res. 2006;118:479–85.

    Article  CAS  PubMed  Google Scholar 

  • Freestone B, Chong AY, Nuttall S, Blann AD, Lip GY. Soluble E-selectin, von Willebrand factor, soluble thrombomodulin, and total body nitrate/nitrite product as indices of endothelial damage/dysfunction in paroxysmal, persistent, and permanent atrial fibrillation. Chest. 2007;132(4):1253–8.

    Article  CAS  PubMed  Google Scholar 

  • Freestone B, Chong AY, Nutall S, Lip GY. Impaired flow mediated dilatation as evidence of endothelial dysfunction in chronic atrial fibrillation: relationship to plasma von Willebrand factor and soluble E-selectin levels. Thromb Res. 2008;122(1):85–90.

    Article  CAS  PubMed  Google Scholar 

  • Frustaci A, Chimenti C, Belocci F, Morgante E, Russo MA, Maseri A. Histological substrate of atrial biopsies in patients with lone atrial fibrillation. Circulation. 1997;96:1180–4.

    Article  CAS  PubMed  Google Scholar 

  • Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risk of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351:1296–305.

    Article  CAS  PubMed  Google Scholar 

  • Go AS, Fang MC, Udaltsova N, Chang Y, Pomernacki NK, Borowsky L, Singer DE. Impact of proteinuria and glomerular filtration rate on risk of thromboembolism in atrial fibrillation (ATRIA) study. Circulation. 2009;119:1363–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Goodsaid F, Frueh F. Biomarker qualification pilot process at the US Food and Drug Administration. AAPS J. 2007;9(1):E105–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heeringa J, Conway DS, van der Kuip DA, et al. A longitudinal population-based study of prothrombotic factors in elderly subjects with atrial fibrillation: the Rotterdam study 1990–1999. J Thromb Haemost. 2006;4:1944–9.

    Article  CAS  PubMed  Google Scholar 

  • Hermida J, Lopez FL, Montes R, Matsushita K, Astor BC, Alonso A. Usefulness of high sensitivity C reactive protein to predict mortality in patients with atrial fibrillation (from the Atherosclerosis Risk in Communities, ARIC, Study). Am J Cardiol. 2012;109(1):95–9.

    Article  CAS  PubMed  Google Scholar 

  • Hernández Romero D, Jover E, Marín F, Vilchez JA, Manzando-Fernández S, Romera M, et al. The prognostic role of the adiponectin levels in atrial fibrillation. Eur J Clin Invest. 2013;43(2):168–73.

    Article  PubMed  Google Scholar 

  • Hijazi Z, Oldgren J, Andersson U, Connolly SJ, Ezekowitz MD, Hohnloser SH, Reilly PA, Vinereanu D, Siegbahn A, Yusuf S, Wallentin L. Cardiac biomarkers are associated with an increased risk of stroke and death in patients with atrial fibrillation: a randomized evaluation of long-term anticoagulation therapy (RE-LY) substudy. Circulation. 2012;125:1605–16.

    Article  CAS  PubMed  Google Scholar 

  • Hijazi Z, Oldgren J, Siegbahn A, Granger CB, Wallentin L. Biomarkers in atrial fibrillation: a clinical review. Eur Heart J. 2013a;34(20):1475–80.

    Article  CAS  PubMed  Google Scholar 

  • Hijazi Z, Wallentin L, Siegbahn A, Andersson U, Christersson C, Ekekowitz J, et al. N-terminal pro-B-type natriuretic peptide for risk assessment in patients with atrial fibrillation: insights form ARISTOTLE trial. J Am Coll Cardiol. 2013b;61(22):2274–84.

    Article  CAS  PubMed  Google Scholar 

  • Hijazi Z, Walletin L, Siegbahn A, Schollin M, Andersson U, Alexander JH, et al. High-sensitivity troponin T and risk stratification in patients with atrial fibrillation during treatment with apixaban or warfarin (ARISTOTLE). J Am Coll Cardiol. 2014a;63(1):52–61.

    Article  CAS  PubMed  Google Scholar 

  • Hijazi Z, Siegbahn A, Andersson U, Lindahl B, Granger CB, et al. Comparison of cardiac troponins I and T measured with high-sensitivity methods for evaluation of prognosis in atrial fibrillation: an ARISTOTLE substudy. Clin Chem. 2014b;61:2.

    Google Scholar 

  • Hoffmann A, Conradt HS, Gross G, Nimtz M, Lottspeich F, Wurster U. Purification and chemical characterization of beta-trace protein from human cerebrospinal fluid: its identification as prostaglandin D synthase. J Neurochem. 1993;61(2):451–6.

    Article  CAS  PubMed  Google Scholar 

  • Hohnloser SH, Hijazi Z, Thomas L, Alexander JH, Amerena J, Hanna M, Keltai M, Lanas F, Lopes RD, Lopez-Sendon J, Granger CB, Wallentin L. Efficacy of apixaban when compared with warfarin in relation to renal function in patients with atrial fibrillation: insights from the ARISTOTLE trial. Eur Heart J. 2012;33:2821–22830.

    Article  CAS  PubMed  Google Scholar 

  • Igarashi Y, Kashimura K, Makiyama Y, Sato T, Ojima K, Aizawa Y. Left atrial appendage dysfunction in chronic nonvalvular atrial fibrillation is significantly associated with an elevated level of brain natriuretic peptide and a prothrombotic state. Jpn Circ J. 2001;65:788–92.

    Article  CAS  PubMed  Google Scholar 

  • Ix JH, Shlipak MG, Chertow GM, Whooley MA. Association of cystatin C with mortality, cardiovascular events, and incident heart failure among persons with coronary heart disease: data from the Heart and Soul Study. Circulation. 2007;115:173–9.

    Article  CAS  PubMed  Google Scholar 

  • Kerr R, Stirling D, Ludlam CA. Interleukin 6 and haemostasis. Br J Haematol. 2001;115(1):3–12.

    Article  CAS  PubMed  Google Scholar 

  • Krishnamoorthy S, Khoo CW, Lim HS, Lane DA, Pignatelli P, Basili S, Violi F, Lip GY. Prognostic role of plasma von Willebrand factor and soluble E-selectin levels for future cardiovascular events in a ‘real-world’ community cohort of patients with atrial fibrillation. Eur J Clin Invest. 2013;43(10):1032–8.

    Article  CAS  PubMed  Google Scholar 

  • Laterza OF, Price CP, Scott MG. Cystatin C: an improved estimator of glomerular filtration rate? Clin Chem. 2002;48:699–707.

    CAS  PubMed  Google Scholar 

  • Lip GY, Lane D, Van WC, Hart RG. Additive role of plasma von Willebrand factor levels to clinical factors risk stratification of patients with atrial fibrillation. Stroke. 2006;37(9):2294–300.

    Article  CAS  PubMed  Google Scholar 

  • Lip GY, Patel JV, Hughes E, Hart RG. High-sensitivity C-reactive protein and soluble CD40 ligand as indices of inflammation and platelet activation in 880 patients with nonvalvular atrial fibrillation: relationship to stroke risk factors, stroke risk stratification schema, and prognosis. Stroke. 2007;38(4):1229–37. Epub 2007 Mar 1.

    Article  CAS  PubMed  Google Scholar 

  • Lip GY, Andreotti F, Fauchier L, Huber K, Hylek E, Knight E, et al. Bleeding risk assessment and management in atrial fibrillation patients. Executive summary of a position document from the European Heart Rhythm Association (EHRA), endorsed by the European Society of Cardiology (ESC) working group on thrombosis. Thromb Haemost. 2011;106(6):997–1011.

    Article  CAS  PubMed  Google Scholar 

  • López-Cuenca A, Marín F, Roldán V, González-Conejero R, Hernández- Romero D, Valdés M, Lip GY. Genetic polymorphisms and atrial fibrillation: insights into the prothrombotic state and thromboembolic risk. Ann Med. 2010;42(8):562–75.

    Article  PubMed  Google Scholar 

  • Marín F, Roldán V. GDF-15 and risk stratification in atrial fibrillation. Nat Rev Cardiol. 2015;12:8–9.

    Article  PubMed  Google Scholar 

  • Newman DJ, Thakkar H, Edwards RG, Wilkie M, White T, Grubb AO, Price CP. Serum Cystatin C measured by automated immunoassay: a more sensitive marker of changes in GFR than serum creatinine. Kidney Int. 1995;47:312–8.

    Article  CAS  PubMed  Google Scholar 

  • Okada Y, Shibazaki K, Kimura K, et al. Brain natriuretic peptide is a marker associated with thrombus in stroke patients with atrial fibrillation. J Neurol Sci. 2011;301:86–9.

    Article  CAS  PubMed  Google Scholar 

  • Piccini JP, Hernandez AF, Zhao X, Patel MR, Lewis WR, Peterson ED, Fonarow GC. Quality of care for atrial fibrillation among patients hospitalized for heart failure. J Am Coll Cardiol. 2009;54:1280–9.

    Article  CAS  PubMed  Google Scholar 

  • Pisters R, Lane DA, de Vos Nieuwlaat CB, Crijns HJ, Lip GY. A novel user-friendly score (HAS-BLED) to assess 1-year risk of major bleeding in patients with atrial fibrillation: the Euro Heart Survey. Chest. 2010;138(5):1093–100.

    Article  PubMed  Google Scholar 

  • Providencia R, Paiva L, Barra S. Risk stratification of patients with atrial fibrillation biomarkers and other future perspectives. World J Cardiol. 2012;4(6):195–200.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rienstra M, Sun JX, Lubitz SA, Frankel DS, Vasan RS, Levy D, et al. Plasma resistin, adiponectin, and risk of incident atrial fibrillation: the Framingham Offspring Study. Am Heart J. 2012;163(1):119–24.

    Article  CAS  PubMed  Google Scholar 

  • Roldán V, Marín F, Marco P, Martínez JG, Calatayud R, Sogorb F. Hypofibrinolysis in atrial fibrillation. Am Heart J. 1998;136(6):956–60.

    Article  PubMed  Google Scholar 

  • Roldán V, Marín F, García-Herola A, Lip G. Correlation of plasma von Willebrand factor levels, an index of endothelial damage/dysfunction, with two point-based stroke risk stratification scores in atrial fibrillation. Thromb Res. 2005;116(4):321–5.

    Article  PubMed  Google Scholar 

  • Roldán V, Marín F, Muiña B, Torregrosa JM, Hernández-Romero D, et al. Plasma von Willebrand factor levels are an independent risk factor for adverse events including mortality and major bleeding in anticoagulated atrial fibrillation patients. J Am Coll Cardiol. 2011;57(25):2496–504.

    Article  PubMed  Google Scholar 

  • Roldán V, Marín F, Diaz J, Gallego P, Jover E, Romera M, et al. High sensitivity cardiac troponin T and interleukin-6 predict adverse cardiovascular events and mortality in anticoagulated patients with atrial fibrillation. J Thromb Haemost. 2012;10(8):1500–7.

    Article  PubMed  Google Scholar 

  • Roldán V, Marín F, Manzano-Fernández S, Fernández H, Gallego P, Valdés M, et al. Does chronic kidney disease improve the predictive value of CHADS2 and CHA2DS2-VASc stroke stratification risk scores for atrial fibrillation? Thromb Haemost. 2013a;109(5):956–60.

    Article  PubMed  Google Scholar 

  • Roldán V, Marín F, Fernández H, Manzano-Fernández S, Gallego P, Valdés M, et al. Renal impairment in a “real-life” cohort of anticoagulated patients with atrial fibrillation (implications for thromboembolism and bleeding). Am J Cardiol. 2013b;111(8):1159–64.

    Article  PubMed  Google Scholar 

  • Roldán V, Vílchez JA, Manzano-Fernández S, Jover E, Gálvez J, Puche CM, Valdés M, et al. Usefulness of N-terminal pro–B-type natriuretic peptide levels for stroke risk prediction in anticoagulated patients with atrial fibrillation. Stroke. 2014;45(3):696–701.

    Article  PubMed  Google Scholar 

  • Santopinto JJ, Fox KA, Goldberg RJ, Budaj A, Pinero G, Avezum A, Gulba D, Esteban J, Gore JM, Johnson J, Gurfinkel EP. Creatinine clearance and adverse hospital outcomes in patients with acute coronary events (GRACE). Heart. 2003;89:1003–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savelieva I, John Camm A. Atrial fibrillation and heart failure: natural history and pharmacological treatment. Europace. 2004;5 Suppl 1:S5–19.

    Article  PubMed  Google Scholar 

  • Shelton RJ, Clark AL, Goode K, Rigby AS, Cleland JG. The diagnostic utility of N-terminal pro-B-type natriuretic peptide for the detection of major structural heart disease in patients with atrial fibrillation. Eur Heart J. 2006;27:2353–61.

    Article  CAS  PubMed  Google Scholar 

  • Singer DE, Chang Y, Fang MC, Borowsky LH, Pomenarcki NK, Udaltasova N, et al. Should patient characteristics influence target anticoagulation intensity for stroke prevention in nonvalvular atrial fibrillation? The ATRIA study. Circ Cardiovasc Qual Outcome. 2009;2(4):297–304.

    Article  Google Scholar 

  • Van den Bos EJ, Constantinescu AA, van Domburg RT, Akin S, Jordaens LJ, Kofflard MJ. Minor elevations in troponin I are associated with mortality and adverse cardiac events in patients with atrial fibrillation. Eur Heart J. 2011;32(5):611–7.

    Article  PubMed  Google Scholar 

  • Vene N, Mavri A, Kosmelj K, Stegnar M. High D-dimer levels predict cardiovascular events in patients with chronic atrial fibrillation during oral anticoagulant therapy. Thromb Haemost. 2003;90(6):1163–72.

    CAS  PubMed  Google Scholar 

  • Vílchez JA, Roldán V, Manzano-Fernández S, Fernández H, Avilés-Plaza F, et al. β-Trace protein and prognosis in patients with atrial fibrillation receiving anticoagulation treatment. Chest. 2013;144(5):1564–70.

    Article  PubMed  Google Scholar 

  • Vilchez JA, Roldan V, Hernandez-Romero D, Valdes M, Lip GY, Marin F. Biomarkers in atrial fibrillation: an overview. Int J Clin Pract. 2014;68:434–43.

    Article  CAS  PubMed  Google Scholar 

  • Wallentin L, et al. Growth differentiation factor 15, a marker of oxidative stress and inflammation, for risk assessment in patients with atrial fibrillation: insights from ARISTOTLE trial. Circulation. 2014;130(21):1847–58.

    Article  CAS  PubMed  Google Scholar 

  • Watson T, Shantsila E, Lip GY. Mechanisms of thrombogenesis in atrial fibrillation: Virchow’s triad revisited. Lancet. 2009;373(9658):155–66.

    Article  CAS  PubMed  Google Scholar 

  • Wolf PA, Abbott RD, Kannel WB. Atrial fibrillation as an independent risk factor for stroke: the Framingham Study. Stroke. 1991;22:983–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Marín .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Rodríguez-Serrano, A.I., Esteve-Pastor, M.A., Hernández-Romero, D., Valdés, M., Roldán, V., Marín, F. (2016). New Role of Biomarkers in Atrial Fibrillation. In: Patel, V., Preedy, V. (eds) Biomarkers in Cardiovascular Disease. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7678-4_36

Download citation

Publish with us

Policies and ethics