Skip to main content

Polymorphisms in the Vitamin D Pathway in Relation to 25-Hydroxyvitamin D Status and Cardiovascular Disease Incidence: Application to Biomarkers

  • Reference work entry
  • First Online:
Biomarkers in Cardiovascular Disease

Abstract

Vitamin D deficiency has become a globally acknowledged problem whose impact on societies has proven to surpass all medical expectations. Vitamin D is no longer peerlessly associated with bone diseases. In fact, collaborations of clinicians and researchers have yielded the undeniable truth, that is, the affiliation of this unconventional vitamin with diseases that are currently grasping the media’s attention like autoimmune diseases and cancers. Having established the importance of this phenomenon, assuming complete understanding of the association of vitamin D with one of the leading causes of death in the world, cardiovascular disease, is only mildly precise. Observational studies tend to highlight the association of low vitamin D levels with various forms of cardiovascular disease as well as with the risk factors associated, whereas interventional studies have been conflicting. Nonetheless, in vitro studies have identified the presence of nuclear vitamin D receptors in the cardiovascular system in cells such as cardiomyocytes and endothelial cells, thereby warranting cardiovascular actions. Moreover, recent studies have demonstrated the ability of vitamin D to beneficially modulate effectors of the cardiovascular system such as the renin-angiotensin-aldosterone system and the nitric oxide system. While there appears to be abundance in the number of publications on the epidemiological and mechanistic association of the vitamin with the disease, studies aiming to investigate the genetic component of the relationship are sparse. Recent genome-wide association studies have identified single nucleotide polymorphisms (SNPs) in genes encoding proteins involved in the vitamin D pathway, whether synthesis, metabolism, or elimination, that are associated with circulating levels of 25-hydroxyvitamin D [25(OH)D], the biomarker of vitamin D status, and thus it is conceptualized that such SNPs may act as novel genetic markers for cardiovascular disease since the disease has been associated with low levels of 25(OH)D. Several studies have investigated this hypothesis, yielding both positive and negative associations, highlighting the need for further investigations into the proposed triangular relationships between the SNPs, 25(OH)D levels, and the disease, which would spawn sound evidence prompting or discouraging professionals to extrapolate the findings to clinical genetic testing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

1,25(OH)2D:

1,25-Dihydroxyvitamin D/calcitriol

25(OH)D:

25-Hydroxyvitamin D

7-DHC:

7-Dehydrocholesterol

ADMA:

Asymmetric dimethylarginine

CVD:

Cardiovascular disease

CYP:

Cytochrome P450

eNOS:

Endothelial nitric oxide synthase

GWAS:

Genome-wide association study

MI:

Myocardial infarction

NO:

Nitric oxide

RAAS:

Renin-angiotensin-aldosterone system

RCT:

Randomized controlled trial

ROS:

Reactive oxygen species

SNP:

Single nucleotide polymorphism

UV-B:

Ultraviolet-B

VDR:

Vitamin D receptor

VDRG:

Vitamin D receptor gene

References

  • Abu El Maaty MA, Gad MZ. Vitamin d deficiency and cardiovascular disease: potential mechanisms and novel perspectives. J Nutr Sci Vitaminol (Tokyo). 2013;59:479–88.

    Article  CAS  Google Scholar 

  • Abu El Maaty MA, Hassanein SI, Hanafi RS, et al. Insights on vitamin D’s role in cardiovascular disease: investigating the association of 25-hydroxyvitamin D with the dimethylated arginines. J Nutr Sci Vitaminol (Tokyo). 2013;59:172–7.

    Article  CAS  Google Scholar 

  • Abu El Maaty MA, Hassanein SI, Sleem HM, et al. Effect of polymorphisms in the NADSYN1/DHCR7 locus (rs12785878 and rs1790349) on plasma 25-hydroxyvitamin D levels and coronary artery disease incidence. J Nutrigenet Nutrigenomics. 2014;6:327–35.

    Article  Google Scholar 

  • Abu El Maaty MA, Hassanein SI, Sleem HM, et al. Vitamin D receptor gene polymorphisms (TaqI and ApaI) in relation to 25-hydroxyvitamin D levels and coronary artery disease incidence. J Recept Signal Transduct Res. 2015;35(5):391.

    Google Scholar 

  • Ahn J, Yu K, Stolzenberg-Solomon R, et al. Genome-wide association study of circulating vitamin D levels. Hum Mol Genet. 2010;19:2739–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrukhova O, Slavic S, Zeitz U, et al. Vitamin D is a regulator of endothelial nitric oxide synthase and arterial stiffness in mice. Mol Endocrinol. 2014;28:53–64.

    Article  PubMed  Google Scholar 

  • Batai K, Murphy AB, Shah E, et al. Common vitamin D pathway gene variants reveal contrasting effects on serum vitamin D levels in African Americans and European Americans. Hum Genet. 2014;133:1395–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouillon R, Carmeliet G, Verlinden L, et al. Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr Rev. 2008;29:726–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Law CS, Grigsby CL, et al. Cardiomyocyte-specific deletion of the vitamin D receptor gene results in cardiac hypertrophy. Circulation. 2011;124:1838–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng JB, Levine MA, Bell NH, et al. Genetic evidence that the human CYP2R1 enzyme is a key vitamin D 25-hydroxylase. Proc Natl Acad Sci U S A. 2004;101:7711–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chun RF, Peercy BE, Orwoll ES, et al. Vitamin D and DBP: the free hormone hypothesis revisited. J Steroid Biochem Mol Biol. 2014;144(Pt A):132–7.

    Article  CAS  PubMed  Google Scholar 

  • Daiger SP, Schanfield MS, Cavalli-Sforza LL. Group-specific component (Gc) proteins bind vitamin D and 25-hydroxyvitamin D. Proc Natl Acad Sci U S A. 1975;72:2076–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong J, Wong SL, Lau CW, et al. Calcitriol protects renovascular function in hypertension by down-regulating angiotensin II type 1 receptors and reducing oxidative stress. Eur Heart J. 2012;33:2980–90.

    Article  CAS  PubMed  Google Scholar 

  • Dorjgochoo T, Delahanty R, Lu W, et al. Common genetic variants in the vitamin D pathway including genome-wide associated variants are not associated with breast cancer risk among Chinese women. Cancer Epidemiol Biomarkers Prev. 2011;20:2313–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dorjgochoo T, Shi J, Gao YT, et al. Genetic variants in vitamin D metabolism-related genes and body mass index: analysis of genome-wide scan data of approximately 7000 Chinese women. Int J Obes (Lond). 2012;36:1252–5.

    Article  CAS  Google Scholar 

  • Feldman D, Krishnan AV, Swami S, et al. The role of vitamin D in reducing cancer risk and progression. Nat Rev Cancer. 2014;14:342–57.

    Article  CAS  PubMed  Google Scholar 

  • Ferrarezi DA, Bellili-Munoz N, Dubois-Laforgue D, et al. Allelic variations of the vitamin D receptor (VDR) gene are associated with increased risk of coronary artery disease in type 2 diabetics: the DIABHYCAR prospective study. Diabetes Metab. 2013;39:263–70.

    Article  CAS  PubMed  Google Scholar 

  • Giangreco AA, Nonn L. The sum of many small changes: microRNAs are specifically and potentially globally altered by vitamin D3 metabolites. J Steroid Biochem Mol Biol. 2013;136:86–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassanein SI, Abu El Maaty MA, Sleem HM, et al. Triangular relationship between single nucleotide polymorphisms in the CYP2R1 gene (rs10741657 and rs12794714), 25-hydroxyvitamin d levels, and coronary artery disease incidence. Biomarkers. 2014;19:488–92.

    Article  CAS  PubMed  Google Scholar 

  • Haussler MR, Jurutka PW, Mizwicki M, et al. Vitamin D receptor (VDR)-mediated actions of 1alpha,25(OH)(2)vitamin D(3): genomic and non-genomic mechanisms. Best Pract Res Clin Endocrinol Metab. 2011;25:543–59.

    Article  CAS  PubMed  Google Scholar 

  • Hirschfeld J. Immune-electrophoretic demonstration of qualitative differences in human sera and their relation to the haptoglobins. Acta Pathol Microbiol Scand. 1959;47:160–8.

    Article  CAS  PubMed  Google Scholar 

  • Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357:266–81.

    Article  CAS  PubMed  Google Scholar 

  • Hossein-Nezhad A, Holick MF. Vitamin d for health: a global perspective. Mayo Clin Proc. 2013;88:720–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hossein-nezhad A, Spira A, Holick MF. Influence of vitamin D status and vitamin D3 supplementation on genome wide expression of white blood cells: a randomized double-blind clinical trial. PLoS One. 2013;8:e58725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hossein-Nezhad A, Eshaghi SM, Maghbooli Z, et al. The role of vitamin D deficiency and vitamin d receptor genotypes on the degree of collateralization in patients with suspected coronary artery disease. Biomed Res Int. 2014;2014:304250.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hsia J, Heiss G, Ren H, et al. Calcium/vitamin D supplementation and cardiovascular events. Circulation. 2007;115:846–54.

    Article  CAS  PubMed  Google Scholar 

  • Jacobs ET, Van Pelt C, Forster RE, et al. CYP24A1 and CYP27B1 polymorphisms modulate vitamin D metabolism in colon cancer cells. Cancer Res. 2013;73:2563–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones G, Prosser DE, Kaufmann M. 25-Hydroxyvitamin D-24-hydroxylase (CYP24A1): its important role in the degradation of vitamin D. Arch Biochem Biophys. 2012;523:9–18.

    Article  CAS  PubMed  Google Scholar 

  • Jorde R, Schirmer H, Wilsgaard T, et al. Polymorphisms related to the serum 25-hydroxyvitamin D level and risk of myocardial infarction, diabetes, cancer and mortality. The Tromso Study. PLoS One. 2012;7:e37295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuan V, Martineau AR, Griffiths CJ, et al. DHCR7 mutations linked to higher vitamin D status allowed early human migration to northern latitudes. BMC Evol Biol. 2013;13:144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhn T, Kaaks R, Teucher B, et al. Plasma 25-hydroxyvitamin D and its genetic determinants in relation to incident myocardial infarction and stroke in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Germany Study. PLoS One. 2013;8:e69080.

    Article  PubMed  PubMed Central  Google Scholar 

  • Laczmanski L, Milewicz A, Lwow F, et al. Vitamin D receptor gene polymorphism and cardiovascular risk variables in elderly Polish subjects. Gynecol Endocrinol. 2013;29:268–72.

    Article  CAS  PubMed  Google Scholar 

  • Li YC. Molecular mechanism of vitamin D in the cardiovascular system. J Investig Med. 2011;59:868–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maruyama R, Aoki F, Toyota M, et al. Comparative genome analysis identifies the vitamin D receptor gene as a direct target of p53-mediated transcriptional activation. Cancer Res. 2006;66:4574–83.

    Article  CAS  PubMed  Google Scholar 

  • McAlindon TE, Felson DT, Zhang Y, et al. Relation of dietary intake and serum levels of vitamin D to progression of osteoarthritis of the knee among participants in the Framingham Study. Ann Intern Med. 1996;125:353–9.

    Article  CAS  PubMed  Google Scholar 

  • Merke J, Milde P, Lewicka S, et al. Identification and regulation of 1,25-dihydroxyvitamin D3 receptor activity and biosynthesis of 1,25-dihydroxyvitamin D3. Studies in cultured bovine aortic endothelial cells and human dermal capillaries. J Clin Invest. 1989;83:1903–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molinari C, Uberti F, Grossini E, et al. 1alpha,25-dihydroxycholecalciferol induces nitric oxide production in cultured endothelial cells. Cell Physiol Biochem. 2011;27:661–8.

    Article  CAS  PubMed  Google Scholar 

  • Mondul AM, Shui IM, Yu K, et al. Genetic variation in the vitamin d pathway in relation to risk of prostate cancer – results from the breast and prostate cancer cohort consortium. Cancer Epidemiol Biomarkers Prev. 2013;22:688–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mondul AM, Shui IM, YuK, et al. Vitamin D-associated genetic variation and risk of breast cancer in the Breast and Prostate Cancer Cohort Consortium (BPC3). Cancer Epidemiol Biomarkers Prev. 2015;24(3):627–30.

    Google Scholar 

  • Muscogiuri G, Sorice GP, Ajjan R, et al. Can vitamin D deficiency cause diabetes and cardiovascular diseases? Present evidence and future perspectives. Nutr Metab Cardiovasc Dis. 2012;22:81–7.

    Article  CAS  PubMed  Google Scholar 

  • Ngo DT, Sverdlov AL, McNeil JJ, et al. Does vitamin D modulate asymmetric dimethylarginine and C-reactive protein concentrations? Am J Med. 2010;123:335–41.

    Article  CAS  PubMed  Google Scholar 

  • Ni W, Watts SW, Ng M, et al. Elimination of vitamin D receptor in vascular endothelial cells alters vascular function. Hypertension. 2014;64:1290–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh JJ, Byun SS, Lee SE, et al. Genetic variations in VDR associated with prostate cancer risk and progression in a Korean population. Gene. 2014;533:86–93.

    Article  CAS  PubMed  Google Scholar 

  • Ortlepp JR, von Korff A, Hanrath P, et al. Vitamin D receptor gene polymorphism BsmI is not associated with the prevalence and severity of CAD in a large-scale angiographic cohort of 3441 patients. Eur J Clin Invest. 2003;33:106–9.

    Article  CAS  PubMed  Google Scholar 

  • Ortlepp JR, Krantz C, Kimmel M, et al. Additive effects of the chemokine receptor 2, vitamin D receptor, interleukin-6 polymorphisms and cardiovascular risk factors on the prevalence of myocardial infarction in patients below 65 years. Int J Cardiol. 2005;105:90–5.

    Article  PubMed  Google Scholar 

  • Pan XM, Li DR, Yang L, et al. No association between vitamin D receptor polymorphisms and coronary artery disease in a Chinese population. DNA Cell Biol. 2009;28:521–5.

    Article  CAS  PubMed  Google Scholar 

  • Pilz S, Gaksch M, O’Hartaigh B, et al. The role of vitamin D deficiency in cardiovascular disease: where do we stand in 2013? Arch Toxicol. 2013;87:2083–103.

    Article  CAS  PubMed  Google Scholar 

  • Prabhakar P, Majumdar V, Kulkarni GB, et al. Genetic variants of vitamin D receptor and susceptibility to ischemic stroke. Biochem Biophys Res Commun. 2015;456:631–6.

    Article  CAS  PubMed  Google Scholar 

  • Ramagopalan SV, Heger A, Berlanga AJ, et al. A ChIP-seq defined genome-wide map of vitamin D receptor binding: associations with disease and evolution. Genome Res. 2010;20:1352–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reimers LL, Crew KD, Bradshaw PT, et al. Vitamin D-related gene polymorphisms, plasma 25-hydroxyvitamin D, and breast cancer risk. Cancer Causes Control. 2015;26(2):187–203.

    Google Scholar 

  • Santoro D, Gagliostro G, Alibrandi A, et al. Vitamin D receptor gene polymorphism and left ventricular hypertrophy in chronic kidney disease. Nutrients. 2014;6:1029–37.

    Article  PubMed  PubMed Central  Google Scholar 

  • Scragg R. Seasonality of cardiovascular disease mortality and the possible protective effect of ultra-violet radiation. Int J Epidemiol. 1981;10:337–41.

    Article  CAS  PubMed  Google Scholar 

  • Scragg R. The Vitamin D Assessment (ViDA) study: https://www.fmhs.auckland.ac.nz/en/soph/about/our-departments/epidemiology-and-biostatistics/research/vida-study.html. 2011. Retrieved 5 Jan 2015.

  • Scragg R, Jackson R, Holdaway IM, et al. Myocardial infarction is inversely associated with plasma 25-hydroxyvitamin D3 levels: a community-based study. Int J Epidemiol. 1990;19:559–63.

    Article  CAS  PubMed  Google Scholar 

  • Shanker J, Maitra A, Arvind P, et al. Role of vitamin D levels and vitamin D receptor polymorphisms in relation to coronary artery disease: the Indian atherosclerosis research study. Coron Artery Dis. 2011;22:324–32.

    Article  PubMed  Google Scholar 

  • Shen H, Bielak LF, Ferguson JF, et al. Association of the vitamin D metabolism gene CYP24A1 with coronary artery calcification. Arterioscler Thromb Vasc Biol. 2010;30:2648–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shui IM, Mucci LA, Kraft P, et al. Vitamin D-related genetic variation, plasma vitamin D, and risk of lethal prostate cancer: a prospective nested case-control study. J Natl Cancer Inst. 2012;104:690–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Signorello LB, Shi J, Cai Q, et al. Common variation in vitamin D pathway genes predicts circulating 25-hydroxyvitamin D levels among African Americans. PLoS One. 2011;6:e28623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Speeckaert MM, Speeckaert R, van Geel N, et al. Vitamin D binding protein: a multifunctional protein of clinical importance. Adv Clin Chem. 2014;63:1–57.

    Article  CAS  PubMed  Google Scholar 

  • Strawbridge RJ, Deleskog A, McLeod O, et al. A serum 25-hydroxyvitamin D concentration-associated genetic variant in DHCR7 interacts with type 2 diabetes status to influence subclinical atherosclerosis (measured by carotid intima-media thickness). Diabetologia. 2014;57:1159–72.

    CAS  PubMed  Google Scholar 

  • Talmor-Barkan Y, Bernheim J, Green J, et al. Calcitriol counteracts endothelial cell pro-inflammatory processes in a chronic kidney disease-like environment. J Steroid Biochem Mol Biol. 2011;124:19–24.

    Article  CAS  PubMed  Google Scholar 

  • Trummer O, Pilz S, Hoffmann MM, et al. Vitamin D and mortality: a Mendelian randomization study. Clin Chem. 2013;59:793–7.

    Article  CAS  PubMed  Google Scholar 

  • Uitterlinden AG, Fang Y, Van Meurs JB, et al. Genetics and biology of vitamin D receptor polymorphisms. Gene. 2004;338:143–56.

    Article  CAS  PubMed  Google Scholar 

  • Vaidya A, Sun B, Forman JP, et al. The Fok1 vitamin D receptor gene polymorphism is associated with plasma renin activity in Caucasians. Clin Endocrinol (Oxf). 2011;74:783–90.

    Article  CAS  Google Scholar 

  • Valcheva P, Cardus A, Panizo S, et al. Lack of vitamin D receptor causes stress-induced premature senescence in vascular smooth muscle cells through enhanced local angiotensin-II signals. Atherosclerosis. 2014;235:247–55.

    Article  CAS  PubMed  Google Scholar 

  • Velayoudom-Cephise FL, Larifla L, Donnet JP, et al. Vitamin D deficiency, vitamin D receptor gene polymorphisms and cardiovascular risk factors in Caribbean patients with type 2 diabetes. Diabetes Metab. 2011;37:540–5.

    Article  CAS  PubMed  Google Scholar 

  • Vimaleswaran KS, Cavadino A, Berry DJ, et al. Genetic association analysis of vitamin D pathway with obesity traits. Int J Obes (Lond). 2013;37:1399–406.

    Article  CAS  Google Scholar 

  • Wang TJ, Zhang F, Richards JB, et al. Common genetic determinants of vitamin D insufficiency: a genome-wide association study. Lancet. 2010;376:180–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Chu A, Buring JE, et al. Common genetic variations in the vitamin D pathway in relation to blood pressure. Am J Hypertens. 2014;27:1387–95.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilke RA, Simpson RU, Mukesh BN, et al. Genetic variation in CYP27B1 is associated with congestive heart failure in patients with hypertension. Pharmacogenomics. 2009;10:1789–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye Z, Sharp SJ, Burgess S, et al. Association between circulating 25-hydroxyvitamin D and incident type 2 diabetes: a mendelian randomisation study. Lancet Diabetes Endocrinol. 2015;3:35–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin L, Grandi N, Raum E, et al. Meta-analysis: longitudinal studies of serum vitamin D and colorectal cancer risk. Aliment Pharmacol Ther. 2009;30:113–25.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Wang X, Liu Y, et al. The GC, CYP2R1 and DHCR7 genes are associated with vitamin D levels in northeastern Han Chinese children. Swiss Med Wkly. 2012;142:w13636.

    PubMed  Google Scholar 

  • Zhu JG, Ochalek JT, Kaufmann M, et al. CYP2R1 is a major, but not exclusive, contributor to 25-hydroxyvitamin D production in vivo. Proc Natl Acad Sci U S A. 2013;110:15650–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed A. Abu el Maaty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Abu el Maaty, M.A., Hassanein, S.I., Gad, M.Z. (2016). Polymorphisms in the Vitamin D Pathway in Relation to 25-Hydroxyvitamin D Status and Cardiovascular Disease Incidence: Application to Biomarkers. In: Patel, V., Preedy, V. (eds) Biomarkers in Cardiovascular Disease. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7678-4_23

Download citation

Publish with us

Policies and ethics