Skip to main content

Liver Transplantation Biomarkers in the Metabolomics Era

  • Reference work entry
  • First Online:

Abstract

The term biomarker usually refers to the biochemical molecules used in basic and clinical research, and also in the clinical practice, as surrogate markers that offer the advantage of being an objective, quantifiable, and reproducible measure. The most common applications of biomarkers include diagnosis, screening and monitoring of disease, assessment of response during therapy, risk assessment, and prognosis. Metabolomics or metabonomics enables the determination of hundreds of small molecules at the same time, which provides more comprehensive information than the determination of a single biomarker. Using metabolomics as an approach for searching biomarkers is supported by its capabilities to detect subtle metabolic changes triggered by external stimuli or perturbation. Metabolome changes are quite dynamic compared to genomics and transcriptomics, or even proteomics. Therefore, such metabolite alterations are found early in different samples, like tissues, cell lysates, blood, serum, plasma, feces, urine, etc. Application of metabolomics in liver transplantation is still in its early stages and has focused mainly on studying three aspects: post-reperfusion damage and rejection and dysfunction of the organ. In the current era when lack of organs suitable for transplantation is the most important limiting factor, the existence of an accepted functional assessment of grafts before transplantation would help to not only recover initially discarded organs but to also assess the therapies used to improve the quality of these organs. Different metabolic approaches have been used to search for objective markers of graft function and quality, but further analytical and clinical validation in multicentre studies is mandatory before they are incorporated into clinical routines.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AST:

Aspartate aminotransferase

ALT:

Alanine aminotransferase

ADMA:

Asymmetric dimethylarginine

BA:

Bile acids

DBD:

Donation after brain dead

DCD:

Donation after circulatory dead

C18:

Aliphatic chain of length 18

CEAD:

Colorimetric electrochemical array detection

CIT:

Cold ischemia time

CS:

Cold storage

EAD:

Early allograft dysfunction

ECD:

Extended criteria donor

FT-ICR MS:

Fourier transform ion cyclotron resonance mass spectrometry

FXR:

Farnesoid X receptor

GC:

Gas chromatography

HILIC:

Hydrophilic interaction liquid chromatography

HPLC:

High-performance liquid chromatography

HR-MAS H-NMR:

High-resolution magic angle spinning

H-NMR:

Proton nuclear magnetic resonance spectroscopy

IGF:

Initial good function

IP-LC:

Ion-pairing liquid chromatography

IRI:

Ischemia reperfusion injury

JNK:

c-Jun N-terminal kinase

LC:

Liquid chromatography

LT:

Liver transplant

MRM:

Multiple reaction monitoring

NIH:

National Institute of Health

NO:

Nitric oxide

NOS:

Nitric oxide synthase

NMP:

Normothermic machine perfusion

OPLS-DA:

Orthogonal projection to latent structures-discriminant analysis

PCA:

Principal component analysis

PLS:

Partial least square

PLS-DA:

Partial least square-discriminant analysis

PNF:

Primary non-function

QC:

Quality control

Q-ToF:

Quadrupole time of flight

ROS:

Reactive oxygen species

Rt:

Retention time

RP:

Reversed phase

TQ:

Triple quadrupole

UPLC:

Ultraperformance liquid chromatography

WHO:

World Health Organization

References

  • Angele MK, Rentsch M, Harlt WH, et al. Effect of steatosis on liver function and organ survival after liver transplantation. Am J Surg. 2008;195(2):214–20.

    Article  PubMed  Google Scholar 

  • Arora AS, Jones BJ, Patel TC, et al. Ceramide induces hepatocyte cell death through disruption of mitochondrial function in the rat. Hepatology. 1997;25:958–63.

    Article  CAS  PubMed  Google Scholar 

  • Bairaktari E, Katopodis K, Siamopoulos KC, et al. Paraquat-induced renal injury studied by 1H NMR spectroscopy of urine. Clin Chem. 1998;44:1256–61.

    CAS  PubMed  Google Scholar 

  • Beckwith-Hall BM, Nicholson JK, Nicholls A, et al. Nuclear magnetic resonance spectroscopic and principal components analysis investigations into biochemical effects of three model hepatotoxins. Chem Res Toxicol. 1998;11:260–72.

    Article  CAS  PubMed  Google Scholar 

  • Beecher CW. The human metabolome. In: Garrigan GG, Goodacre R, editors. Metabolic profiling: its role in biomarker discovery and gene function analysis. Springer; 2003. p. 1–8.

    Google Scholar 

  • Biomarkers Definition Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69:89–95.

    Article  Google Scholar 

  • Bory C, Boulieu R, Chantin C, et al. Diagnosis of alcaptonuria: rapid analysis of homogentisic acid by HPLC. Clin Chim Acta. 1990;189:7–11.

    Article  CAS  PubMed  Google Scholar 

  • Bouatra S, Aziat F, Mandal R, et al. The human urine metabolome. PLoS One. 2013;8:e73076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Briceno J, Ciria R. Early graft dysfunction after liver transplantation. Transplant Proc. 2010;42:631–3.

    Article  CAS  PubMed  Google Scholar 

  • Brindle JT, Antti H, Holmes E, et al. Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabolomics. Nat Med. 2002;8:1439–44.

    Article  CAS  PubMed  Google Scholar 

  • Busuttil RW, Tanaka K. The utility of marginal donors in liver transplantation. Liver Transpl. 2003;9:651–63.

    Article  PubMed  Google Scholar 

  • Buszewski B, Noga S. Hydrophilic interaction liquid chromatography (HILIC) – a powerful separation technique. Anal Bioanal Chem. 2012;402:231–47.

    Article  CAS  PubMed  Google Scholar 

  • Cajka T, Fiehn O. Toward merging untargeted and targeted methods in mass spectrometry-based metabolomics and lipidomics. Anal Chem. 2016;88:524–45.

    Article  CAS  PubMed  Google Scholar 

  • Chagoyen M, Pazos F. MBRole: enrichment analysis of metabolomic data. Bioinformatics. 2011;27:730–1.

    Article  CAS  PubMed  Google Scholar 

  • Chan EC, Koh PK, Mal M, et al. Metabolic profiling of human colorectal cancer using high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy and gas chromatography mass spectrometry (GC/MS). J Proteome Res. 2009;8:352–61.

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Peng CH, Shen BY, et al. Multi-factor analysis of initial poor graft function after orthotopic liver transplantation. Hepatobiliary Pancreat Dis Int. 2007;6:141–6.

    PubMed  Google Scholar 

  • Clarke CJ, Haselden JN. Metabolic profiling as a tool for understanding mechanisms of toxicity. Toxicol Pathol. 2008;36:140–7.

    Article  CAS  PubMed  Google Scholar 

  • Cortes M, Pareja E, Castell JV, et al. Exploring mass spectrometry suitability to examine human liver graft metabolomic profiles. Transplant Proc. 2010;42:2953–8.

    Article  CAS  PubMed  Google Scholar 

  • Cortes M, Pareja E, García-Cañaveras JC, et al. Metabolomics discloses donor liver biomarkers associated with early allograft dysfunction. J Hepatol. 2014;61:564–74.

    Article  CAS  PubMed  Google Scholar 

  • Dang L, White DW, Gross S, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2009;462:739–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Defamie V, Cursio R, Le Brigand K, et al. Gene expression profiling of human liver transplants identifies an early transcriptional signature associated with initial poor graft function. Am J Transplant. 2008;8:1221–36.

    Article  CAS  PubMed  Google Scholar 

  • Dettmer K, Aronov AP, Hammock BD. Mass spectrometry-based metabolomics. Mass Spectrom Rev. 2007;26:51–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duarte IF, Stanley EG, Holmes E, et al. Metabolic assessment of human liver transplants from biopsy samples at the donor and recipient stages using high-resolution magic angle spinning 1H NMR spectroscopy. Anal Chem. 2005;77:5570–8.

    Article  CAS  PubMed  Google Scholar 

  • Dunn WB. Current trends and future requirements for the mass spectrometric investigation of microbial mammalian and plant metabolomes. Phys Biol. 2008;5:011001.

    Article  PubMed  CAS  Google Scholar 

  • Dunn WB, Bailey NJ, Johnson HE. Measuring the metabolome: current analytical technologies. Analyst. 2005;130:606–25.

    Article  CAS  PubMed  Google Scholar 

  • Ericzon B, Eusufzai S, Kubota K, et al. Characteristics of biliary lipid metabolism after liver transplantation. Hepatology. 1990;12:1222–8.

    Article  CAS  PubMed  Google Scholar 

  • Fahy E, Sud M, Cotter D, et al. LIPID MAPS online tools for lipid research. Nucleic Acids Res. 2007;35:W606–12.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fan X, Bai J, Shen P. Diagnosis of breast cancer using HPLC metabolomics fingerprints coupled with computational methods. Conf Proc IEEE Eng Med Biol Soc. 2005;6:6081–4.

    PubMed  Google Scholar 

  • Fiehn O. Metabolomics–the link between genotypes and phenotypes. Plant Mol Biol. 2002;48:155–71.

    Article  CAS  PubMed  Google Scholar 

  • Fondevila C, Hessheimer AJ, Maathuis MH, et al. Superior preservation of DCD livers with continuous normothermic perfusion. Ann Surg. 2011;254:1000–7.

    Article  PubMed  Google Scholar 

  • Fouassier L, Beaussier M, Schiffer E, et al. Hypoxia-induced changes in the expression of rat hepatobiliary transporter genes. Am J Physiol Gastrointest Liver Physiol. 2007;293:G25–35.

    Article  CAS  PubMed  Google Scholar 

  • Francis H, Meng F, Gaudio E, et al. Histamine regulation of biliary proliferation. J Hepatol. 2012;56:1204–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García-Cañaveras JC, Donato MT, Castell JV, et al. A comprehensive untargeted metabolomic analysis of human steatotic liver tissue by RP and HILIC chromatography coupled to mass spectrometry reveals important metabolic alterations. J Proteome Res. 2011;10:4825–34.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Cañaveras JC, Donato MT, Castell JV, et al. Targeted profiling of circulating and hepatic bile acids in human, mouse, and rat using a UPLC-MRM-MS-validated method. J Lipid Res. 2012;53:2231–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • García-Cañaveras JC, Jiménez N, Gómez-Lechón MJ, et al. LC-MS untargeted metabolomic analysis of drug-induced hepatotoxicity in HepG2 cells. Electrophoresis. 2015;36:2294–302.

    Article  CAS  Google Scholar 

  • Garcia-Cañaveras JC, López S, Castell JV, et al. Extending metabolome coverage for untargeted metabolite profiling of adherent cultured hepatic cells. Anal Bioanal Chem. 2016;408:1217–30.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Valdecasas JC, Tabet J, Valero R, et al. Evaluation of ischemic injury during liver procurement from non-heart-beating donors. Eur Surg Res. 1999;31:447–56.

    Article  CAS  PubMed  Google Scholar 

  • Gibelin H, Eugene M, Hebrard W, et al. A new approach to the evaluation of liver graft function by nuclear magnetic resonance spectroscopy. A comparative study between Euro-Collins and University of Wisconsin solutions. Clin Chem Lab Med. 2000;38:1133–6.

    Article  CAS  PubMed  Google Scholar 

  • Goldsmith P, Fenton H, Morris-Stiff G, et al. Metabolomics: a useful tool for the future surgeon. J Surg Res. 2010;160:122–32.

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Lechon MJ, Lahoz A, Gombau L, et al. In vitro evaluation of potential hepatotoxicity induced by drugs. Curr Pharm Des. 2010;16:1963–77.

    Article  CAS  PubMed  Google Scholar 

  • Han MS, Park SY, Shinzawa K, et al. Lysophosphatidylcholine as a death effector in the lipoapoptosis of hepatocytes. J Lipid Res. 2008;49:84–97.

    Article  CAS  PubMed  Google Scholar 

  • Hauet T, Baumert H, Gibelin H, et al. Noninvasive monitoring of citrate, acetate, lactate, and renal medullary osmolyte excretion in urine as biomarkers of exposure to ischemic reperfusion injury. Cryobiology. 2000;41:280–91.

    Article  CAS  PubMed  Google Scholar 

  • Hedaya MS, El Moghazy WM, Yasutomo Y, et al. Is biliary bile acid a good predictor for acute cellular rejection in living donor liver transplantation? Hepatobiliary Pancreat Dis Int. 2009;8:474–8.

    CAS  PubMed  Google Scholar 

  • Henderson JM. Liver transplantation and rejection: an overview. Hepatogastroenterology. 1999;46:1482–4.

    PubMed  Google Scholar 

  • Holland NT, Smith MT, Eskenazi B, et al. Biological sample collection and processing for molecular epidemiological studies. Mutat Res. 2003;543:217–34.

    Article  CAS  PubMed  Google Scholar 

  • Holmes E, Bonner FW, Sweatman BC, et al. Nuclear magnetic resonance spectroscopy and pattern recognition analysis of the biochemical processes associated with the progression of and recovery from nephrotoxic lesions in the rat induced by mercury (II) chloride and 2-bromoethanamine. Mol Pharmacol. 1992;42:922–30.

    CAS  PubMed  Google Scholar 

  • Horai H, Arita M, Kanaya S, et al. MassBank: a public repository for sharing mass spectral data for life sciences. J Mass Spectrom. 2010;45:703–14.

    Article  CAS  PubMed  Google Scholar 

  • Howard P, Murphy G. Bile physiology: theory and practice. Curr Opin Gastroenterol. 1990;6:657–67.

    Article  Google Scholar 

  • Hrydziuszko O, Silva MA, Perera MT, et al. Application of metabolomics to investigate the process of human orthotopic liver transplantation: a proof-of-principle study. Omics. 2010;14:143–50.

    Article  CAS  PubMed  Google Scholar 

  • Hylemon PB, Zhou H, Pandak WM, et al. Bile acids as regulatory molecules. J Lipid Res. 2009;50:1509–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibanez C, Simo C, Garcia-Canas V, et al. CE/LC-MS multiplatform for broad metabolomic analysis of dietary polyphenols effect on colon cancer cells proliferation. Electrophoresis. 2012;33:2328–36.

    Article  CAS  PubMed  Google Scholar 

  • Idborg-Bjorkman H, Edlund PO, Kvalheim OM, et al. Screening of biomarkers in rat urine using LC/electrospray ionization-MS and two-way data analysis. Anal Chem. 2003;75:4784–92.

    Article  PubMed  CAS  Google Scholar 

  • Kaddurah-Daouk R, Kristal BS, Weinshilboum RM. Metabolomics: a global biochemical approach to drug response and disease. Annu Rev Pharmacol Toxicol. 2008;48:653–83.

    Article  CAS  PubMed  Google Scholar 

  • Kakisaka K, Cazanave SC, Fingas CD, et al. Mechanisms of lysophosphatidylcholine-induced hepatocyte lipoapoptosis. Am J Physiol Gastrointest Liver Physiol. 2012;302:G77–84.

    Article  CAS  PubMed  Google Scholar 

  • Kukan M, Haddad PS. Role of hepatocytes and bile duct cells in preservation reperfusion injury of liver grafts. Liver Transpl. 2001;7:381–400.

    Article  CAS  PubMed  Google Scholar 

  • Lahoz A, Gombau L, Donato MT, et al. In vitro ADME medium/high-throughput screening in drug preclinical development. Mini Rev Med Chem. 2006;6:1053–62.

    Article  CAS  PubMed  Google Scholar 

  • Lenz ME, Wilson ID. Analytical strategies in metabolomics. J Proteome Res. 2007;6:443–58.

    Article  CAS  PubMed  Google Scholar 

  • Lenz EM, Bright J, Knight R, et al. Cyclosporin A-induced changes in endogenous metabolites in rat urine: a metabolomic investigation using high field 1HNMR spectroscopy. HPLCTOF/MS and chemometrics. J Pharm Biomed Anal. 2004;35:599–608.

    Article  CAS  PubMed  Google Scholar 

  • Leon Z, Garcıa-Canaveras JC, Donato MT, et al. Mammalian cell metabolomics: experimental design and sample preparation. Electrophoresis. 2013;34:2762–75.

    CAS  PubMed  Google Scholar 

  • Li H, Wang L, Yan X, et al. A proton nuclear magnetic resonance metabolomics approach for biomarker discovery in nonalcoholic fatty liver disease. J Proteome Res. 2011;10:2797–806.

    Article  CAS  PubMed  Google Scholar 

  • Lindon JC, Holmes E, Bollard ME, et al. Proton nuclear magnetic resonance analysis of hepatic bile from donors and recipients in human liver transplantation. Biomarkers. 2004;9:1–31.

    Article  CAS  PubMed  Google Scholar 

  • López-Ibáñez J, Pazos F, Chagoyen M. MBROLE 2.0 – functional enrichment of chemical compounds. Nucleic Acids Res. 2016;44:W201–4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mao Y, Yu J, Chen J, et al. Diagnosis of renal allograft subclinical rejection by urine protein fingerprint analysis. Transpl Immunol. 2008;18:255–9.

    Article  CAS  PubMed  Google Scholar 

  • Martin-Sanz P, Bosca L, Olmedilla L, et al. Presence of a nitric oxide synthase inhibitor in the graft efflux during reperfusion in human liver transplantation. Clin Transplant. 1999;13:221–30.

    Article  CAS  PubMed  Google Scholar 

  • Martin-Sanz P, Olmedilla L, Dulin E, et al. Presence of methylated arginine derivatives in orthotopic human liver transplantation: relevance for liver function. Liver Transpl. 2003;9:40–8.

    Article  PubMed  Google Scholar 

  • Melendez HV, Heaton ND. Understanding. “marginal” liver grafts. Transplantation. 1999;68:469–71.

    Article  CAS  PubMed  Google Scholar 

  • Melendez HV, Ahmadi D, Parkes HG, et al. Proton nuclear magnetic resonance analysis of hepatic bile from donors and recipients in human liver transplantation. Transplantation. 2001;72:855–60.

    Article  CAS  PubMed  Google Scholar 

  • Motoki A, Adachi N, Liu K, et al. Suppression of ischaemia-induced cytokine release by dimaprit and amelioration of liver injury in rats. Basic Clin Pharmacol Toxicol. 2008;102:394–8.

    Article  CAS  PubMed  Google Scholar 

  • Mouly-Bandini A, Vion-Dury J, Viout P, et al. Detection of acute cardiac rejection by high resolution proton magnetic resonance spectroscopy of plasma. MAGMA. 2000;11:27–32.

    Article  CAS  PubMed  Google Scholar 

  • Navarro-Sabate A, Peralta C, Calvo M, et al. Mediators of rat ischemic hepatic preconditioning after cold preservation identified by microarray analysis. Liver Transpl. 2006;12:1615–25.

    Article  PubMed  Google Scholar 

  • Naz S, Vallejo M, García A, et al. Method validation strategies involved in non-targeted metabolomics. J Chromatogra A. 2014;1:1353–99.

    Google Scholar 

  • Nicholson JK, Lindon JC. Systems biology: metabolomics. Nature. 2008;455:1054–6.

    Article  CAS  PubMed  Google Scholar 

  • Nicholson JK, Lindon JC, Holmes E. ‘Metabolomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica. 1999;29:1181–9.

    Article  CAS  PubMed  Google Scholar 

  • Nicholson JK, Connelly J, Lindon JC, et al. Metabolomics: a platform for studying drug toxicity and gene function. Nat Rev Drug Discov. 2002;1:153–61.

    Article  CAS  PubMed  Google Scholar 

  • Nowak G, Ungerstedt J, Wernerman J, et al. Metabolic changes in the liver graft monitored continuously with microdialysis during liver transplantation in a pig model. Liver Transpl. 2002;8:424–32.

    Article  PubMed  Google Scholar 

  • Odunsi K, Wollman RM, Ambrosone CB, et al. Detection of epithelial ovarian cancer using 1H-NMR-based metabolomics. Int J Cancer. 2005;113:782–8.

    Article  CAS  PubMed  Google Scholar 

  • Ogata H, Goto S, Sato K, et al. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 1999;27:29–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliver SG, Winson MK, Kell DB, et al. Systematic functional analysis of the yeast genome. Trends Biotechnol. 1998;16:373–8.

    Article  CAS  PubMed  Google Scholar 

  • Olthoff KM, Kulik L, Samstein B, et al. Validation of a current definition of early allograft dysfunction in liver transplant recipients and analysis of risk factors. Liver Transpl. 2010;16:943–9.

    Article  PubMed  Google Scholar 

  • Pham-Tuan H, Kashavelis L, Daykin CA, et al. Method development in high-performance liquid chromatography for high throughput profiling and metabolomic studies of biofluid samples. J Chromatogr B Analyt Technol Biomed Life Sci. 2003;789:283–301.

    Article  CAS  PubMed  Google Scholar 

  • Plumb RS, Stumpf CL, Gorenstein MV, et al. Metabolomics: the use of electrospray mass spectrometry coupled to reversed-phase liquid chromatography shows potential for the screening of rat urine in drug development. Rapid Commun Mass Spectrom. 2002;16:1991–6.

    Article  CAS  PubMed  Google Scholar 

  • Psychogios N, Hau DD, Peng J, et al. The human serum metabolome. PLoS One. 2011;6:6e16957.

    Article  CAS  Google Scholar 

  • Puri P, Baillie RA, Wiest MM, et al. A lipidomic analysis of nonalcoholic fatty liver disease. Hepatology. 2007;46:1081–90.

    Article  CAS  PubMed  Google Scholar 

  • Puri P, Wiest MM, Cheung O, et al. The plasma lipidomic signature of nonalcoholic steatohepatitis. Hepatology. 2009;50:1827–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quintás G, Portillo N, García-Cañaveras JC, et al. Chemometric approaches to improve PLSDA model outcome for predicting human non-alcoholic fatty liver disease using UPLC-MS as a metabolic profiling tool. Metabolomics. 2012;8:86–98.

    Article  CAS  Google Scholar 

  • R Core Team. R Foundation for Statistical Computing V, Austria. R: a language and environment for statistical computing. 2014. ISBN 3-900051-07-0. URL http://www.R-project.org/2012

  • Raza A, Dikdan G, Desai KK, et al. Global gene expression profiles of ischemic preconditioning in deceased donor liver transplantation. Liver Transpl. 2010;16:588–99.

    PubMed  Google Scholar 

  • Rhee EP, Cheng S, Larson MG, et al. Lipid profiling identifies a triacylglycerol signature of insulin resistance and improves diabetes prediction in humans. J Clin Invest. 2011;121:1402–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson DG. Metabolomics in toxicology: a review. Toxicol Sci. 2005;85:809–22.

    Article  CAS  PubMed  Google Scholar 

  • Sabatine MS, Liu E, Morrow DA, et al. Metabolomic identification of novel biomarkers of myocardial ischemia. Circulation. 2005;112:3868–75.

    Article  CAS  PubMed  Google Scholar 

  • Sakka SG. Assessing liver function. Curr Opin Crit Care. 2007;13:207–14.

    Article  PubMed  Google Scholar 

  • Salvalaggio P, Afonso RC, Felga G, et al. A proposal to grade the severity of early allograft dysfunction after liver transplantation. Einstein. 2013;11:23–31.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanins SM, Nicholson JK, Elcombe C, et al. Hepatotoxin-induced hypertaurinuria: a proton NMR study. Arch Toxicol. 1990;64:407–11.

    Article  CAS  PubMed  Google Scholar 

  • Saude EJ, Lacy P, Musat-Marcu S, et al. NMR analysis of neutrophil activation in sputum samples from patients with cystic fibrosis. Magn Reson Med. 2004;52:807–14.

    Article  CAS  PubMed  Google Scholar 

  • Saxena V, Gupta A, Nagana Gowda GA, et al. 1H-NMR spectroscopy for the prediction of therapeutic outcome in patients with fulminant hepatic failure. NMR Biomed. 2006;19:521–6.

    Article  CAS  PubMed  Google Scholar 

  • Serkova NJ, Fuller TF, Klawitter J, et al. 1H-NMR based metabolic signatures of mild and severe ischemia/reperfusion injury in rat kidney transplants. Kidney Int. 2005;67:1142–51.

    Article  CAS  PubMed  Google Scholar 

  • Serracino-Inglott F, Habib NA, Mathie RT. Hepatic ischemia reperfusion injury. Am J Surg. 2001;181:160–6.

    Article  CAS  PubMed  Google Scholar 

  • Silva MA, Richards DA, Bramhall SR, et al. A study if the metabolites of ischemia-reperfusion injury and selected amino acids in the liver using microdialysis during transplantation. Transplantation. 2007;79:828–35.

    Article  CAS  Google Scholar 

  • Sinclair MC, Lemmi CA, Moore TC. Elevation in urinary excretion of histamine following renal allografting in rats. J Surg Res. 1974;17:43–4.

    Article  CAS  PubMed  Google Scholar 

  • Singh HK, Yachha SK, Saxena R, et al. A new dimension of 1H-NMR spectroscopy in assessment of liver graft dysfunction. NMR Biomed. 2003;16:185–8.

    Article  CAS  PubMed  Google Scholar 

  • Smith CA, O’Maille G, Want EJ, et al. METLIN: a metabolite mass spectral database. Ther Drug Monit. 2005;27:747–51.

    Article  CAS  PubMed  Google Scholar 

  • Soga T, Baran R, Suematsu M, et al. Differential metabolomics reveals ophthalmic acid as an oxidative stress biomarker indicating hepatic glutathione consumption. J Biol Chem. 2006;281:16768–76.

    Article  CAS  PubMed  Google Scholar 

  • Sommer T, Larsen JF. Intraperitoneal and intraluminal microdialysis in the detection of experimental regional intestinal ischaemia. Br J Surg. 2004;91:855–61.

    Article  CAS  PubMed  Google Scholar 

  • Stenlund H, Madsen R, Vivi A, et al. Monitoring kidney-transplant patients using metabolomics and dynamic modeling. Chemom Intell Lab. 2009;98:45–50.

    Article  CAS  Google Scholar 

  • Strimbu K, Tavel JA. What are biomarkers? Curr Opin HIV AIDS. 2010;5:463–6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Suarez I, Bodega G, Fernandez B. Glutamine synthetase in brain: effect of ammonia. Neurochem Int. 2002;41:123–42.

    Article  CAS  PubMed  Google Scholar 

  • Sumner LW, Amberg A, Barrett D, et al. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics. 2007;3:211–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka N, Matsubara T, Krausz KW, et al. Disruption of phospholipid and bile acid homeostasis in mice with nonalcoholic steatohepatitis. Hepatology. 2012;56:118–29.

    Article  CAS  PubMed  Google Scholar 

  • Thompson JA, Markey SP. Quantitative metabolic profiling of urinary organic acids by gas chromatography–mass spectrometry: comparison of isolation methods. Anal Chem. 1975;47:1313–21.

    Article  CAS  PubMed  Google Scholar 

  • Tietge UJ, Bahr MJ, Manns MP, et al. Plasma amino acids in cirrhosis and after liver transplantation: influence of liver function, hepatic hemodynamics and circulating hormones. Clin Transplant. 2002;16:9–17.

    Article  PubMed  Google Scholar 

  • Tripathi P, Bala L, Saxena R, et al. 1H NMR spectroscopic study of blood serum for the assessment of liver function in liver transplant patients. J Gastrointestin Liver Dis. 2009;18:329–36.

    PubMed  Google Scholar 

  • Trushina E, Dutta T, Persson XM, et al. Identification of altered metabolic pathways in plasma and CSF in mild cognitive impairment and Alzheimer’s disease using metabolomics. PLoS One. 2013;8:e63644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vilca Melendez H, Gilani S, Cochrane B, et al. A validated technique for the analysis of biliary bile acid secretion in donor livers prior to transplantation. Transpl Int. 1998;11:216–22.

    Article  CAS  PubMed  Google Scholar 

  • Vilca Melendez H, Rela M, Murphy G, et al. Assessment of graft function before liver transplantation: quest for the lost ark? Transplantation. 2000;70:560–5.

    Article  CAS  PubMed  Google Scholar 

  • Vilca Melendez H, Rela M, Setchell KD, et al. Bile acids analysis: a tool to assess graft function in human liver transplantation. Transpl Int. 2004;17:286–92.

    Article  CAS  PubMed  Google Scholar 

  • Villas-Boas SG, Mas S, Akesson M, et al. Mass spectrometry in metabolome analysis. Mass Spectrom Rev. 2005;24:613–46.

    Article  CAS  PubMed  Google Scholar 

  • Vogel T, Brockmann JG, Coussios C, et al. The role of normothermic extracorporeal perfusion in minimizing ischemia reperfusion injury. Transplant Rev. 2012;26:156–62.

    Article  Google Scholar 

  • Wen H, Yoo SS, Kang J, et al. A new NMR-based metabolomics approach for the diagnosis of biliary tract cancer. J Hepatol. 2010;52:228–33.

    Article  CAS  PubMed  Google Scholar 

  • WHO International Programme on Chemical Safety. Biomarkers and risk assessment: concepts and principles. 1993. http://www.inchem.org/documents/ehc/ehc/ehc155.htm

  • Wishart DS. Metabolomics: the principles and potential applications to transplantation. Am J Transplant. 2005;5:2814–20.

    Article  CAS  PubMed  Google Scholar 

  • Wishart DS. Metabolomics: a complementary tool in renal transplantation. Contrib Nephrol. 2008;160:76–87.

    Article  CAS  PubMed  Google Scholar 

  • Wishart DS, Knox C, Guo AC, et al. Nucleic Acids Res. 2009; 37: D603–10.

    Google Scholar 

  • Wishart DS, Jewison T, Guo AC, et al. HMDB 3.0–The Human Metabolome Database in 2013. Nucleic Acids Res. 2013;41:D801–7.

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Xue R, Dong L, et al. Metabolomic profiling of human urine in hepatocellular carcinoma patients using gas chromatography/mass spectrometry. Anal Chim Acta. 2009;648:98–104.

    Article  CAS  PubMed  Google Scholar 

  • Xia J, Mandal R, Sinelnikov IV, et al. MetaboAnalyst 2.0 – a comprehensive server for metabolomic data analysis. Nucleic Acids Res. 2012;40:W127–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia J, Sinelnikov IV, Han B, Wishart DS. MetaboAnalyst 3.0 – making metabolomics more meaningful. Nucleic Acids Res. 2015;43:W251–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu J, Casas-Ferreira AM, Ma Y, et al. Lipidomics comparing DCD and DBD liver allografts uncovers lysophospholipids elevated in recipients undergoing early allograft dysfunction. Sci Rep. 2015;5:17737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Xu G, Zheng Y, et al. Diagnosis of liver cancer using HPLC-based metabolomics avoiding false-positive result from hepatitis and hepatocirrhosis diseases. J Chromatogr B Anal Technol Biomed Life Sci. 2004;813:59–65.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the European Regional Development Fund, the Carlos III Health Institute of the Spanish Ministry of Economy and Competitiveness (PI14/0026), and by the Roche Organ Transplantation Research Foundation. A. L. is grateful for a Miguel Servet II contract (CPII14/0004) from the above Ministry/Carlos III Health Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agustín Lahoz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Cortes, M., García-Cañaveras, J.C., Pareja, E., Lahoz, A. (2017). Liver Transplantation Biomarkers in the Metabolomics Era. In: Patel, V., Preedy, V. (eds) Biomarkers in Liver Disease. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7675-3_42

Download citation

Publish with us

Policies and ethics