Skip to main content

Genetic Biomarkers of Paracetamol (Acetaminophen)-Induced Acute Liver Failure

  • Reference work entry
  • First Online:
Biomarkers in Liver Disease
  • 1768 Accesses

Abstract

Paracetamol (APAP, acetaminophen), one of the most widely used analgesic and antipyretic drugs, is also the single most common cause of acute liver failure (ALF) in many countries, including Scotland, the USA, Sweden, Australia, and Denmark, among others. Based on United States Acute Liver Failure Study Group (ALFSG) data, about half of patients with APAP-induced ALF had consumed a (single time-point) dose that exceeded the recommended maximum daily limit with the intention of self-harm. However, the remaining ALF patients had consumed APAP for therapeutic purposes over a more prolonged period (days to weeks) without the intention of self-harm. Gene sequence variants that impact the risk, severity of symptoms, or outcome for APAP-induced ALF may be used as biomarkers to identify patients at high risk of developing ALF from therapeutic use of APAP who should be advised to avoid or minimize excessive APAP use, determine the need for N-acetylcysteine treatment following APAP overdose, and predict whether aggressive symptomatic treatments such as liver transplant are needed. Several genetic variants associated with risk, symptoms, or outcome of APAP-induced ALF have been identified in candidate genes, including UGT1A, CD44, CYP3A5, GST-P1, GST-T1, KRT8, and TLA. However, for some genes the associations were dependent on whether the APAP overdose was acute and intentional (CYP3A5) or chronic and unintentional (UGT1A and CD44). Unbiased approaches to genetic variant discovery such as whole-genome association studies have not been reported to date but could reveal novel genes and gene variants for use as biomarkers of APAP-induced ALF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABC:

ATP-binding cassette

ALF:

Acute liver failure

ALFSG:

Acute Liver Failure Study Group

APAP:

Paracetamol

CYP:

Cytochrome P450

GSS:

Glutathione synthetase

GST:

Glutathione S-transferase

JNK:

c-Jun N-terminal kinase

KRT:

Keratin

LTA:

Lymphotoxin alpha

NAPQI:

N-Acetyl-p-benzoquinone imine

PAPS:

3′-Phosphoadenosine-5′-phosphosulfate

RIP:

Receptor-interacting protein

SULT:

Sulfotransferase

TNF:

Tumor necrosis factor

UGT:

UDP-glucuronosyltransferase

References

  • Adukauskiene D, Dockiene I, Naginiene R, Kevelaitis E, Pundzius J, Kupcinskas L. Acute liver failure in Lithuania. Medicina (Kaunas). 2008;44:536–40.

    Google Scholar 

  • Ameer B, Greenblatt DJ. Acetaminophen. Ann Intern Med. 1977;87:202–9.

    Article  CAS  PubMed  Google Scholar 

  • Bailey DN, Briggs JR. The binding of selected therapeutic drugs to human serum alpha-1 acid glycoprotein and to human serum albumin in vitro. Ther Drug Monit. 2004;26:40–3.

    Article  CAS  PubMed  Google Scholar 

  • Bernal W, Donaldson P, Underhill J, Wendon J, Williams R. Tumor necrosis factor genomic polymorphism and outcome of acetaminophen (paracetamol)-induced acute liver failure. J Hepatol. 1998;29:53–9.

    Article  CAS  PubMed  Google Scholar 

  • Boess F, Bopst M, Althaus R, Polsky S, Cohen SD, Eugster HP, Boelsterli UA. Acetaminophen hepatotoxicity in tumor necrosis factor/lymphotoxin-alpha gene knockout mice. Hepatology. 1998;27:1021–9.

    Article  CAS  PubMed  Google Scholar 

  • Bretherick AD, Craig DG, Masterton G, Bates C, Davidson J, Martin K, Iredale JP, Simpson KJ. Acute liver failure in Scotland between 1992 and 2009; incidence, aetiology and outcome. QJM. 2011;104:945–56.

    Article  CAS  PubMed  Google Scholar 

  • Buchard A, Eefsen M, Semb S, Andersen SE, Morling N, Bendtsen F, Larsen FS, Dalhoff K. The role of the glutathione S-transferase genes GSTT1, GSTM1, and GSTP1 in acetaminophen-poisoned patients. Clin Toxicol (Phila). 2012;50:27–33.

    Article  CAS  Google Scholar 

  • Butterworth RF. Pathogenesis of hepatic encephalopathy and brain edema in acute liver failure. J Clin Exp Hepatol. 2015;5:S96–103.

    Article  PubMed  Google Scholar 

  • Chan TY. The epidemiology of acetaminophen (paracetamol) poisoning in Hong Kong. Vet Hum Toxicol. 1996;38:443–4.

    CAS  PubMed  Google Scholar 

  • Chen C, Hennig GE, Whiteley HE, Corton JC, Manautou JE. Peroxisome proliferator-activated receptor alpha-null mice lack resistance to acetaminophen hepatotoxicity following clofibrate exposure. Toxicol Sci. 2000;57:338–44.

    Article  CAS  PubMed  Google Scholar 

  • Cheng J, Ma X, Krausz KW, Idle JR, Gonzalez FJ. Rifampicin-activated human pregnane X receptor and CYP3A4 induction enhance acetaminophen-induced toxicity. Drug Metab Dispos. 2009;37:1611–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Coles B, Wilson I, Wardman P, Hinson JA, Nelson SD, Ketterer B. The spontaneous and enzymatic reaction of N-acetyl-p-benzoquinonimine with glutathione: a stopped-flow kinetic study. Arch Biochem Biophys. 1988;264:253–60.

    Article  CAS  PubMed  Google Scholar 

  • Court MH, Freytsis M, Wang X, Peter I, Guillemette C, Hazarika S, Duan SX, Greenblatt DJ, Lee WM, Acute Liver Failure Study G. The UDP-glucuronosyltransferase (UGT) 1A polymorphism c.2042C>G (rs8330) is associated with increased human liver acetaminophen glucuronidation, increased UGT1A exon 5a/5b splice variant mRNA ratio, and decreased risk of unintentional acetaminophen-induced acute liver failure. J Pharmacol Exp Ther. 2013;345:297–307.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Court MH, Peter I, Hazarika S, Vasiadi M, Greenblatt DJ, Lee WM, Acute Liver Failure Study G. Candidate gene polymorphisms in patients with acetaminophen-induced acute liver failure. Drug Metab Dispos. 2014;42:28–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dordoni B, Willson RA, Thompson RP, Williams R. Reduction of absorption of paracetamol by activated charcoal and cholestyramine: a possible therapeutic measure. Br Med J. 1973;3:86–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dragovic S, Venkataraman H, Begheijn S, Vermeulen NP, Commandeur JN. Effect of human glutathione S-transferase hGSTP1-1 polymorphism on the detoxification of reactive metabolites of clozapine, diclofenac and acetaminophen. Toxicol Lett. 2014;224:272–81.

    Article  CAS  PubMed  Google Scholar 

  • Enomoto A, Itoh K, Nagayoshi E, Haruta J, Kimura T, O’Connor T, Harada T, Yamamoto M. High sensitivity of Nrf2 knockout mice to acetaminophen hepatotoxicity associated with decreased expression of ARE-regulated drug metabolizing enzymes and antioxidant genes. Toxicol Sci. 2001;59:169–77.

    Article  CAS  PubMed  Google Scholar 

  • Gelotte CK, Auiler JF, Lynch JM, Temple AR, Slattery JT. Disposition of acetaminophen at 4, 6, and 8 g/day for 3 days in healthy young adults. Clin Pharmacol Ther. 2007;81:840–8.

    Article  CAS  PubMed  Google Scholar 

  • Gow PJ, Jones RM, Dobson JL, Angus PW. Etiology and outcome of fulminant hepatic failure managed at an Australian liver transplant unit. J Gastroenterol Hepatol. 2004;19:154–9.

    Article  PubMed  Google Scholar 

  • Gregory B, Larson AM, Reisch J, Lee WM, Acute Liver Failure Study G. Acetaminophen dose does not predict outcome in acetaminophen-induced acute liver failure. J Investig Med. 2010;58:707–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guldiken N, Zhou Q, Kucukoglu O, Rehm M, Levada K, Gross A, Kwan R, James LP, Trautwein C, Omary MB, Strnad P. Human keratin 8 variants promote mouse acetaminophen hepatotoxicity coupled with c-jun amino-terminal kinase activation and protein adduct formation. Hepatology. 2015;62:876–86.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gunawan BK, Liu ZX, Han D, Hanawa N, Gaarde WA, Kaplowitz N. c-Jun N-terminal kinase plays a major role in murine acetaminophen hepatotoxicity. Gastroenterology. 2006;131:165–78.

    Article  CAS  PubMed  Google Scholar 

  • Harrill AH, Watkins PB, Su S, Ross PK, Harbourt DE, Stylianou IM, Boorman GA, Russo MW, Sackler RS, Harris SC, Smith PC, Tennant R, Bogue M, Paigen K, Harris C, Contractor T, Wiltshire T, Rusyn I, Threadgill DW. Mouse population-guided resequencing reveals that variants in CD44 contribute to acetaminophen-induced liver injury in humans. Genome Res. 2009;19:1507–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hazai E, Vereczkey L, Monostory K. Reduction of toxic metabolite formation of acetaminophen. Biochem Biophys Res Commun. 2002;291:1089–94.

    Article  CAS  PubMed  Google Scholar 

  • Heard K, Green JL, Anderson V, Bucher-Bartelson B, Dart RC. A randomized, placebo-controlled trial to determine the course of aminotransferase elevation during prolonged acetaminophen administration. BMC Pharmacol Toxicol. 2014;15:39.

    Article  PubMed Central  PubMed  Google Scholar 

  • Henderson CJ, Wolf CR, Kitteringham N, Powell H, Otto D, Park BK. Increased resistance to acetaminophen hepatotoxicity in mice lacking glutathione S-transferase Pi. Proc Natl Acad Sci U S A. 2000;97:12741–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hjelle JJ. Hepatic UDP-glucuronic acid regulation during acetaminophen biotransformation in rats. J Pharmacol Exp Ther. 1986;237:750–6.

    CAS  PubMed  Google Scholar 

  • Jaeschke H, Williams CD, Ramachandran A, Bajt ML. Acetaminophen hepatotoxicity and repair: the role of sterile inflammation and innate immunity. Liver Int. 2012;32:8–20.

    Article  CAS  PubMed  Google Scholar 

  • Jaeschke H, Xie Y, McGill MR. Acetaminophen-induced liver injury: from animal models to humans. J Clin Transl Hepatol. 2014;2:153–61.

    PubMed Central  PubMed  Google Scholar 

  • Javitt NB, Lee YC, Shimizu C, Fuda H, Strott CA. Cholesterol and hydroxycholesterol sulfotransferases: identification, distinction from dehydroepiandrosterone sulfotransferase, and differential tissue expression. Endocrinology. 2001;142:2978–84.

    Article  CAS  PubMed  Google Scholar 

  • Kaufman DW, Kelly JP, Rosenberg L, Anderson TE, Mitchell AA. Recent patterns of medication use in the ambulatory adult population of the United States: the Slone survey. JAMA. 2002;287:337–44.

    Article  PubMed  Google Scholar 

  • Khandelwal N, James LP, Sanders C, Larson AM, Lee WM, Acute Liver Failure Study G. Unrecognized acetaminophen toxicity as a cause of indeterminate acute liver failure. Hepatology. 2011;53:567–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Laine JE, Auriola S, Pasanen M, Juvonen RO. Acetaminophen bioactivation by human cytochrome P450 enzymes and animal microsomes. Xenobiotica. 2009;39:11–21.

    Article  CAS  PubMed  Google Scholar 

  • Lancaster EM, Hiatt JR, Zarrinpar A. Acetaminophen hepatotoxicity: an updated review. Arch Toxicol. 2015;89:193–9.

    Article  CAS  PubMed  Google Scholar 

  • Larson AM, Polson J, Fontana RJ, Davern TJ, Lalani E, Hynan LS, Reisch JS, Schiodt FV, Ostapowicz G, Shakil AO, Lee WM, Acute Liver Failure Study G. Acetaminophen-induced acute liver failure: results of a United States multicenter, prospective study. Hepatology. 2005;42:1364–72.

    Article  CAS  PubMed  Google Scholar 

  • Lee WM. Acute liver failure. Semin Respir Crit Care Med. 2012;33:36–45.

    Article  PubMed  Google Scholar 

  • Lee S, Dawson PA, Hewavitharana AK, Shaw PN, Markovich D. Disruption of NaS1 sulfate transport function in mice leads to enhanced acetaminophen-induced hepatotoxicity. Hepatology. 2006;43:1241–7.

    Article  CAS  PubMed  Google Scholar 

  • Lee FY, de Aguiar Vallim TQ, Chong HK, Zhang Y, Liu Y, Jones SA, Osborne TF, Edwards PA. Activation of the farnesoid X receptor provides protection against acetaminophen-induced hepatic toxicity. Mol Endocrinol. 2010;24:1626–36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leonis MA, Alonso EM, Im K, Belle SH, Squires RH, Pediatric Acute Liver Failure Study G. Chronic acetaminophen exposure in pediatric acute liver failure. Pediatrics. 2013;131:e740–6.

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu J, Wu KC, Lu YF, Ekuase E, Klaassen CD. Nrf2 protection against liver injury produced by various hepatotoxicants. Oxid Med Cell Longev. 2013;2013:305861.

    PubMed Central  PubMed  Google Scholar 

  • Manautou JE, de Waart DR, Kunne C, Zelcer N, Goedken M, Borst P, Elferink RO. Altered disposition of acetaminophen in mice with a disruption of the Mrp3 gene. Hepatology. 2005;42:1091–8.

    Article  CAS  PubMed  Google Scholar 

  • Manthripragada AD, Zhou EH, Budnitz DS, Lovegrove MC, Willy ME. Characterization of acetaminophen overdose-related emergency department visits and hospitalizations in the United States. Pharmacoepidemiol Drug Saf. 2011;20:819–26.

    Article  PubMed  Google Scholar 

  • Manyike PT, Kharasch ED, Kalhorn TF, Slattery JT. Contribution of CYP2E1 and CYP3A to acetaminophen reactive metabolite formation. Clin Pharmacol Ther. 2000;67:275–82.

    Article  CAS  PubMed  Google Scholar 

  • Mazaleuskaya LL, Sangkuhl K, Thorn CF, FitzGerald GA, Altman RB, Klein TE. PharmGKB summary: pathways of acetaminophen metabolism at the therapeutic versus toxic doses. Pharmacogenet Genomics. 2015;25:416–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McGill MR, Jaeschke H. Metabolism and disposition of acetaminophen: recent advances in relation to hepatotoxicity and diagnosis. Pharm Res. 2013;30:2174–87.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McGill MR, Jaeschke H. Mechanistic biomarkers in acetaminophen-induced hepatotoxicity and acute liver failure: from preclinical models to patients. Expert Opin Drug Metab Toxicol. 2014;10:1005–17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McGill MR, Sharpe MR, Williams CD, Taha M, Curry SC, Jaeschke H. The mechanism underlying acetaminophen-induced hepatotoxicity in humans and mice involves mitochondrial damage and nuclear DNA fragmentation. J Clin Invest. 2012;122:1574–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mendizabal M, Marciano S, Videla MG, Anders M, Zerega A, Balderramo DC, Chan D, Barrabino M, Gil O, Mastai R, Yantorno S, Gadano A, Silva MO. Changing etiologies and outcomes of acute liver failure: perspectives from 6 transplant centers in Argentina. Liver Transpl. 2014;20:483–9.

    Article  PubMed  Google Scholar 

  • Michaut A, Moreau C, Robin MA, Fromenty B. Acetaminophen-induced liver injury in obesity and nonalcoholic fatty liver disease. Liver Int. 2014;34:e171–9.

    Article  CAS  PubMed  Google Scholar 

  • Mitchell JR, Thorgeirsson SS, Potter WZ, Jollow DJ, Keiser H. Acetaminophen-induced hepatic injury: protective role of glutathione in man and rationale for therapy. Clin Pharmacol Ther. 1974;16:676–84.

    Article  CAS  PubMed  Google Scholar 

  • Mutlib AE, Goosen TC, Bauman JN, Williams JA, Kulkarni S, Kostrubsky S. Kinetics of acetaminophen glucuronidation by UDP-glucuronosyltransferases 1A1, 1A6, 1A9 and 2B15. Potential implications in acetaminophen-induced hepatotoxicity. Chem Res Toxicol. 2006;19:701–9.

    Article  CAS  PubMed  Google Scholar 

  • Myers RP, Shaheen AA, Li B, Dean S, Quan H. Impact of liver disease, alcohol abuse, and unintentional ingestions on the outcomes of acetaminophen overdose. Clin Gastroenterol Hepatol. 2008;6:918–25. quiz 837.

    Article  PubMed  Google Scholar 

  • Nelson MR, Bacanu SA, Mosteller M, Li L, Bowman CE, Roses AD, Lai EH, Ehm MG. Genome-wide approaches to identify pharmacogenetic contributions to adverse drug reactions. Pharmacogenomics J. 2009;9:23–33.

    Article  CAS  PubMed  Google Scholar 

  • Okawa H, Motohashi H, Kobayashi A, Aburatani H, Kensler TW, Yamamoto M. Hepatocyte-specific deletion of the keap1 gene activates Nrf2 and confers potent resistance against acute drug toxicity. Biochem Biophys Res Commun. 2006;339:79–88.

    Article  CAS  PubMed  Google Scholar 

  • Ostapowicz G, Lee WM. Acute hepatic failure: a Western perspective. J Gastroenterol Hepatol. 2000;15:480–8.

    Article  CAS  PubMed  Google Scholar 

  • Patten CJ, Thomas PE, Guy RL, Lee M, Gonzalez FJ, Guengerich FP, Yang CS. Cytochrome P450 enzymes involved in acetaminophen activation by rat and human liver microsomes and their kinetics. Chem Res Toxicol. 1993;6:511–8.

    Article  CAS  PubMed  Google Scholar 

  • Polson J, Lee WM. Etiologies of acute liver failure: location, location, location! Liver Transpl. 2007;13:1362–3.

    Article  PubMed  Google Scholar 

  • Possamai LA, McPhail MJ, Quaglia A, Zingarelli V, Abeles RD, Tidswell R, Puthucheary Z, Rawal J, Karvellas CJ, Leslie EM, Hughes RD, Ma Y, Jassem W, Shawcross DL, Bernal W, Dharwan A, Heaton ND, Thursz M, Wendon JA, Mitry RR, Antoniades CG. Character and temporal evolution of apoptosis in acetaminophen-induced acute liver failure. Crit Care Med. 2013;41:2543–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Prescott LF. Kinetics and metabolism of paracetamol and phenacetin. Br J Clin Pharmacol. 1980;10 Suppl 2:291S–8.

    Article  PubMed Central  PubMed  Google Scholar 

  • Randolph AG, Lange C, Silverman EK, Lazarus R, Weiss ST. Extended haplotype in the tumor necrosis factor gene cluster is associated with asthma and asthma-related phenotypes. Am J Respir Crit Care Med. 2005;172:687–92.

    Article  PubMed Central  PubMed  Google Scholar 

  • Riches Z, Stanley EL, Bloomer JC, Coughtrie MW. Quantitative evaluation of the expression and activity of five major sulfotransferases (SULTs) in human tissues: the SULT “pie”. Drug Metab Dispos. 2009;37:2255–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rodriguez Lopez M, Perez Saborido B, Pacheco Sanchez D, Asensio Diaz E, Labarga Rodriguez F, Martinez Diaz R, Gonzalo Martin M, Velasco Lopez R, Pinto Fuentes P, Barrera Rebollo A. Transplantation for acute liver failure: report of results in the region of Castilla y Leon (Spain) after 10 years of activity. Transplant Proc. 2012;44:2625–6.

    Article  CAS  PubMed  Google Scholar 

  • Saini SP, Zhang B, Niu Y, Jiang M, Gao J, Zhai Y, Hoon Lee J, Uppal H, Tian H, Tortorici MA, Poloyac SM, Qin W, Venkataramanan R, Xie W. Activation of liver X receptor increases acetaminophen clearance and prevents its toxicity in mice. Hepatology. 2011;54:2208–17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sakakibara Y, Yanagisawa K, Katafuchi J, Ringer DP, Takami Y, Nakayama T, Suiko M, Liu MC. Molecular cloning, expression, and characterization of novel human SULT1C sulfotransferases that catalyze the sulfonation of N-hydroxy-2-acetylaminofluorene. J Biol Chem. 1998;273:33929–35.

    Article  CAS  PubMed  Google Scholar 

  • Siegers CP, Loeser W, Gieselmann J, Oltmanns D. Biliary and renal excretion of paracetamol in man. Pharmacology. 1984;29:301–3.

    Article  CAS  PubMed  Google Scholar 

  • Singhal S, Chakravarty A, Das BC, Kar P. Tumour necrosis factor-alpha and soluble Fas ligand as biomarkers in non-acetaminophen-induced acute liver failure. Biomarkers. 2009;14:347–53.

    Article  CAS  PubMed  Google Scholar 

  • Spielberg SP. Acetaminophen toxicity in lymphocytes heterozygous for glutathione synthetase deficiency. Can J Physiol Pharmacol. 1985;63:468–71.

    Article  CAS  PubMed  Google Scholar 

  • Spielberg SP, Gordon GB. Glutathione synthetase-deficient lymphocytes and acetaminophen toxicity. Clin Pharmacol Ther. 1981;29:51–5.

    Article  CAS  PubMed  Google Scholar 

  • Strnad P, Zhou Q, Hanada S, Lazzeroni LC, Zhong BH, So P, Davern TJ, Lee WM, Acute Liver Failure Study G, Omary MB. Keratin variants predispose to acute liver failure and adverse outcome: race and ethnic associations. Gastroenterology. 2010;139:828–35. 835 e821-823.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stuber F, Petersen M, Bokelmann F, Schade U. A genomic polymorphism within the tumor necrosis factor locus influences plasma tumor necrosis factor-alpha concentrations and outcome of patients with severe sepsis. Crit Care Med. 1996;24:381–4.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki A, Yuen N, Walsh J, Papay J, Hunt CM, Diehl AM. Co-medications that modulate liver injury and repair influence clinical outcome of acetaminophen-associated liver injury. Clin Gastroenterol Hepatol. 2009;7:882–8.

    Article  PubMed  Google Scholar 

  • Thummel KE, Lee CA, Kunze KL, Nelson SD, Slattery JT. Oxidation of acetaminophen to N-acetyl-p-aminobenzoquinone imine by human CYP3A4. Biochem Pharmacol. 1993;45:1563–9.

    Article  CAS  PubMed  Google Scholar 

  • Vredenburg G, Elias NS, Venkataraman H, Hendriks DF, Vermeulen NP, Commandeur JN, Vos JC. Human NAD(P)H:quinone oxidoreductase 1 (NQO1)-mediated inactivation of reactive quinoneimine metabolites of diclofenac and mefenamic acid. Chem Res Toxicol. 2014;27:576–86.

    Article  CAS  PubMed  Google Scholar 

  • Watkins PB, Kaplowitz N, Slattery JT, Colonese CR, Colucci SV, Stewart PW, Harris SC. Aminotransferase elevations in healthy adults receiving 4 grams of acetaminophen daily: a randomized controlled trial. JAMA. 2006;296:87–93.

    Article  CAS  PubMed  Google Scholar 

  • Wei G, Bergquist A, Broome U, Lindgren S, Wallerstedt S, Almer S, Sangfelt P, Danielsson A, Sandberg-Gertzen H, Loof L, Prytz H, Bjornsson E. Acute liver failure in Sweden: etiology and outcome. J Intern Med. 2007;262:393–401.

    Article  CAS  PubMed  Google Scholar 

  • Whitcomb DC, Block GD. Association of acetaminophen hepatotoxicity with fasting and ethanol use. JAMA. 1994;272:1845–50.

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Zhang X, Bardag-Gorce F, Robel RC, Aguilo J, Chen L, Zeng Y, Hwang K, French SW, Lu SC, Wan YJ. Retinoid X receptor alpha regulates glutathione homeostasis and xenobiotic detoxification processes in mouse liver. Mol Pharmacol. 2004;65:550–7.

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, McGill MR, Dorko K, Kumer SC, Schmitt TM, Forster J, Jaeschke H. Mechanisms of acetaminophen-induced cell death in primary human hepatocytes. Toxicol Appl Pharmacol. 2014;279:266–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xie Y, Ramachandran A, Breckenridge DG, Liles JT, Lebofsky M, Farhood A, Jaeschke H. Inhibitor of apoptosis signal-regulating kinase 1 protects against acetaminophen-induced liver injury. Toxicol Appl Pharmacol. 2015;286:1–9.

    Article  PubMed Central  PubMed  Google Scholar 

  • Yamamoto A, Liu MY, Kurogi K, Sakakibara Y, Saeki Y, Suiko M, Liu MC. Sulphation of acetaminophen by the human cytosolic sulfotransferases: a systematic analysis. J Biochem. 2015;158:497–504.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zamek-Gliszczynski MJ, Hoffmaster KA, Tian X, Zhao R, Polli JW, Humphreys JE, Webster LO, Bridges AS, Kalvass JC, Brouwer KL. Multiple mechanisms are involved in the biliary excretion of acetaminophen sulfate in the rat: role of Mrp2 and Bcrp1. Drug Metab Dispos. 2005;33:1158–65.

    Article  CAS  PubMed  Google Scholar 

  • Zamek-Gliszczynski MJ, Nezasa K, Tian X, Bridges AS, Lee K, Belinsky MG, Kruh GD, Brouwer KL. Evaluation of the role of multidrug resistance-associated protein (Mrp) 3 and Mrp4 in hepatic basolateral excretion of sulfate and glucuronide metabolites of acetaminophen, 4-methylumbelliferone, and harmol in Abcc3-/- and Abcc4-/- mice. J Pharmacol Exp Ther. 2006a;319:1485–91.

    Article  CAS  PubMed  Google Scholar 

  • Zamek-Gliszczynski MJ, Nezasa K, Tian X, Kalvass JC, Patel NJ, Raub TJ, Brouwer KL. The important role of Bcrp (Abcg2) in the biliary excretion of sulfate and glucuronide metabolites of acetaminophen, 4-methylumbelliferone, and harmol in mice. Mol Pharmacol. 2006b;70:2127–33.

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Huang W, Chua SS, Wei P, Moore DD. Modulation of acetaminophen-induced hepatotoxicity by the xenobiotic receptor CAR. Science. 2002;298:422–4.

    Article  CAS  PubMed  Google Scholar 

  • Zhao P, Wang C, Liu W, Chen G, Liu X, Wang X, Wang B, Yu L, Sun Y, Liang X, Yang H, Zhang F. Causes and outcomes of acute liver failure in China. PLoS One. 2013;8, e80991.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael H. Court .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Court, M.H. (2017). Genetic Biomarkers of Paracetamol (Acetaminophen)-Induced Acute Liver Failure. In: Patel, V., Preedy, V. (eds) Biomarkers in Liver Disease. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7675-3_27

Download citation

Publish with us

Policies and ethics