Advertisement

Wire Driven Multi-fingered Hand

  • Hiroshi Kaminaga
Living reference work entry

Abstract

Robot hand is an end effector for manipulation. For the robots to perform dexterous tasks, many joints are necessary. For the anthropomorphic systems, general configuration of one hand involves about 20 joints, which is almost comparable to that of whole body of a humanoid robot. Large number of joints, in general, increases the mechanical complexity, reduces admissible force, and deteriorates robustness. Tendon-driven system is an important technology in realizing a robot hand with both the dexterity and robustness. There are several basic structures categorized by the number of actuators used in the system, such as N type, 2N type, N + 1 type, and underactuated type. Also, there are choices in tendon routing that are advantageous in reducing the friction or the complexity of the system. Tension measurement on the tendon is another consideration when the force controllability of the hand is important. In this chapter, basic theory on tendon-driven systems is introduced. The tendon-driven hands with N-type tendon system with intrinsic actuation and underactuated hand with extrinsic actuation are presented as the case studies.

Keywords

Underactuated hand N-type tendon system N+1-type tendon systems 2N-type tendon system Tension sensor 

References

  1. 1.
    M.G. Catalano, G. Grioli, E. Farnioli, A. Serio, C. Piazzaand, A. Bicchi, Adaptive synergies for the design and control of the Pisa/IIT softhand. Int. J. Robot. Res. 33(5), 768–782 (2014). https://doi.org/10.1177/0278364913518998 CrossRefGoogle Scholar
  2. 2.
    M.R. Cutkosky, Grasp choice, grasp models,and the design of hands for manufacturing tasks. IEEE Trans. Robot. Autom. 5(3), 269–279 (1989). https://doi.org/10.1109/70.34763 CrossRefGoogle Scholar
  3. 3.
    M. Grebenstein, A. Albu-Schäffer, T. Bahls, M. Chalon, O. Eiberger, W. Friedl, R. Gruber, S. Haddadin, U. Hagn, R. Haslinger, H. Höppner, S. Jörg, M. Nickl, A. Nothhelfer, F. Petit, J. Reill, N. Seitz, T. Wimböck, S. Wolf, T. Wüsthoff, G. Hirzinger, The DLR hand arm system, in Proceedings of International Conference on Robotics and Automation, 2011, pp. 3175–3182.  https://doi.org/10.1109/ICRA.2011.5980371
  4. 4.
    M. Grebenstein, M. Chalon, W. Friedl, S. Haddadin, T. Wimböck, G. Hirzinger, R. Siegwart, The hand of the DLR hand arm system: designed for interaction. Int J Robot. Res. 31(13), 1531–1555 (2012). https://doi.org/10.1177/0278364912459209 CrossRefGoogle Scholar
  5. 5.
    S. Hirose, S. Ma, Coupled tnedon-driven multijoint manipulator, in Proceedings of IEEE International Conference on Robotics and Automation, 1991, pp. 1268–1275.  https://doi.org/10.1109/ROBOT.1991.131786
  6. 6.
    S.C. Jacobsen, E.K. Iversen, D.F. Knutti, R.T. Johnson, K.B. Biggers, Design of the Utah/M.I.T. dextrous hand, in Proceedings of IEEE International Conference on Robotics and Automation, vol. 3, 1986, pp. 1520–1532.  https://doi.org/10.1109/ROBOT.1986.1087395
  7. 7.
    S.C. Jacobsen, J.E. Wood, D.F. Knutti, K.B. Biggers, E.K. Iversen, The Utah/MIT dextrous hand: work in progress, in Proceedings of International Symposium of Robotics Research, 1984, pp. 601–653.Google Scholar
  8. 8.
    H. Kaminaga, J. Ono, Y. Shimoyama, T. Amari, Y. Katayama, Y. Nakamura, Anthropomorphic robot hand with hydrostatic cluster actuator and detachable passive wire mechanism, in Proceedings of IEEE International Conference on Humanoid Robots, 2009, pp. 1–6.  https://doi.org/10.1109/ICHR.2009.5379528
  9. 9.
    H. Kaminaga, T. Yamamoto, J. Ono, Y. Nakamura, Backdrivable miniature hydrostatic transmission for actuation of anthropomorphic robot hands, in Proceedings of IEEE International Conference on Humanoid Robots, 2007, pp. 36–41.  https://doi.org/10.1109/ICHR.2007.4813846
  10. 10.
    M. Kaneko, K. Yokoi, K. Tanie, On a new torque senosor for tendon drive fingers. IEEE Trans. Robot. Autom. 6(4), 501–507 (1990). https://doi.org/10.1109/70.59362 CrossRefGoogle Scholar
  11. 11.
    T. Kang, H. Kaminaga, Y. Nakamura, A robot hand driven by hydraulic cluster actuators, in Proceedings of IEEE International Conference on Humanoid Robots, 2014, pp. 39–44.  https://doi.org/10.1109/HUMANOIDS.2014.7041335
  12. 12.
    I.A. Kapandji, The Physiology of the Joints, vol. 1, 5th edn., Upper Limb. (Churchill Livingstone, 1982)Google Scholar
  13. 13.
    A. Morecki, Synthesis and control of the anthropomorphic two-handed manipulator, in Proceedings of 10th International Symposium on Industrial Robots, 1980, pp. 461–474.Google Scholar
  14. 14.
    R. Ozawa, K. Hashirii, H. Kobayashi, Design and control of underactuated tendon-driven mechanisms, in Proceedings of IEEE International Conference on Robotics and Automation, 2009, pp. 1522–1527.  https://doi.org/10.1109/ROBOT.2009.5152222
  15. 15.
    R. Ozawa, H. Kobayashi, K. Hashirii, Analysis, classification, and design of tendon-driven mechanisms. IEEE Trans. Robot. 30(2), 396–410 (2014).  https://doi.org/10.1109/TRO.2013.2287976 CrossRefGoogle Scholar
  16. 16.
    F. Röthling, R. Haschke, J.J. Steil, H. Ritter, Platform portable anthropomorphic grasping with the Bielefeld 20-DOF Shadow and 9-DOF TUM hand, in Proceedings of IEEE International Conference on Intelligent Robots and Systems, 2007, pp. 2951–2956.  https://doi.org/10.1109/IROS.2007.4398963
  17. 17.
    J.K. Salisbury, Design and control of an articulated hand, in Proceedings of the 1st International Symposium on Design and Synthesis, 1984Google Scholar
  18. 18.
    J.K. Salisbury, J.J. Craig, Articulated hands: force control and kinematic issues. Int. J. Robot. Res. 1(1), 4–17 (1982). https://doi.org/10.1177/027836498200100102 CrossRefGoogle Scholar
  19. 19.
    A. Schmitz, U. Pattacini, F. Nori, L. Natale, G. Metta, G. Sandini, Design, realization and sensorization of the dexterous icub hand, in Proceedings of IEEE International Conference on Humanoid Robots, 2010, pp. 186–191.  https://doi.org/10.1109/ICHR.2010.5686825
  20. 20.
    T. Treratanakulwong, H. Kaminaga, Y. Nakamura, Low-friction tendon-driven robot hand with carpal tunnel mechanism in the palm by optimal 3D allocation of pulleys, in Proceedings of IEEE International Conference on Robotics and Automation, 2014, pp. 6739–6744.  https://doi.org/10.1109/ICRA.2014.6907854
  21. 21.
    T. Yamashita, Mechanical fingers controlled by machine and their applications to materials handling. J. Soc. Instrum. Control. Eng. 3(6), 429–439 (1964).  https://doi.org/10.11499/sicejl1962.3.429 (in Japanese)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Humanoid Research Group, Intelligent Systems Research InstituteNational Institute of Advanced Industrial Science and TechnologyTsukuba, IbarakiJapan

Personalised recommendations