Skip to main content

Adaptive Locomotion on Uneven Terrains

  • Living reference work entry
  • First Online:
Humanoid Robotics: A Reference
  • 655 Accesses

Abstract

The main advantage of legs over other modes of locomotion, like tracks and wheels, is adaptability to a large variety of terrains. Humanoids and other legged robots can potentially navigate stairs, scramble over rocks, step through thick foliage, and even climb vertical structures like ladders and trees. But it is challenging to enable such forms of locomotion, because the robot must sense the environment and adapt its motion strategies accordingly. This chapter will discuss systems and technical approaches to adaptive locomotion, ranging from classical approaches to the state-of-the-art. Its goal is to provide a high-level survey of the software architecture, mathematical modeling, approaches, and implementation of the major components of terrain-adaptive systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. R.B. McGhee, G.I. Iswandhi, Adaptive locomotion of a multilegged robot over rough terrain. IEEE Trans. Syst. Man Cyber. 9, 176–182 (1979)

    Article  Google Scholar 

  2. S. Hirose, A study of design and control of a quadruped walking vehicle. Int. J. Robot. Res. 3, 113–133 (1984)

    Article  Google Scholar 

  3. J.K. Hodgins, M.H. Raibert, Adjusting step length for rough terrain locomotion. IEEE Trans. Robot. Autom. 7, 289–298 (1991)

    Article  Google Scholar 

  4. U. Saranli, M. Buehler, D.E. Koditschek, RHex: a simple and highly mobile hexapod robot. Int. J. Robot. Res. 20, 616–631 (2001)

    Article  Google Scholar 

  5. J. Yamaguchi et al, Development of a Dynamic Biped Walking System for Humanoid Development of a Biped Walking Robot Adapting to the Humans’ Living Floor, in IEEE International Conference on Robotics and Automation, vol. 1, 1996, pp. 232–239

    Google Scholar 

  6. Q. Huang, Y. Nakamura, T. Inamura, Humanoids Walk with Feedforward Dynamic Pattern and Feedback, in IEEE International Conference on Robotics and Automation, Seoul, 2001, pp. 4220–4225

    Google Scholar 

  7. B.G. Son, J.T. Kim, J.H. Park, Impedance Control for Biped Robot Walking on Uneven Terrain, in IEEE International Conference on Robotics and Automation, Guilin, 2009, pp. 239–244

    Google Scholar 

  8. S.N. Yadukumar, M. Pasupuleti, A.D. Ames, Human-Inspired Underactuated Bipedal Robotic Walking with AMBER on Flat-ground, Up-slope and Uneven Terrain, in IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, 2012, pp. 2478–2483

    Google Scholar 

  9. K. Hashimoto, et al., Terrain-Adaptive Control with Small Landing Impact Force for Biped Vehicle, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009, pp. 2922–2927

    Google Scholar 

  10. H.W. Park, A. Ramezani, J.W. Grizzle, A finite-state machine for accommodating unexpected large ground-height variations in bipedal robot walking. IEEE Trans. Robot. 29, 331–345 (2013)

    Article  Google Scholar 

  11. S. Kjita, K. Tani, Adaptive gait control of a biped robot based on realtime sensing of the ground profile. Auton. Robot. 4, 297–305 (1996). Kluwer Academic Publishers

    Google Scholar 

  12. S. Kagami, et al., Vision-Based 2.5D Terrain Modeling for Humanoid Locomotion, in IEEE International Conference on Robotics and Automation, Taipei, 2003, pp. 2141–2146

    Google Scholar 

  13. M.F. Fallon, et al., Drift-Free Humanoid State Estimation Fusing Kinematic, Inertial and LIDAR sensing, in IEEE Humanoids, 2014, pp. 112–119

    Google Scholar 

  14. S. Oßwald, et al., Autonomous Climbing of Spiral Staircases with Humanoids, in IEEE/RSJ International Conference on Intelligent Robotics and Systems, 2011

    Google Scholar 

  15. S.J. Yi, B.T. Zhang, D.D Lee, Online Learning of Uneven Terrain for Humanoid Bipedal Walking, in Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10), 2010

    Google Scholar 

  16. K. Nishiwaki, S. Kagami, Walking Control on Uneven Terrain with Short Cycle Pattern Generation, in IEEE Humanoids, 2007, pp. 447–453

    Google Scholar 

  17. H.J. Kang, et al., Realization of Biped Walking on Uneven Terrain by New Foot Mechanism Capable of Detecting Ground Surface, in IEEE International Conference on Robotics and Automation, Anchorage, 2010, pp. 5167–5172

    Google Scholar 

  18. D. Wooden, et al., Autonomous Navigation for BigDog, in IEEE International Conference on Robotics and Automation, 2010, pp. 4736–4741

    Google Scholar 

  19. K. Nishiwaki, J. Chestnutt, S. Kagami, Autonomous navigation of a humanoid robot over unknown rough terrain using a laser range sensor. Int. J. Robot. Res. 33, 1251–1262 (2012)

    Article  Google Scholar 

  20. R. Ozawa, et al., Using Visual Odometry to Create 3D Maps for Online Footstep Planning, in IEEE International Conference on Systems, Man and Cybernetics, vol. 3, 2005, pp. 2643–2648. https://doi.org/10.1109/ICSMC.2005.1571548

  21. T. Tamada, et al., High-speed Bipedal Robot Running Using High-speed Visual Feedback, in IEEE Humanoids, 2014

    Google Scholar 

  22. A. Hornung et al., OctoMap: an efficient probabilistic 3D mapping framework based on octrees. Auton. Robot. 34, 189–206 (2013)

    Article  Google Scholar 

  23. S.H. Hyon, G. Cheng, Simultaneous Adaptation to Rough Terrain and Unknown External Forces for Biped Humanoids, in IEEE Humanoids, 2007

    Google Scholar 

  24. L. Saab et al., Dynamic whole-body motion generation under rigid contacts and other unilateral constraints. IEEE Trans. Robot. 29, 346–362 (2013)

    Article  Google Scholar 

  25. K. Byl, R. Tedrake, Approximate Optimal Control of the Compass Gait on Rough Terrain, in IEEE International Conference on Robotics and Automation, 2008, pp. 1258–1263

    Google Scholar 

  26. G.N. Boone, J.K. Hodgins, Slipping and tripping reflexes for bipedal robots. Auton. Robot. 4, 259–271 (1997)

    Article  Google Scholar 

  27. T. Shiratori, et al., Simulating Balance Recovery Responses to Trips Based on Biomechanical Principles, in Eurographics/ACM SIGGRAPH Symposium on Computer Animation, 2009

    Google Scholar 

  28. T. Takubo, et al., Rough Terrain Walking for Bipedal Robot by Using ZMP Criteria Map, in IEEE International Conference on Robotics and Automation, 2009, pp. 788–793. https://doi.org/10.1109/ROBOT.2009.5152768

  29. A. Stumpf, et al., Supervised Footstep Planning for Humanoid Robots in Rough Terrain Tasks using a Black Box Walking Controller, in IEEE Humanoids, Madrid, 2014, pp. 287–294

    Google Scholar 

  30. J. Chestnutt, et al., Footstep Planning for the Honda ASIMO Humanoid, in IEEE International Conference on Robotics and Automation, 2005, pp. 629–634

    Google Scholar 

  31. J. Garimort, A. Hornung, Humanoid Navigation with Dynamic Footstep Plans, in IEEE International Conference on Robotics and Automation, 2011, pp. 3982–3987

    Google Scholar 

  32. A. Hornung, et al., Anytime Search-Based Footstep Planning with Suboptimality Bounds, in IEEE Humanoids, 2012, pp. 674–679

    Google Scholar 

  33. M.A. Hopkins, D.W. Hong, A. Leonessa, Humanoid Locomotion on Uneven Terrain Using the Time-Varying Divergent Component of Motion. in IEEE Humanoids, 2014, pp. 266–272

    Google Scholar 

  34. S. Lengagne et al., Generation of whole-body optimal dynamic multi-contact motions. Int. J. Robot. Res. 32, 1104–1119 (2013). https://doi.org/10.1177/0278364913478990

    Article  Google Scholar 

  35. Y. Zhao, L. Sentis, A Three Dimensional Foot Placement Planner for Locomotion in Very Rough Terrains, in IEEE Humanoids, 2012, pp. 726–733

    Google Scholar 

  36. O. Ramos, K. Hauser, Generalizations of the Capture Point to Nonlinear Center of Mass Paths and Uneven Terrain, in IEEE International Conference on Humanoid Robot, 2015

    Google Scholar 

  37. H. Dai, A. Valenzuela, R. Tedrake, Whole-body Motion Planning with Centroidal Dynamics and Full Kinematics, in IEEE Humanoids, 2014

    Google Scholar 

  38. K. Harada, et al., Natural Motion Generation for Humanoid Robots, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006, pp. 833–839

    Google Scholar 

  39. T. Bretl, Motion planning of multi-limbed robots subject to equilibrium constraints: the free-climbing robot problem. Int. J. Robot. Res. 25, 317–342 (2006)

    Article  Google Scholar 

  40. K. Hauser et al., Motion planning for legged robots on varied terrain. Int. J. Robot. Res. 27, 1325–1349 (2008). https://doi.org/10.1177/0278364908098447

    Article  Google Scholar 

  41. A. Escande, A. Kheddar, S. Miossec, Planning contact points for humanoid robots. J. Robot. Auton. Syst. 61, 428–442 (2013)

    Article  Google Scholar 

  42. K. Hauser, et al., Using Motion Primitives in Probabilistic Sample-Based Planning for Humanoid Robots, in Algorithmic Foundation of Robotics VII, Springer Berlin Heidelberg, 2008, pp. 507–522

    Google Scholar 

  43. M. Benallegue, J.P. Laumond, Metastability for High-Dimensional Walking Systems on Stochastically Rough Terrain, in Robotics: Science and Systems Conference, 2015

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kris Hauser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this entry

Cite this entry

Hauser, K. (2017). Adaptive Locomotion on Uneven Terrains. In: Goswami, A., Vadakkepat, P. (eds) Humanoid Robotics: A Reference. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7194-9_61-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7194-9_61-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7194-9

  • Online ISBN: 978-94-007-7194-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics