Skip to main content

Whole-Body Control of Humanoid Robots

  • Living reference work entry
  • Latest version View entry history
  • First Online:
  • 830 Accesses

Abstract

Whole-body controllers have become a well-adopted control paradigm for humanoid robots, uniting communities working on control systems and sensor-based techniques. These communities have focused on developing simple design tools and adopting common math representations. As such, we are now closer than ever toward sharing common techniques that work across platforms and making the process of designing controllers as easy as possible, with the hope of one day to completely automate the controller design process for all types of humanoid robots. At the same time, current whole-body controllers suffer from important limitations that prevent them from achieving highly agile dynamic behaviors, operating with high mechanical and electronic efficiency, be safe at high speeds in terms of human-robot interactions, and be easy to deploy with minimal designer tuning. This chapter aims to explore various key issues in whole-body control of humanoid robots, including (i) providing an in-depth overview of state-of-the-art techniques, (ii) providing a list of references to open-source software implementations, (iii) discussing performance differences between the various types of architectures, and (iv) analyzing limitations and future research directions for optimal performance.

This is a preview of subscription content, log in via an institution.

References

  1. D.E. Whitney, Resolved motion rate control of manipulators and human prostheses. IEEE Trans. Man Mach. Syst. 10, 47–53 (1969)

    Article  Google Scholar 

  2. M. Uchiyama, Study on dynamic control of artificial arms – part 1. Trans. Jpn. Soc. Mech. Eng. C 45, 314–322 (1979)

    Article  Google Scholar 

  3. M. Vukobratovic, M. Kircanski, A dynamic approach to nominal trajectory synthesis for redundant manipulators. IEEE Trans. Syst. Man Cybern. 14(4), 580–586 (1984)

    Article  Google Scholar 

  4. T. Yoshikawa, Analysis and control of robot manipulators with redundancy, in First International Symposium on Robotics Research, ed. by M. Brady, R. Paul (MIT Press, 1984), pp. 735–747

    Google Scholar 

  5. J.M. Hollerbach, K.C. Suh, Redundancy Resolution of Manipulators through Torque Optimization. AI Memo 882 (1986)

    Google Scholar 

  6. O. Khatib, A unified approach for motion and force control of robot manipulators: the operational space formulation. IEEE J. Robot. Autom. 3(1), 43–53 (1987)

    Article  Google Scholar 

  7. Y. Nakamura, H. Hanafusa, T. Yoshikawa, Task-priority based redundancy control of robot manipulators. Int. J. Robot. Res. 6(2), 3–15 (1987)

    Article  Google Scholar 

  8. B. Siciliano, J.J.E. Slotine, A general framework for managing multiple tasks in highly redundant robotic systems, in International Conference on Advanced Robotics (ICAR), “Robots in Unstructured Environments”, 1991

    Google Scholar 

  9. F. Mussa-Ivaldi, N. Hogan, Integrable solutions of kinematic redundancy via impedance control. Int. J. Robot. Res. 10(5), 481–491 (1991)

    Article  Google Scholar 

  10. S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and H. Hirukawa, Resolved momentum control: humanoid motion planning based on the linear and angular momentum, in IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, 2003

    Google Scholar 

  11. L. Sentis, O. Khatib, Synthesis of whole-body behaviors through hierarchical control of behavioral primitives. Int. J. Humanoid Robot. 2(4), 505–518 (2005)

    Article  Google Scholar 

  12. M. Vukobratovic, B. Borovac, Zero-moment point – thirty five years of its life. Int. J. Humanoid Robot. 1(1), 153–173 (2004)

    Article  Google Scholar 

  13. J. Pratt, J. Carff, S. Drakunov, A. Goswami, Capture point: a step toward humanoid push recovery, in IEEE-RAS International Conference on Humanoid Robots (Humanoids), Genova, 2006

    Google Scholar 

  14. D.E. Orin, A. Goswami, S.-H. Lee, Centroidal dynamics of a humanoid robot. Auton. Robot. 35(2), 161–176 (2013)

    Article  Google Scholar 

  15. P. Wensing, D.E. Orin, Improved computation of the humanoid centroidal dynamics and application for whole-body control. Int. J. Humanoid Robot. 13(1) (2016). http://www.worldscientific.com/toc/ijhr/13/01

  16. F.L. Moro, Use of gravitational stiffness in an attractor-based whole-body motion control approach, in IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), Seoul (2015)

    Google Scholar 

  17. F.L. Moro, Balancing while executing competing reaching tasks: an attractor-based whole-body motion control system using gravitational stiffness. Int. J. Humanoid Robot. 13(1) (2016). http://www.worldscientific.com/toc/ijhr/13/01

  18. Y. Zhao, N. Paine, L. Sentis, Feedback parameter selection for impedance control of series elastic actuators, in IEEE-RAS International Conference on Humanoid Robots, Madrid, 2014

    Google Scholar 

  19. M. Gienger, M. Toussaint, C. Goerick, Whole-body motion planning – building blocks for intelligent systems, in Motion Planning for Humanoid Robots, ed. by K. Harada, E. Yoshida, and K. Yokoi (Springer, 2010)

    Google Scholar 

  20. N. Mansard, O. Khatib, A. Kheddar, A unified approach to integrate unilateral constraints in the stack of tasks. IEEE Trans. Robot. 25(3), 670–685 (2009)

    Article  Google Scholar 

  21. A. Dietrich, T. Wimböck, A. Albu-Schäffer, Dynamic Whole-Body Mobile Manipulation with a Torque Controlled Humanoid Robot via Impedance Control Laws, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), San Francisco (2011)

    Google Scholar 

  22. M. Mistry, L. Righetti, Operational space control of constrained and underactuated systems, in Robotics: Science and Systems (RSS), Sydney, 2012

    Google Scholar 

  23. F.L. Moro, M. Gienger, A. Goswami, N.G. Tsagarakis, D.G. Caldwell, An attractor-based Whole-Body Motion Control (WBMC) system for humanoid robots, in IEEE-RAS International Conference on Humanoid Robots (Humanoids), Atlanta, 2013

    Google Scholar 

  24. O. Kanoun, F. Lamiraux, P.-B. Wieber, Kinematic control of redundant manipulators: generalizing the task priority framework to inequality tasks. IEEE Trans. Robot. 27(4), 785–792 (2011)

    Article  Google Scholar 

  25. A. Escande, N. Mansard, P.-B. Wieber, Hierarchical quadratic programming: Fast online humanoid-robot motion generation. Int. J. Robot. Res. 33(7), 1006–1028 (2014)

    Article  Google Scholar 

  26. J. Salini, S. Barthélemy, P. Bidaud, LQP controller design for generic whole body motion, in Climbing and Walking Robots and the Support Technologies for Mobile Machines, Istanbul, 2009

    Google Scholar 

  27. A. Del Prete, F. Romano, L. Natale, G. Metta, G. Sandini, F. Nori, Prioritized optimal control, in IEEE International Conference on Robotics and Automation, Hong Kong, 2014

    Google Scholar 

  28. A. Herzog, L. Righetti, F. Grimminger, P. Pastor, S. Schaal, Balancing experiments on a torque-controlled humanoid with hierarchical inverse dynamics, in IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, 2014

    Google Scholar 

  29. H. Dai, A. Valenzuela, R. Tedrake, Whole-body motion planning with centroidal dynamics and full kinematics, in IEEE-RAS International Conference on Humanoid Robots (Humanoids), Madrid, 2014

    Google Scholar 

  30. S. Feng, E. Whitman, X. Xinjilefu, C.G. Atkeson, Optimization-based Full Body Control for the DARPA Robotics Challenge. J. Field Robot. 32(2), 293–312 (2015)

    Article  Google Scholar 

  31. T. Koolen, S. Bertrand, T. de Boer, T. Wu, J. Smith, J. Englsberger, J. Pratt, Design of a momentum-based control framework and application to the humanoid robot Atlas. Int. J. Humanoid Robot. 13(1) (2016)

    Google Scholar 

  32. M.A. Hopkins, D. Hong, A. Leonessa, Optimization-based whole-body control of thor, a series elastic humanoid robot. Int. J. Humanoid Robot. 13(1) (2016)

    Google Scholar 

  33. D.H. Kim, Y. Zhao, B. Fernandez, L. Sentis, Stabilizing series-elastic point-foot bipeds using whole-body operational space control. IEEE Trans. Robot. 32, 1362–1379 (2016)

    Article  Google Scholar 

  34. A. Dietrich, C. Ott, A. Albu-Schäffer, Multi-objective compliance control of redundant manipulators: hierarchy, control, and stability, in IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo (2013)

    Google Scholar 

  35. Y. Zhao, N. Paine, K.S. Kim, L. Sentis, Stability and performance limits of latency-prone distributed feedback controllers. IEEE Trans. Ind. Electron. 62(11), 7151–7162 (2015)

    Article  Google Scholar 

  36. M. Focchi, G.A. Medrano-Cerda, T. Boaventura, M. Frigerio, C. Semini, J. Buchli, D.G. Caldwell, Robot impedance control and passivity analysis with inner torque and velocity feedback loops. Control Theory Technol. 14(2), 97–112 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico L. Moro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media B.V.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Moro, F.L., Sentis, L. (2018). Whole-Body Control of Humanoid Robots. In: Goswami, A., Vadakkepat, P. (eds) Humanoid Robotics: A Reference. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7194-9_51-2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7194-9_51-2

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7194-9

  • Online ISBN: 978-94-007-7194-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Whole-Body Control of Humanoid Robots
    Published:
    21 December 2017

    DOI: https://doi.org/10.1007/978-94-007-7194-9_51-2

  2. Original

    Whole-Body Control of Humanoid Robots
    Published:
    03 August 2017

    DOI: https://doi.org/10.1007/978-94-007-7194-9_51-1