Gait Based on the Spring-Loaded Inverted Pendulum

Living reference work entry

Abstract

The spring-loaded inverted pendulum (SLIP) describes gait with a point mass rebounding on spring legs. The model captures the center of mass dynamics observed in running animals and has become a basic gait template in biomechanics and robotics for studying the dynamics and control of compliant legged locomotion. This chapter provides an overview of gait based on the SLIP model. The standard SLIP model for describing sagittal plane locomotion is introduced through a review of early model developments in the biomechanics and robotics communities. Related legged platforms are presented. Methods are then discussed for studying the dynamics and control of locomotion with this model, including approximate solutions to the stance dynamics, return map analysis of periodic gait, and optimal control approaches for getting stable and robust running behavior. Finally, generalizations of the SLIP model and its analysis methods are highlighted for performing multistep planning, expanding to locomotion in 3-D environments, generating walking and gait transitions, and embedding in humanoids and other legged robots. The chapter closes with suggestions for future directions that will likely help to grow the utility of the SLIP model as a gait template for agile, stable, and robust locomotion on compliant legs.

Keywords

Spring-loaded inverted pendulum (SLIP) Spring mass model Walking Running Gait transition Running robots Poincare Return map Virtual leg control 

References

  1. 1.
    M. Ahmadi, M. Buehler, Preliminary experiments with an actively tuned passive dynamic running robot. Exp. Robot. V, 312–324 (1998)Google Scholar
  2. 2.
    M. Ahmadi, M. Buehler, Controlled passive dynamic running experiments with the ARL-monopod II. IEEE Trans. Robot. 22(5), 974–986 (2006)CrossRefGoogle Scholar
  3. 3.
    R. Alexander, A. Jayes, Vertical movements in walking and running. J. Zool. 185(1), 27–40 (1978)CrossRefGoogle Scholar
  4. 4.
    E. Andrada, C. Rode, R. Blickhan, Grounded running in quails: simulations indicate benefits of observed fixed aperture angle between legs before touch-down. J. Theor. Biol. 335, 97–107 (2013)MathSciNetCrossRefGoogle Scholar
  5. 5.
    M.M. Ankarali, U. Saranli, Stride-to-stride energy regulation for robust self-stability of a torque-actuated dissipative spring-mass hopper. Chaos: Interdisciplinary J. Nonlinear Sci. 20(3), 033121 (2010)Google Scholar
  6. 6.
    M.M. Ankarali, U. Saranli, Control of underactuated planar pronking through an embedded spring-mass hopper template. Auton. Rob. 30(2), 217–231 (2011). https://doi.org/10.1007/s10514-010-9216-x CrossRefGoogle Scholar
  7. 7.
    O. Arslan, U. Saranli, Reactive planning and control of planar spring-mass running on rough terrain. IEEE Trans. Robot. 28(3), 567–579 (2012)CrossRefGoogle Scholar
  8. 8.
    R. Blickhan, The spring-mass model for running and hopping. J. Biomech. 22, 1217–1227 (1989)CrossRefGoogle Scholar
  9. 9.
    R. Blickhan, R.J. Full, Similarity in multilegged locomotion: bouncing like a monopode. J. Comp. Physiol. A 173(5), 509–517 (1993)CrossRefGoogle Scholar
  10. 10.
    Y. Blum, H.R. Vejdani, A.V. Birn-Jeffery, C.M. Hubicki, J.W. Hurst, M.A. Daley, Swing-leg trajectory of running guinea fowl suggests task-level priority of force regulation rather than disturbance rejection. PLoS One 9 (2014)Google Scholar
  11. 11.
    G.S. Carver, N.J. Cowan, J.M. Guckenheimer, Lateral stability of the spring-mass hopper suggests a two-step control strategy for running. Chaos 19(2), 26106–26114 (2009)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    G.A. Cavagna, F.P. Saibene, R. Margaria, Mechanical work in running. J. Appl. Physiol. 19(2), 249–256 (1964)CrossRefGoogle Scholar
  13. 13.
    J.G. Cham, S.A. Bailey, J.E. Clark, R.J. Full, M.R. Cutkosky, Fast and robust: hexapedal robots via shape deposition manufacturing. Int. J. Robot. Res. 21(10), 869–882 (2002)CrossRefGoogle Scholar
  14. 14.
    S. Cotton, I.C. Olaru, M. Bellman, T. van der Ven, J. Godowski, J. Pratt, FastRunner: a fast, efficient and robust bipedal robot. Concept and planar simulation, in Proceedings of IEEE International Conference on Robotics and Automation, 2012, pp. 2358–2364Google Scholar
  15. 15.
    A. Degani, S. Feng, H.B. Brown, K.M. Lynch, H. Choset, M.T. Mason, The ParkourBot – a dynamic BowLeg climbing robot, in Proceedings of IEEE International Conference on Robotics and Automation, 2011, pp. 795–801Google Scholar
  16. 16.
    C.T. Farley, D.P. Ferris, Biomecahnics of walking and running: center of mass movements to muscle action. Exerc. Sport Sci. Rev. 26, 253–283 (1998)CrossRefGoogle Scholar
  17. 17.
    H. Geyer, A. Seyfarth, R. Blickhan, Spring-mass running: simple approximate solution and application to gait stability. J. Theor. Biol. 232(3), 315–328 (2005)MathSciNetCrossRefGoogle Scholar
  18. 18.
    H. Geyer, A. Seyfarth, R. Blickhan, Compliant leg behaviour explains the basic dynamics of walking and running. Proc. R. Soc. Lond. B 273, 2861–2867 (2006)CrossRefGoogle Scholar
  19. 19.
    R.M. Ghigliazza, R. Altendorfer, P. Holmes, D. Koditschek, A simply stabilized running model. SIAM J. Appl. Dyn. Syst. 2, 187–218 (2003)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    P. Gregorio, M. Ahmadi, M. Buehler, Design, control, and energetics of an electrically actuated legged robot. Trans. Syst. Man Cybern. B Cybern. 27(4), 626–634 (1997)CrossRefGoogle Scholar
  21. 21.
    J.A. Grimes, J.W. Hurst, The design of ATRIAS 1.0 a unique monopod, hopping robot, in Proceedings of the International Conference on Climbing and Walking Robots, 2012, pp. 467–474Google Scholar
  22. 22.
    J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer, New York, 2002)MATHGoogle Scholar
  23. 23.
    J.K. Hodgins, Biped gait transitions, in Proceedings of IEEE International Conference on Robotics and Automation, 1991, pp. 2092–2097Google Scholar
  24. 24.
    J. Hodgins, M.H. Raibert, Biped gymnastics. Int. J. Robot. Res. 9(2), 115–132 (1990)CrossRefGoogle Scholar
  25. 25.
    J.K. Hodgins, M.N. Raibert, Adjusting step length for rough terrain locomotion. IEEE Trans. Robot. Automat. 7(3), 289–298 (1991)CrossRefGoogle Scholar
  26. 26.
    J.W. Hurst, The electric cable differential leg: a novel design approach for walking and running. Int. J. Hum. Robot. 08(02), 301–321 (2011)CrossRefGoogle Scholar
  27. 27.
    M. Hutter, C.D. Remy, M.A. Hopflinger, R. Siegwart, SLIP running with an articulated robotic leg, in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010, pp. 4934–4939Google Scholar
  28. 28.
    S.H. Hyon, T. Mita, Development of a biologically inspired hopping robot-“Kenken”, in Proceedings of IEEE International Conference on Robotics and Automation, vol. 4, 2002, pp. 3984–39914Google Scholar
  29. 29.
    J.G.D. Karssen, M. Haberland, M. Wisse, S. Kim, The effects of swing-leg retraction on running performance: analysis, simulation, and experiment. Robotica 33(10), 2137–2155 (2015)CrossRefGoogle Scholar
  30. 30.
    S. Kim, J.E. Clark, M.R. Cutkosky, isprawl: autonomy, and the effects of power transmission, in Climbing and Walking Robots (Springer, Berlin/New York), 859–867 (2005)Google Scholar
  31. 31.
    D.E. Koditschek, M. Buehler, Analysis of a simplified hopping robot. Int. J. Robot. Res. 10(6), 587–605 (1991)CrossRefGoogle Scholar
  32. 32.
    S.W. Lipfert, M. Gunther, D. Renjewski, S. Grimmer, A. Seyfarth, A model-experiment comparison of system dynamics for human walking and running. J. Theor. Biol. 292, 11–17 (2012)CrossRefGoogle Scholar
  33. 33.
    G.A. Lynch, J.E. Clark, P.-C. Lin, D.E. Koditschek, A bioinspired dynamical vertical climbing robot. Int. J. Robot. Res. 31(8), 974–996 (2012)CrossRefGoogle Scholar
  34. 34.
    H.R. Martinez Salazar, J.P. Carbajal, Exploiting the passive dynamics of a compliant leg to develop gait transitions. Phys. Rev. E 83 (2011)Google Scholar
  35. 35.
    H.-M. Maus, A. Seyfarth, Walking in circles: a modelling approach. J. R. Soc. Interface 11(99) (2014)Google Scholar
  36. 36.
    T. McGeer, Passive bipedal running. Proc. Royal Soc. B 240, 107–134 (1990)CrossRefGoogle Scholar
  37. 37.
    R.T. M’Closkey, J.W. Burdick, Periodic motions of a hopping robot with vertical and forward motion. Int. J. Robot Res. 12, 197–218 (1993)CrossRefGoogle Scholar
  38. 38.
    T.A. McMahon, G.C. Cheng, The mechanism of running: how does stiffness couple with speed? J. Biomech. 23, 65–78 (1990)CrossRefGoogle Scholar
  39. 39.
    T.A. McMahon, P.R. Greene, Fast running tracks. Sci. Am. 239(6), 148–163 (1978)CrossRefGoogle Scholar
  40. 40.
    T.A. McMahon, G. Valiant, E.C. Frederik, Groucho running. J. Appl. Physiol. 62(6), 2326–2337 (1987)CrossRefGoogle Scholar
  41. 41.
    D. Owaki, M. Koyama, S. Yamaguchi, S. Kubo, A. Ishiguro, A two-dimensional passive dynamic running biped with knees, in Proceedings of IEEE International Conference on Robotics and Automation, 2010, pp. 5237–5242Google Scholar
  42. 42.
    F. Peuker, C. Maufroy, A. Seyfarth, Leg-adjustment strategies for stable running in three dimensions. Bioinspir. Biomim. 7(3), 036002 (2012)Google Scholar
  43. 43.
    G. Piovan, K. Byl, Enforced symmetry of the stance phase for the spring-loaded inverted pendulum, in Proceedings of IEEE International Conference on Robotics and Automation, 2012, pp. 1908–1914Google Scholar
  44. 44.
    J. Pratt, C.-M. Chew, A. Torres, P. Dilworth, G. Pratt, Virtual model control: an intuitive approach for bipedal locomotion. Int. J. Robot. Res. 20(2), 129–143 (2001)CrossRefGoogle Scholar
  45. 45.
    M.H. Raibert, Legged Robots That Balance (MIT press, Cambridge, 1986)MATHGoogle Scholar
  46. 46.
    R. Ringrose, Self-stabilizing running, in Proceedings of IEEE International Conference on Robotics and Automation, vol. 1, 1997, pp. 487–493Google Scholar
  47. 47.
    J. Rummel, Y. Blum, A. Seyfarth, Robust and efficient walking with spring-like legs. Bioinspir. Biomim. 5, 046004 (2010)CrossRefGoogle Scholar
  48. 48.
    M. Rutschmann, B. Satzinger, M. Byl, K. Byl, Nonlinear model predictive control for rough-terrain robot hopping, in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012, pp. 1859–1864Google Scholar
  49. 49.
    U. Saranli, W.J. Schwind, D.E. Koditschek, Towards the control of a multi-jointed, monoped runner, Leuven, Belgium, in Proceedings of IEEE International Conference on Robotics and Automation, 1998, pp. 2676–2682Google Scholar
  50. 50.
    U. Saranli, M. Buehler, D.E. Koditschek, RHex: a simple and highly mobile robot. Int. J. Robot. Res. 20(7), 616–631 (2001)CrossRefGoogle Scholar
  51. 51.
    U. Saranli, O. Arslan, M.M. Ankarali, O. Morgul, Approximate analytic solutions to non-symmetric stance trajectories of the passive spring-loaded inverted pendulum with damping. Nonlinear Dyn. 62(4), 729–742 (2010)CrossRefGoogle Scholar
  52. 52.
    J. Schmitt, J. Clark, Modeling posture-dependent leg actuation in sagittal plane locomotion. Bioinspir. Biomim. 4(4), 46005 (2009)Google Scholar
  53. 53.
    J. Schmitt, P. Holmes, Mechanical models for insect locomotion: dynamics and stability in the horizontal plane I. Theory. Biol. Cybern. 83(6), 501–515 (2000)CrossRefMATHGoogle Scholar
  54. 54.
    W.J. Schwind, D.E. Koditschek, Control of forward velocity for a simplified planar hopping robot, in Proceedings of IEEE International Conference on Robotics and Automation, vol. 1, 1995, pp. 691–696Google Scholar
  55. 55.
    W.J. Schwind, D.E. Koditschek, Approximating the stance map of a 2-DOF Monoped runner. J. Nonlinear Sci. 10, 533–568 (2000)MathSciNetCrossRefMATHGoogle Scholar
  56. 56.
    G. Secer, U. Saranli, Control of hopping through active virtual tuning of leg damping for serially actuated legged robots, in Proceedings of IEEE International Conference on Robotics and Automation, Hong Kong, 2014, pp. 4556–4561Google Scholar
  57. 57.
    J.E. Seipel, P. Holmes, Running in three dimensions: analysis of a point-mass sprung-leg model. Int. J. Robot. Res. 24(8), 657–674 (2005)CrossRefGoogle Scholar
  58. 58.
    J. Seipel, P. Holmes, A simple model for clock-actuated legged locomotion. Regul. Chaotic Dyn. 12, 502–520 (2007)MathSciNetCrossRefMATHGoogle Scholar
  59. 59.
    A. Seyfarth, H. Geyer, M. Günther, R. Blickhan, A movement criterion for running. J. Biomech. 35, 649–655 (2002)CrossRefGoogle Scholar
  60. 60.
    A. Seyfarth, H. Geyer, H.M. Herr, Swing-leg retraction: a simple control model for stable running. J. Exp. Biol. 206, 2547–2555 (2003)CrossRefGoogle Scholar
  61. 61.
    M. Shahbazi, G.A.D. Lopes, R. Babuska, Automated transitions between walking and running in legged robots, in Proceedings of the World Congress, International Federation of Automatic Control, 2014, pp. 2171–2176Google Scholar
  62. 62.
    K. Sreenath, H.-W. Park, I. Poulakakis, J.W. Grizzle, Embedding active force control within the compliant hybrid zero dynamics to achieve stable, fast running on MABEL. Int. J. Robot. Res. 32(3), 324–345 (2013)CrossRefGoogle Scholar
  63. 63.
    M. van Gurp, H.C. Schamhardt, A. Crowe, The ground reaction force pattern from the hindlimb of the horse simulated by a spring model. Acta. Anat. 129, 31–33 (1987)CrossRefGoogle Scholar
  64. 64.
    B. Vanderborght, N. Tsagarakis, R. Ham, I. Thorson, D. Caldwell, MACCEPA 2.0: compliant actuator used for energy efficient hopping robot chobino1d. Auton. Rob. 31, 55–65 (2011)Google Scholar
  65. 65.
    P.M. Wensing, D.E. Orin, High-speed humanoid running through control with a 3D-SLIP model, in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, pp. 5134–5140Google Scholar
  66. 66.
    B.R. Whittington, D.G. Thelen, A simple mass-spring model with roller feet can induce the ground reactions observed in human walking. J. Biomech. Eng. 131, 011013 (2009)CrossRefGoogle Scholar
  67. 67.
    A. Wu, H. Geyer, The 3-D spring-mass model reveals a time-based deadbeat control for highly robust running and steering in uncertain environments. IEEE Trans. Robot. 29(5), 1114–1124 (2013)CrossRefGoogle Scholar
  68. 68.
    H. Yu, M. Li, H. Cai, Approximating the stance map of the SLIP runner based on perturbation approach, in Proceedings of IEEE International Conference on Robotics and Automation, 2012, pp. 4197–4203Google Scholar
  69. 69.
    G. Zeglin, The Bow Leg Hopping Robot, Ph.D., CMU-RI-TR-99-33, Carnegie Mellon University, 1999Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Robotics InstituteCarnegie Mellon UniversityPittsburghUSA
  2. 2.Department of Computer EngineeringMiddle East Technical UniversityBalgatTurkey

Personalised recommendations