Advertisement

Angular Momentum Based Balance Control

  • Sung-Hee Lee
  • Andreas Hofmann
  • Ambarish Goswami
Living reference work entry

Later version available View entry history

Abstract

Maintaining balance under dynamic external disturbances and environmental conditions remains a key challenge of humanoid robots. As the centroidal dynamics of humanoid states that both linear and angular momenta must be regulated to completely control the balance, the momentum-based balance control approaches maintain the balance through controlling both the linear and angular momenta of a robot. In this setting, the joint motion of a humanoid robot is typically controlled to realize the desired momentum rate change while satisfying non-slip constraints for the support feet as well as some task objectives such as the desired posture. After reviewing related work, we establish the basic theories that compute centroidal momentum and its relation with the generalized coordinates of a humanoid robot. Then we introduce approaches to controlling momentum, such as the resolved momentum control and computed torque-based control. Subsequently, we present several momentum-based approaches to maintaining humanoid robots’ stationary balance in detail. Several ideas to set the desired angular momentum are presented as well. The chapter concludes with the discussion of the limitations and open questions for the momentum-based balance control.

Keywords

Centroidal momentum Angular momentum control Humanoid balance control 

References

  1. 1.
    S. Kagami, F. Kanehiro, M.I. Y. Tamiya, H. Inoue, AutoBalancer: an online dynamic balance compensation scheme for humanoid robots, in Proceedings of the 4th International Workshop on Algorithmic Foundation on Robotics, 2000Google Scholar
  2. 2.
    S. Kudoh, T. Komura, K. Ikeuchi, The dynamic postural adjustment with the quadratic programming method, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2002Google Scholar
  3. 3.
    T. Komura, H. Leung, S. Kudoh, J. Kuffner, A feedback controller for biped humanoids that can counteract large perturbations during gait, in IEEE International Conference on Robotics and Automation (ICRA), Barcelona, 2005, pp. 2001–2007Google Scholar
  4. 4.
    M.B. Popovic, A.G. Hofmann, H. Herr, Angular momentum regulation during human walking: biomechanics and control, in IEEE International Conference on Robotics and Automation (ICRA), New Orleans, 2004, pp. 2405–2411Google Scholar
  5. 5.
    A. Macchietto, V. Zordan, C.R. Shelton, Momentum control for balance. ACM Trans. Graph. 28(3), 80:1–80:8 (2009)Google Scholar
  6. 6.
    M. Vukobratovic, D. Juricic, Contribution to the synthesis of biped gait. IEEE Trans. Bio-Medical Eng. 16(1), 1–6 (1969)CrossRefGoogle Scholar
  7. 7.
    A. Sano, J. Furusho, Realization of natural dynamic walking using the angular momentum information, in IEEE International Conference on Robotics and Automation (ICRA), 1990, pp. 1476–1481Google Scholar
  8. 8.
    Benjamin Stephens. Integral control of humanoid balance, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2007Google Scholar
  9. 9.
    T. Sugihara, Y. Nakamura, H. Inoue, Real-time humanoid motion generation through ZMP manipulation based on inverted pendulum control, in Proceedings of IEEE International Conference on Robotics and Automation (ICRA’02), vol. 2 (IEEE, 2002), pp. 1404–1409Google Scholar
  10. 10.
    S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, H. Hirukawa, Resolved momentum control: humanoid motion planning based on the linear and angular momentum, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, vol. 2, 2003, pp. 1644–1650Google Scholar
  11. 11.
    Y. Choi, D. Kim, Y. Oh, B.-J. You, Posture/walking control for humanoid robot based on kinematic resolution of CoM Jacobian with embedded motion. IEEE Trans. Robot. 23(6), 1285–1293 (2007)CrossRefGoogle Scholar
  12. 12.
    J. Park, Y. Youm, W.-K. Chung, Control of ground interaction at the zero-moment point for dynamic control of humanoid robots, in IEEE International Conference on Robotics and Automation (ICRA), 2005, pp. 1724–1729Google Scholar
  13. 13.
    B.J. Stephens, C.G. Atkeson, Dynamic balance force control for compliant humanoid robots, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2010Google Scholar
  14. 14.
    C. Zhou, Q. Meng, Dynamic balance of a biped robot using fuzzy reinforcement learning agents. Fuzzy Sets Syst. 134(1), 169–187 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    U. Muico, Y. Lee, J. Popović, Z. Popović, Contact-aware nonlinear control of dynamic characters. ACM Trans. Graph. 28(3), 81:1–81:9 (2009)Google Scholar
  16. 16.
    Q. Huang, Y. Nakamura, Sensory reflex control for humanoid walking. IEEE Trans. Robot. 21(5), 977–984 (2005)CrossRefGoogle Scholar
  17. 17.
    A. Goswami, V. Kallem, Rate of change of angular momentum and balance maintenance of biped robots, in IEEE International Conference on Robotics and Automation (ICRA), 2004, pp. 3785–3790Google Scholar
  18. 18.
    S.-H. Hyon, N. Yokoyama, T. Emura, Back handspring robot – target dynamics-based control, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2004, pp. 248–253Google Scholar
  19. 19.
    K. Mitobe, G. Capi, Y. Nasu, A new control method for walking robots based on angular momentum. Mechatronics 14(2), 163–174 (2004)CrossRefGoogle Scholar
  20. 20.
    S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, H. Hirukawa, The 3D linear inverted pendulum model: a simple modeling for a biped walking pattern generator, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Maui, Hawaii, 2001, pp. 239–246Google Scholar
  21. 21.
    N. Naksuk, Y. Mei, L.C.S. George, Humanoid trajectory generation: an iterative approach based on movement and angular momentum criteria, in IEEE/RAS International Conference on Humanoid Robots, 2004, pp. 576–591Google Scholar
  22. 22.
    S.-H. Hyon, R. Osu, Y. Otaka, Integration of multi-level postural balancing on humanoid robots, in IEEE International Conference on Robotics and Automation (ICRA), 2009, pp. 1549–1556Google Scholar
  23. 23.
    N.E. Sian, K. Yokoi, S. Kajita, F. Kanehiro, K. Tanie, Whole body teleoperation of a humanoid robot -a method of integrating operator’s intention and robot’s autonomy, in IEEE International Conference on Robotics and Automation (ICRA), 2003Google Scholar
  24. 24.
    K.-H. Ahn, Y. Oh, Walking control of a humanoid robot via explicit and stable CoM manipulation with the angular momentum resolution, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2006Google Scholar
  25. 25.
    B. Ugurlu, A. Kawamura, Eulerian ZMP resolution based bipedal walking: Discussion on the intrinsic angular momentum rate change about center of mass, in IEEE International Conference on Robotics and Automation (ICRA), 2010, pp. 4218–4223Google Scholar
  26. 26.
    Y. Ye, C.K. Liu, Optimal feedback control for character animation using an abstract model. ACM Trans. Graph. 29(3), 74:1–74:9 (2010)Google Scholar
  27. 27.
    M. de Lasa, I. Mordatch, A. Hertzmann, Feature-based locomotion controllers. ACM Trans. Graph. 29(3), 131:1–131:10 (2010)Google Scholar
  28. 28.
    M. Abdallah, A. Goswami, A biomechanically motivated two-phase strategy for biped robot upright balance control, in IEEE International Conference on Robotics and Automation (ICRA), Barcelona, 2005, pp. 3707–3713Google Scholar
  29. 29.
    A.G. Hofmann, M.B. Popovic, H. Herr, Exploiting angular momentum to enhance bipedal center-of-mass control, in IEEE International Conference on Robotics and Automation (ICRA), 2009, pp. 4423–4429Google Scholar
  30. 30.
    S.-H. Lee, A. Goswami, Ground reaction force control at each foot: A momentum-based humanoid balance controller for non-level and non-stationary ground, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2010Google Scholar
  31. 31.
    S.-H. Lee, A. Goswami, A momentum-based balance controller for humanoid robots on non-level and non-stationary ground. Auton. Robot. 33(4), 399–414 (2012)CrossRefGoogle Scholar
  32. 32.
    H. Herr, M.B. Popovic, Angular momentum in human walking. J. Exp. Biol. 211, 467–481 (2008)CrossRefGoogle Scholar
  33. 33.
    R. Featherstone, D.E. Orin, Dynamics, chapter 2, in Springer Handbook of Robotics, ed. by B. Siciliano, O. Khatib (Springer, Berlin/Heidelberg, 2008)Google Scholar
  34. 34.
    R. Featherstone, Robot Dynamics Algorithms (Kluwer Academic Publishers, Boston, 1987)CrossRefGoogle Scholar
  35. 35.
    M.B. Popovic, A. Goswami, H. Herr, Ground reference points in legged locomotion: Definitions, biological trajectories and control implications. Int. J. Robot. Res. 24(12):1013–1032 (2005)CrossRefGoogle Scholar
  36. 36.
    Manolis Lourakis. levmar: Levenberg-Marquardt nonlinear least squares algorithms in C/C++. http://www.ics.forth.gr/~lourakis/levmar/, 2004
  37. 37.
    P.-B. Wieber, Holonomy and nonholonomy in the dynamics of articulated motion, in Fast Motions in Biomechanics and Robotics, Heidelberg, 2005Google Scholar
  38. 38.
    S.K. Yun, A. Goswami, Momentum-based reactive stepping controller on level and non-level ground for humanoid robot push recovery, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2011Google Scholar
  39. 39.
    A. Herzog, N. Rotella, S. Mason, F. Grimminger, S. Schaal, L. Righetti, Momentum control with hierarchical inverse dynamics on a torque-controlled humanoid. Auton. Robot. 40(3), 473–491 (2015)CrossRefGoogle Scholar
  40. 40.
    H. Choi, S. Lee, T. Jin, S.-H. Lee, Trajectory-free reactive stepping of humanoid robots using momentum control, in IEEE-RAS International Conference on Humanoid Robots (Humanoids), 2015Google Scholar
  41. 41.
    J.-J.E. Slotine, W. Li, Applied Nonlinear Control (Prentice-Hall, Englewood Cliffs, 1991)zbMATHGoogle Scholar
  42. 42.
    S. Kajita, T. Nagasaki, K. Kaneko, K. Yokoi, K. Tanie, A hop towards running humanoid biped, in IEEE International Conference on Robotics and Automation (ICRA), 2004Google Scholar
  43. 43.
    A. Herzog, N. Rotella, S. Schaal, L. Righetti, Trajectory generation for multi-contact momentum-control, in IEEE-RAS International Conference on Humanoid Robots (Humanoids), 2015Google Scholar
  44. 44.
    A.G. Hofmann, B.C. Williams, Temporally and spatially flexible plan execution for dynamic hybrid systems. Artif. Intell. 247, 266–294 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    A.G. Hofmann, B.C. Williams, Exploiting spatial and temporal flexibility for plan execution of hybrid, under-actuated systems, in AAAI, 2006Google Scholar
  46. 46.
    S.-H. Lee, A. Goswami, Reaction mass pendulum (RMP): an explicit model for centroidal angular momentum of humanoid robots, in IEEE International Conference on Robotics and Automation (ICRA), 2007, pp. 4667–4672Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Sung-Hee Lee
    • 1
  • Andreas Hofmann
    • 2
    • 3
  • Ambarish Goswami
    • 4
  1. 1.Graduate School of Culture TechnologyKAISTYuseong-guRepublic of Korea
  2. 2.DOLL Inc.LexingtonUSA
  3. 3.MIT CSAILCambridgeUSA
  4. 4.Intuitive SurgicalSunnyvaleUSA

Personalised recommendations