Skip to main content

Human Sense of Balance

  • Living reference work entry
  • First Online:
Humanoid Robotics: A Reference

Abstract

This overview describes human posture control mechanisms combining biomechanics with neural control and sensory feedback aspects. The control enables humans to automatically balance during standing and walking in the presence of external disturbances such as gravity. Understanding postural mechanisms is important for identifying and treating balance disorders in patients and elderly subjects and for construction of therapeutic and rehabilitation devices. The overview describes the most relevant sensors for balancing and their use in two complementary dynamic control models of perturbed stance. The first model rigorously analyzes human reactive sway behavior and describes it as the effect of feedback from the vestibular, proprioception, and visual sensors and extant sensory reweighting rules. The second model combines posture control with movement execution control, using fusion of sensory signals to estimate and compensate external and self-produced disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. F. Antritter, F. Scholz, G. Hettich, T. Mergner, Stability analysis of human stance control from the system theoretic point of view, in Control Conference (ECC), (2014). https://doi.org/10.1109/ECC.2014.6862198

    Google Scholar 

  2. M. Asada, K. Hosada, Y. Kuniyoshi, H. Ishiguro, T. Inui, Y. Yoshikawa, M. Ogino, C. Yoshida, Cognitive developmental robotics: A survey. IEEE Trans. Auton. Ment. Dev. 1, 12–34 (2009)

    Article  Google Scholar 

  3. E.H.F. Van Asseldonk, J.H. Buurke, B.R. Bloem, G.J. Renzenbrink, A.V. Nene, F.C.T. van der Helm, H. van der Kooij, Disentangling the contribution of the paretic and non-paretic ankle to balance control in stroke patients. Exp. Neurol. 201, 441–451 (2006)

    Article  Google Scholar 

  4. L. Assländer, G. Hettich, T. Mergner, Visual contribution to human standing balance during support surface tilts. Hum. Mov. Sci. 41, 147–164 (2015)

    Article  Google Scholar 

  5. A.J. Bastian, Mechanisms of ataxia. Phys. Ther. 77, 672–675 (1997)

    Article  Google Scholar 

  6. N.A. Bernstein, The Coordination and Regulation of Movements (Pergamon Press, Oxford, 1967)

    Google Scholar 

  7. J. Bingham, J. Choi, L.H. Ting, Stability in a frontal plane model of balance requires coupled changes to postural configuration and neural feedback control. J. Neurophysiol. 106, 437–448 (2011)

    Article  Google Scholar 

  8. T.A. Boonstra, A.C. Schouten, H. Van der Kooij, Identification of the contribution of the ankle and hip joints to multi-segmental balance control. J. Neuroeng. Rehabil. 10, 1 (2013)

    Article  Google Scholar 

  9. G. Bosco, R.E. Poppele, Reference frames for spinal proprioception: Kinematics based or kinetics based? J. Neurophysiol. 83, 2946–2955 (2000)

    Google Scholar 

  10. M. Cenciarini, R.J. Peterka, Stimulus-dependent changes in the vestibular contribution to human postural control. J. Neurophysiol. 95, 2733–2750 (2006)

    Article  Google Scholar 

  11. C. Cnyrim, T. Mergner, C. Maurer, Potential roles of force cues in human stance control. Exp. Brain Res. 194, 419–433 (2009)

    Article  Google Scholar 

  12. D.F. Collins, A. Prochazka, Movement illusions evoked by ensemble cutaneous input from the dorsum of the human hand. J. Physiol. 496, 857–871 (1996)

    Article  Google Scholar 

  13. W.D.T. Davies, System Identification for Self-Adaptive Control (Wiley Interscience, London, 1970)

    MATH  Google Scholar 

  14. V. Dietz, G.A. Horstmann, M. Trippel, A. Gollhofer, Human postural reflexes and gravity – an under water simulation. Neurosci. Lett. 106, 350–355 (1989)

    Article  Google Scholar 

  15. J.M. Goldberg, C. Fernández, Responses of peripheral vestibular neurons to angular and linear accelerations in the squirrel monkey. Acta Otolaryngol. 80, 101–110 (1975)

    Article  Google Scholar 

  16. A.D. Goodworth, R.J. Peterka, Influence of stance width on frontal plane postural dynamics and coordination in human balance control. J. Neurophysiol. 104, 1103–1118 (2010)

    Article  Google Scholar 

  17. A.D. Goodworth, R.J. Peterka, Sensorimotor integration for multisegmental frontal plane balance control in humans. J. Neurophysiol. 107, 12–28 (2012)

    Article  Google Scholar 

  18. A. Goswami, Postural stability of biped robots and the foot-rotation indicator (FRI) point. Int. J. Robot. Res. 18, 523–533 (1999)

    Article  Google Scholar 

  19. G. Hettich, L. Assländer, A. Gollhofer, T. Mergner, Human hip-ankle coordination emerging from multisensory feedback control. Hum. Mov. Sci. 37, 123–146 (2014)

    Article  Google Scholar 

  20. H. von Holst, H. Mittelstaedt, The reafference principle, in Selected Papers of Erich von Holst. The Behavioural Physiology of Animals and Man, (Methuen, London, 1973), pp. 139–173

    Google Scholar 

  21. J. Houk, E. Henneman, Feedback control of skeletal muscles. Brain Res. 5, 433–451 (1967)

    Article  Google Scholar 

  22. J.J. Jeka, J.R. Lackner, Fingertip contact influences human postural control. Exp. Brain Res. 79, 495–502 (1994)

    Article  Google Scholar 

  23. R. Johansson, M. Magnusson, Human postural dynamics. Crit. Rev. Biomed. Eng. 18, 413 (1991)

    Google Scholar 

  24. T. Kiemel, A.J. Elahi, J.J. Jeka, Identification of the plant for upright stance in humans: Multiple movement patterns from a single neural strategy. J. Neurophysiol. 100, 3394–3406 (2008)

    Article  Google Scholar 

  25. D.A. Kistemaker, A.J. Van Soest, J.D. Wong, I.L. Kurtzer, P.L. Gribble, Control of position and movement is simplified by combined muscle spindle and Golgi tendon organ feedback. J. Neurophysiol. 109, 1126–1139 (2013)

    Article  Google Scholar 

  26. H. Van der Kooij, R.J. Peterka, Non-linear stimulus-response behavior of the human stance control system is predicted by optimization of a system with sensory and motor noise. J. Comput. Neurosci. 30, 759–778 (2011)

    Article  Google Scholar 

  27. V. Lippi, T. Mergner, G. Hettich, A bio-inspired modular system for humanoid posture control, in Towards a Robot-Enabled, Neuroscience-Guided Healthy Society, (IROS, Tokyo, 2013), pp. 1–6

    Google Scholar 

  28. C. Maurer, T. Mergner, B. Bolha, F. Hlavacka, Human balance control during cutaneous stimulation of the plantar soles. Neurosci. Lett. 302, 45–48 (2001)

    Article  Google Scholar 

  29. C. Maurer, T. Mergner, R.J. Peterka, Multisensory control of human upright stance. Exp. Brain Res. 171, 231–250 (2006)

    Article  Google Scholar 

  30. G. McCollum, F.B. Horak, L.M. Nashner, Parsimony in neural calculations for postural movements, in Cerebellar Functions, ed. by J.R. Bloedel, J. Dichgans, W. Precht, (Springer, Berlin/Heidelberg, 1985), pp. 52–66

    Google Scholar 

  31. J. Mcintyre, E. Bizzi, Servo hypotheses for the biological control of movement. J. Mot. Behav. 25, 193–202 (1993)

    Article  Google Scholar 

  32. T. Mergner, W. Huber, W. Becker, Vestibular-neck interaction and transformation of sensory coordinates. J. Vestib. Res. 7, 347–367 (1997)

    Article  Google Scholar 

  33. T. Mergner, C. Maurer, R.J. Peterka, A multisensory posture control model of human upright stance. Prog. Brain Res. 142, 189–201 (2003)

    Article  Google Scholar 

  34. T. Mergner, G. Nardi, W. Becker, L. Deecke, The role of canal-neck interaction for the perception of horizontal trunk and head rotation. Exp. Brain Res. 49, 198–208 (1983)

    Article  Google Scholar 

  35. T. Mergner, G. Schweigart, L. Fennell, Vestibular humanoid postural control. J. Physiol. Paris 103, 178–194 (2009)

    Article  Google Scholar 

  36. T. Mergner, G. Schweigart, O. Kolev, F. Hlavacka, W. Becker, Visual–vestibular interaction for human ego-motion perception, in Multisensory Control of Posture, ed. by T. Mergner, F. Hlavacka, (Plenum, New York, 1995), pp. 157–168

    Google Scholar 

  37. T. Mergner, C. Siebold, G. Schweigart, W. Becker, Human perception of horizontal trunk and head rotation in space during vestibular and neck stimulation. Exp. Brain Res. 85, 389–404 (1991)

    Article  Google Scholar 

  38. T. Mergner, A neurological view on reactive human stance control. Annu. Rev. Control. 34, 177–198 (2010)

    Article  Google Scholar 

  39. P.F. Meyer, L.I.E. Oddsson, C.J. De Luca, The role of plantar cutaneous sensation in unperturbed stance. Exp. Brain Res. 156, 505–512 (2004)

    Article  Google Scholar 

  40. P. Morasso, What is the use of the body schema for humanoid robots? Int. J. Mach. Conscious. 05, 75–94 (2013)

    Article  Google Scholar 

  41. R.J. Peterka, Sensorimotor integration in human postural control. J. Neurophysiol. 88, 1097–1118 (2002)

    Google Scholar 

  42. R.J. Peterka, Simplifying the complexities of maintaining balance. IEEE Eng. Med. Biol. Mag. 22, 63–68 (2003)

    Article  Google Scholar 

  43. R.J. Peterka, Comparison of human and humanoid robot control of upright stance. J. Physiol. Paris 103, 149–158 (2009)

    Article  Google Scholar 

  44. R. Pintelon, J. Schoukens, System Identification: A Freqeuncy Domain Approach, 2nd edn. (Wiley, Hoboken, 2012)

    Book  Google Scholar 

  45. A. Prochazka, Proprioceptor models, in Encyclopedia of Computational Neuroscience, (Springer, New York, 2014), pp. 1–20

    Google Scholar 

  46. U. Proske, S.C. Gandevia, The proprioceptive senses: Their roles in signaling body shape, body position and movement, and muscle force. Physiol. Rev. 92, 1651–1697 (2012)

    Article  Google Scholar 

  47. G. Schweigart, T. Mergner, Human stance control beyond steady state response and inverted pendulum simplification. Exp. Brain Res. 185, 635–653 (2008)

    Article  Google Scholar 

  48. K. Torre, E.-J. Wagenmakers, Theories and models for 1/f(beta) noise in human movement science. Hum. Mov. Sci. 28, 297–318 (2009)

    Article  Google Scholar 

  49. J.E. Visser, B.R. Bloem, Role of the basal ganglia in balance control. Neural Plast. 12, 161–174 (2005)

    Article  Google Scholar 

  50. V. Wilson, J.G. Melvill, Mammalian Vestibular Physiology (Plenum Press, New York, 1979)

    Book  Google Scholar 

  51. S. Yasui, L.R. Young, Perceived visual motion as effective stimulus to pursuit eye movement system. Science 190, 906–908 (1975)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Mergner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mergner, T., Peterka, R.J. (2017). Human Sense of Balance. In: Goswami, A., Vadakkepat, P. (eds) Humanoid Robotics: A Reference. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7194-9_37-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7194-9_37-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7194-9

  • Online ISBN: 978-94-007-7194-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics