Skip to main content

Compliance/Impedance Control Strategy for Humanoids

  • Living reference work entry
  • First Online:
Humanoid Robotics: A Reference
  • 1337 Accesses

Abstract

Compliance/impedance control is an important control method in dealing with uncertainties. This chapter explains how compliance/impedance control can be used in humanoid robots in adapting to ground uncertainties. First, compliance/impedance control is explained in the general context of robotics. Then, typical structures for controllers for impedance control and admittance control are also explained. What is impedance for a humanoid robot in locomotion and running is defined and how impedance control, as a superset of compliance control, is applied as it is described. The legs of a humanoid robot in locomotion and running go through many different phases. A human in locomotion and running changes the tension of his/her leg muscles. In order to deal with many different phases of the legs, it is critical to modulate the impedance parameters depending on the phases, as a human does in his or her locomotion and running. This chapter also describes how the impedance parameters can be modulated in control for a humanoid robot for successful locomotion and running.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. F. Caccavale, C. Natale, B. Siciliano, L. Villani, Six-DOF impedance control based on angle/axis representations. IEEE Trans. Robot. Autom. 15(2), 289–299 (1999)

    Article  Google Scholar 

  2. G. Cavagna, M. Kaneko, Mechanical work and efficiency in level walking and running. J. Physiol. 268(2), 467–481 (1977)

    Article  Google Scholar 

  3. G. Cavagna, H. Thys, A. Zamboni, The sources of external work in level walking and running. J. Physiol. 262(3), 639–657 (1977)

    Article  Google Scholar 

  4. S. Chiaverini, B. Siciliano, L. Villani, A survey of robot interaction control schemes with experimental comparison. IEEE/ASME Trans. Mechatron. 4(3), 273–285 (1999)

    Article  Google Scholar 

  5. J. Duffy, The fallacy of modern hybrid control theory that is based on orthogonal complements of twist and wrench spaces. J. Robot. Syst. 7(2), 139–144 (1990)

    Article  Google Scholar 

  6. E.D. Fasse, On the spatial compliance of robotic manipulators. J. Dyn. Syst. Meas. Control 119(1), 839–844 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. E.D. Fasse, J.F. Broenink, A spatial impedance controller for robotic manipulation. IEEE Trans. Robot. Autom. 13(4), 546–556 (1997)

    Article  Google Scholar 

  8. E.D. Fasse, N. Hogan, Control of physical contact and dynamic interaction, in Proceedings of International Symposium of Robotics Research, 1995, pp. 28–38

    Google Scholar 

  9. R. Hartshorne, Interaction Control of Robot Manipulators: Six-Degrees-of-Freedom Tasks. Springer Tracts in Advanced Robotics (STAR), vol. 3 (Springer, Heidelberg, 2003)

    Google Scholar 

  10. N. Hogan, Impedance control: an approach to manipulation, part I – theory. J. Dyn. Syst. Meas. Control 107(1), 1–7 (1985)

    Article  MATH  Google Scholar 

  11. N. Hogan, Impedance control: an approach to manipulation, part II – implementation. J. Dyn. Syst. Meas. Control 107(1), 8–16 (1985)

    Article  MATH  Google Scholar 

  12. N. Hogan, Impedance control: an approach to manipulation, part III – applications. J. Dyn. Syst. Meas. Control 107(1), 17–24 (1985)

    Article  MATH  Google Scholar 

  13. O. Khatib, A unified approach for motion and force control of robot manipulators: the operational space formulation. IEEE Trans. Robot. Autom. 3(1), 1115–1120 (1987)

    Google Scholar 

  14. O. Kwon, J.H. Park, Asymmetric trajectory generation and impedance control for running of biped robots. Auton. Robot. 26(1), 47–78 (2009)

    Article  Google Scholar 

  15. D.A. Lawrence, Impedance control stability properties in common implementations, in Proceedings of IEEE International Conference on Robotics and Automation, 1998, pp. 1185–1190

    Google Scholar 

  16. H. Lipkin, J. Duffy, Hybrid twist and wrench control for a robotic manipulator. ASME J. Mech. Transm. Autom. Des. 110(1), 138–144 (1988)

    Article  Google Scholar 

  17. M. Mason, Compliance and force control for computer controlled manipulators. IEEE Trans. Syst. Man Cybern. 11(6), 418–432 (1981)

    Article  MathSciNet  Google Scholar 

  18. J.H. Park, Impedance control for biped robot locomotion. IEEE Trans. Robot. Autom. 17(6), 870–882 (2001)

    Article  Google Scholar 

  19. J.H. Park, H. Chung, Hybrid control for biped robots using impedance control and computed-torque control, in Proceedings of IEEE International Conference on Robotics and Automation, 1999, pp. 1365–1370

    Google Scholar 

  20. M.H. Raibert, J.J. Craig, Hybrid position/force control of manipulators. J. Dyn. Syst. Meas. Control 105(1), 126–133 (1981)

    Article  Google Scholar 

  21. S. Stramigioli, Modeling and IPC Control of Interactive Mechanical Systems: A Coordinate-Free Approach. Lecture Notes in Control and Information Sciences, vol. 266 (Springer, Heidelberg, 2001)

    Google Scholar 

  22. S. Stramigioli, V. Duindam, Variable spatial springs for robot control applications, in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2001, pp. 1906–1911

    Google Scholar 

  23. A. Thorstensson, H. Roberthson, Adaptations to changing speed in human locomotion: speed of transition between walking and running. Acta Physiologica Scandinavica 131(2), 211–214 (1987)

    Article  Google Scholar 

  24. T. Valency, M. Zacksenhouse, Accuracy/robustness dilemma in impedance control. J. Dyn. Syst. Meas. Control 125(1), 310–319 (2003)

    Article  Google Scholar 

  25. D.A. Winter, Overall principle of lower limb support during stance phase of gait. J. Biomech. 13(1), 123–127 (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Hyeon Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this entry

Cite this entry

Park, J.H. (2017). Compliance/Impedance Control Strategy for Humanoids. In: Goswami, A., Vadakkepat, P. (eds) Humanoid Robotics: A Reference. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7194-9_148-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7194-9_148-1

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7194-9

  • Online ISBN: 978-94-007-7194-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics