Skip to main content

Historical Perspective of Humanoid Robot Research in Europe

  • Living reference work entry
  • First Online:
Humanoid Robotics: A Reference

Abstract

From the very first humanoid automation designed by Leonardo da Vinci in 1495 to Pyrène – a fully force control humanoid robot – designed for research purpose in 2016, this chapter discusses the contributions of Europe in humanoid robot research and development. It is organized around the presentation of the main influential platforms, followed by thematic contributions covering collaborative robots, control, biomechanics, and neurosciences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. M.E. Moran, The da vinci robot. J. Endourol. 20(12), 986–990 (2007)

    Article  Google Scholar 

  2. A. Doyon, L. Liaigre, Jacques Vaucanson, mécanicien de génie (PUF, Paris, 1966)

    Google Scholar 

  3. M. Vukobratovic, D. Juricic, Contribution to the synthesis of biped gait, in Proceedings of the IFAC Symposium on Technical and Biological Problem on Control, (USSR, Erevan), p. 1968

    Google Scholar 

  4. A. Takanishi, M. Ishida, Y. Yamazaki, I. Kato, The realization of dynamic walking by the biped walking robot wl−10rd. J. Robot. Soc. Jpn 3(4), 325–336 (1985)

    Article  Google Scholar 

  5. M. Vukobratovic, Legged Locomotion Robots and Anthropomorphic Mechanisms (in English), Research monograph, Mihailo Pupin Institue, Belgrade, 1975, also published in Japanese, Nikkan Shumum, Tokyo, 1975, in Russian “MIR”, Moscow, 1976, in Chinese, Beijing, 1983, pp. 136–195 (1975)

    Google Scholar 

  6. S. Lohmeier, K. Loeffler, M. Gienger, H. Ulbrich, F. Pfeiffer, Computer system and control of biped “johnnie”, in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 2004, pp. 4222–4227

    Google Scholar 

  7. S. Kajita, K. Tani, Experimental study of biped dynamic walking in the linear inverted pendulum mode, in Proceedings of the IEEE Conference on Robotics and Automation, 1995, pp. 2885–2891

    Google Scholar 

  8. T. Buschmann, S. Lohmeier, H. Ulbrich, Humanoid robot lola: design and walking control. J. Phys. Paris 103(3–5), 141–148 (2009)

    Article  MATH  Google Scholar 

  9. M. Konyev, F. Palis, Y. Zavgorodniy, A. Melnykov, A. Rudsky, A. Telesh, U. Shmucker, Presentation of a new biped robot ROTTO, in Proceedings of the International Conference on Climbing and Walking Robots CLAWAR, (World Scientific, Istanbul, 2009), pp. 551–558

    Google Scholar 

  10. A. Melnykov, M. Konyev, F. Palis, U. Schmucker, Biped robot “rotto”: design, simulation, experiments, in ISR/ROBOTIK, 2010

    Google Scholar 

  11. C.A. Monje, S. Martinez, A. Jardon, P. Pierro, C. Balaguer, D. Muñoz, Full−size humanoid robot TEO: Design attenting mechanical robustness and energy consumption, in Proceedings of the11th IEEE/RAS International Conference on Humanoid Robots, 2011, pp. 325–330

    Google Scholar 

  12. F.B. Horak, J.M. Macpherson, Postural orientation and equilibrium, in Handbook of Physiology, Exercise: Regulation and Integration of Multiple Systems (Wiley-Blackwell, 2011), pp. 255–292. https://doi.org/10.1002/cphy.cp120107

  13. S. Martinez, A. Jardon, C. Balaguer, Human-inspired anticipative postural control architecture for humanoid robots, in Proceedings of the IEEE/RAS International Conference on Systems, Man, and Cybernetics, 2013, pp. 4825–4830

    Google Scholar 

  14. J. Baelemans, P. van Zutven, H. Nijmeijer, New path planning algorithms for higher gait stability of a bipedal robot, in Proceedings of the IEEE Int. Symp. on Safety, Security, and Rescue Robotics, Paris, 2013, pp. 1–6

    Google Scholar 

  15. P.W.M. van Zutven, P. Mironchyk, C. Cilli, E. Steur, E. Ilhan, J. Caarls, R.S. Pieters, A. Filiz, P. Heijkoop, T. de Boer, A. Smorenberg, E. van Breda, G.L. Lung, F. Wilbers, C. Plooij, G. van der Hoorn, S. Kiemel, R. Carloni, S. Stramigioli, T.P.H. Warmerdan, Dutch robotics 2011 adult-size team description, in 15th Annual RoboCup International Symposium, Istanbul, 2011

    Google Scholar 

  16. A. Konno, R. Sellaouti, F.B. Amar, F.B. Ouezdou, Design and development of the biped prototype ROBIAN, in Proceedings of the IEEE International Conference on Robotics and Automation, vol. 2, Paris, 2002, pp. 1384–1389

    Google Scholar 

  17. S. Alfayad, M. El Asswad, A. Abdellatif, F.B. Ouezdou, A. Blanchard, N. Beaussé, P. Gaussier, Hydroid humanoïd robot head with perception and emotion capabilities: modeling, design, and experimental results. Front. Robot. AI 3, 15 (2016) [Online]. http://journal.frontiersin.org/article/10.3389/frobt.2016.00015

  18. V.V. Beletskii, Biped Walking [In Russian] (Nauka, Moscow, 1984)

    Google Scholar 

  19. A.M. Formalskii, Locomotion of Anthropomorphic Mechanisms [In Russian] (Nauka, Moscow, 1982)

    Google Scholar 

  20. A.M. Formalskii, Ballistic walking design via impulsive control. ASCE J. Aerosp. Eng. 23(2), 129–138 (2010)

    Article  Google Scholar 

  21. A. Grishin, A. Formalskii, A. Lenskii, S. Zhitomirskii, Dynamic walking of a vehicle with two telescopic legs controlled by two drives. Int. J. Robot. Res. 13(2), 137–147 (1994)

    Article  Google Scholar 

  22. A. Formalskii, Ballistic locomotion of a biped. Design and control of two biped machines, in Human and Machine Locomotion, ed. by A. Morecki, K. Waldron (Springer, Wein, 1997)

    Google Scholar 

  23. D.M. Gorinnevskii, A.M. Formalskii, A.Y. Schneider, Force control of Robotics Systems (CRC Press, Boca Raton, 1997)

    Google Scholar 

  24. V.B. Larin, Control of Walking Apparatuses (Naukova dumka, Kiev, 1980)

    Google Scholar 

  25. C. Chevallereau, G. Abba, Y. Aoustin, F. Plestan, E. Westervelt, C. Canuddas-de Wit, J. Grizzle, Rabbit: a testbed for advanced control theory. IEEE Control. Syst. Mag. 23(5), 57–79 (2003)

    Article  Google Scholar 

  26. Y. Aoustin, A. Formalskii, Control design for a biped: reference trajectory based on driven angles as functions of the undriven angle. J. Comput. Syst. Sci. Int. 42(4), 159–176 (2003)

    MathSciNet  Google Scholar 

  27. B. Morris, E.R. Westervelt, C. Chevallereau, G. Buche, J.W. Grizzle, Achieving bipedal running with RABBIT: six steps toward infinity, in Lecture Notes in Control and Information Sciences, (Springer, Berlin, 2006), pp. 277–297

    Google Scholar 

  28. E. Schuitema, M. Wisse T. Ramakers, P. Jonker, The design of leo: 2d bipedal walking robot for online autonomous reinforcement learning, in Proceedings of the International Conference Robots and Systems (IROS), 2010 IEEE/RSJ, Taipei, 2003, pp. 3238–3243

    Google Scholar 

  29. M. Wisse, Essentials of dynamic walking, analysis and design of two legged robots. Ph.D. Thesis, ISBN:90-77595-82-1, 2004

    Google Scholar 

  30. M. Wisse, J. van Frankenhuyzen, Design and construction of Mike; a 2D autonomous biped based on passive dynamic walking, in Proceedings of the International Conference on Adaptive Motion of Animals and Machines, AMAM, Kyoto/Paris, 2003, Paper number WeP–I–1

    Google Scholar 

  31. M. Wisse, D.G.E. Hobbelen, A.L. Schwab, Adding the upper body to passive dynamic walking robots by means of a bisecting hip mechanism. IEEE Trans. Robot. 23(1), 112–123 (2007)

    Article  Google Scholar 

  32. M. Wisse, R.Q. van Der Linde, Delft Pneumatic Bipeds (Springer, Berlin/Heidelberg, 2007)

    Google Scholar 

  33. E. Espiau, P. Sardain, The anthropomorphic biped robot bip 2000, in Proceedings of the IEEE Conference on Robotics and Automation, 2000, pp. 3997–4003

    Google Scholar 

  34. D. Hobbelen, T. Boer, M. Wisse, System overview of bipedal robots Flame and TUlip: tailor-made for limit cycle, in Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Paris, 2008, pp. 2486–2491

    Google Scholar 

  35. G.A. Paratt, M.M. Williamson, Series elastic actuators, in Proceedings of the IEEE/RSJ International Conference on Intellignet Robots and Systems. Human Robot Interaction and Cooperative Robots, vol. 1, 1995, pp. 399–406

    Google Scholar 

  36. J.G.D. Karsseen, M. Wisse, Running robot Phides, in Proceedings of the Dynamic Walking, Pensacola Beach, 21–24 May 2012

    Google Scholar 

  37. J.G.D. Karssen, M. Haberland, M. Wisse, S. Kim, The effects of swing-leg retraction on running performance: analysis, simulation, and experiment. Robotica 33(10), 2137–2155 (2015)

    Article  Google Scholar 

  38. Y.M.M. Lin, H.S. Lin, P.C. Lin, SLIP-model-based dynamic gait generation in a leg-wheel transformable robot with force control. IEEE Robot. Autom. Lett. 2(2), 804–810 (2017)

    Article  Google Scholar 

  39. R. Müller, R. Blickhan, Running on uneven ground: leg adjustments to altered ground level. Hum. Mov. Sci. 29(4), 578–589 (2010)

    Article  Google Scholar 

  40. M.A. Sharbafi, C. Rode, S. Kurowski, D. Scholz, R. Möckel, K. Radkhah, G. Zhao, A.M. Rashty, O. von Stryk, A. Seyfarth, A new biarticular actuator design facilitates control of leg function in biobiped3. Bioinspir. Biomim. 11(4), 1–14 (2016)

    Article  Google Scholar 

  41. A. Escande, N. Mansard, P.B. Wieber, Hierarchical quadratic programming: fast online humanoid-robot motion generation. Int. J. Robot. Res. 33(7), 1006–1028 (2014)

    Article  Google Scholar 

  42. N.G. Tsagarakis, S. Morfey, G.M. Cerda, Z. Li, D.G. Caldwell, Compliant humanoid COMAN: optimal joint stiffness tuning for modal frequency control, in Proceedings of the of the IEEE Conference on Robotics and Automation, Karlsruhe, 2013, pp. 673–678

    Google Scholar 

  43. B. Vanderborght05, B. Verrelst, R.V. Ham, M.V. Damme, D. Lefeber, A pneumatic biped: experimental walking results and compliance adaption experiments, in Proceedings of the of the 5th IEEE-RAS International Conference on Humanoid Robots, Tsukuba, 2005, pp. 44–49

    Google Scholar 

  44. G. Metta, G. Sandini, D. Vernon, L. Natale, F. Nori, The icub humanoid robot: an open platform for research in embodied cognition, in Proceedings of the of the 8th Workshop on Performance Metrics Intelligent Systems, Gaithersburg, 2008, pp. 50–56

    Google Scholar 

  45. R.S. Dahiya, G. Metta, M. Valle, G. Sandini, Tactile sensing − from humans to humanoids. IEEE Trans. Robot. 26(1), 1–20 (2010)

    Article  Google Scholar 

  46. A.D. Ames, First steps toward underactuated human-inspired bipedal robotic walking, in Proceedings of the of the IEEE Conference on Robotics and Automation, St Paul, 2012, pp. 1011–1017

    Google Scholar 

  47. J. Englsberger, A. Werner, C. Ott, B. Henze, M.A. Roa, G. Garofalo, R. Burger, A. Eiberger, K. Schmid, A. Albu-Schäffer, Overview of the torque-controlled humanoid robot toro, in Proceedings of the 14th IEEE-RAS International Conference on Humanoid Robots (Humanoids), Madrid, 2014, pp. 916–923

    Google Scholar 

  48. J. Pratt, J. Carff, S. Drakunov, A. Goswami, Capture point: a step toward humanoid push recovery, in Proceedings of the 6th IEEE-RAS International Conference on Humanoid Robots (Humanoids), Genova, 2006, pp. 200–207

    Google Scholar 

  49. N. Pateromichelakis, A. Mazel, M.A. Hache, R.G.T. Koumpogiannis, B. Maisonnier, A. Berthoz, Head-eyes system and gaze analysis of the humanoid robot romeo, in Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and System, Chicago, 2014, pp. 1374–1379

    Google Scholar 

  50. A. Stasse, R. Ruland, F. Lamiraux, A. Kheddar, K. Yokoi, W. Prinz, Integration of humanoid robots in collaborative working environment: A case study on motion generation. Intell. Serv. Robot. 2, 153–160 (2009)

    Article  Google Scholar 

  51. P. Pierro, C. Monje, C. Balaguer, A new approach on human-robot collaboration with humanoid robot RH-2. Intell. Serv. Robot. 29(6), 949–957 (2009)

    Google Scholar 

  52. G. Claudio, F. Splinder, F. Chaumette, Vision-based manipulation with the humanoid robot Romeo, in Proceedings of the 16th International Conference on Humanoid Robots (Humanoids), Cancun, 2016, pp. 286–293

    Google Scholar 

  53. J. Neira, A.J. Davison, J.J. Leornard, Guest editorial special issue on visual SLAM. IEEE Trans. Robot. 24(5), 929–931 (2008)

    Article  Google Scholar 

  54. P.B. Wieber, Viability and predictive control for safe locomotion, in Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Nice, 2008, pp. 1103–1108

    Google Scholar 

  55. S. Mason, N. Rotella, S. Schaal, L. Righetti, Balancing and walking using full dynamics lqr control with contact constraints, in Proceedings of the IEEE International Conference on Humanoid Robots (Humanoids), Cancun, 2008, pp. 63–69

    Google Scholar 

  56. L. Roussel, C.C. de Wit, A. Goswami, Generation of energy optimal complete gait cycles for biped, in Proceedings of the IEEE Conference on Robotics and Automation, 2003, pp. 2036–2042

    Google Scholar 

  57. G. Cabodevilla, N. Chaillet, G. Abba, Energy-minimized gait for a biped robot, in Autonome Mobile Systems, (Springer, Berlin, 1995), pp. 90–99

    Google Scholar 

  58. C. Chevallereau, Y. Aoustin, Optimal reference trajectories for walking and running of a biped. Robotica 19(5), 557–569 (2001)

    Article  Google Scholar 

  59. E. Viel, The mathematical theory of optimal processes (Wiley-Interscience, New York, 1962)

    Google Scholar 

  60. G. Bessonnet, S. Chessé, P. Sardain, Optimal gait synthesis of a seven-link planar biped. Int. J. Robot. Res. 23(10–11), 1059–1073 (2004)

    Article  Google Scholar 

  61. D. Clever, M. Harant, K.H. Kochand, K. Mombaur, D.M. Endres, A novel approach for the generation of complex humanoid walking sequences based on a combination of optimal control and learning of movement primitives. Robot. Auton. Syst. 83, 287–298 (2016)

    Article  Google Scholar 

  62. A.J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, S. Shaal, Dynamical movement primitives: learning attractor models for motor behaviors. Neural Comput. 25(2), 328–373 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  63. C. Mandery, O. Terlemer, N. Do, M. Vahrenkamp, T. Asfour, Unifying representations and large-scale whole-body motion databases for studying human motion. IEEE Trans. Robot. 32(4), 796–809 (2016)

    Article  Google Scholar 

  64. J.L. Laumond, M. Benallegue, J. Carpentier, A. Bethoz, The Yoyo-Man. Int. J. Robot. Res. 24(6) (2017)

    Google Scholar 

  65. A. Berthoz, The brain’s sense of movement (Harvard University Press, Cambridge, MA, 2002)

    Google Scholar 

  66. N.G. Tsagarakis, D.G. Caldwell, A. Bicchi, F. Negrello, M. Garabini, W. Choi, L. Baccelliere, V.G. Loc, J. Noorden, M. Catalano, M. Ferrati, L. Muratore, A. Margan, L. Natale, E. Mingo, H. Dallali, A. Settimi, A. Rocchi, V. Varricchio, L. Pallottino, C. Pavan, A. Ajoudani, J. Lee, P. Kryczka, D. Kanoulas, WALK-MAN: a high performance humanoid platform for realistic environments. J. Field Robot., 986–990 (2017), to appear

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yannick Aoustin .

Editor information

Editors and Affiliations

Appendix A

Appendix A

1.1 European Contracts and Research Groups

Developing synergy between the universities and research centers in the different European countries is a formal goal of European Union policy. Support for young or senior researchers who are leaders in their domain is available in the form of European Research Council projects (ERC). We present here a nonexhaustive list of these projects.

  1. 1.

    Robot@CWE (Advanced robotic systems in future collaborative Working Environment, 2007–2009), (http://roboticslab.uc3m.es/roboticslab/project/robotcwe) is a two-year European research project. The consortium of this project is composed of the Centre National de la Recherche Scientifique (CNRS) (Coordinator), University Carlos III of Madrid (UCM), Technical University of Munich (TUM), University of Salzburg (US), École Polytechnique Fédérale de Lausanne (EPFL), Dragados, Hewlett Packard, Space Applications Services, and Advanced Industrial Science and Technology (AIST). It aims to research and demonstrate integrative concepts of advanced robotic systems, to be seen as collaborative agents, in various environments, working together with humans.

  2. 2.

    RobotCub (2005–2010) is a five-year project funded by the European Commission. Its consortium is composed of researchers at the University of Genova, the Scuola Superior S. Anne the University of Zurich, the University of Uppsala, the University of Ferrara, IST Lisbon, and the University of Sheffield. Its principal goal is the study of cognition through an implementation of a small humanoid robot: ICub.

  3. 3.

    Amarsi (2010–2014) (www.amarsi-project.eu) (Adaptive Modular Architectures for Rich Motor Skills) is a four-year European research project. A consortium of Bielefeld University (Coordinator), the École Polytechnique Fédérale de Lausanne (EPFL), Graz University of Technology – Institute for Theoretical Computer Science, Santa Lucia Foundation – SLF, Ghent University, Tübingen University, the University of Zurich, the Italian Institute of Technology – IIT, Jacobs University, and the Weizmann Institute, AMARSI aims to make a qualitative leap forward in robotic motor skills toward biological richness.

  1. 4.

    Robohow (2012–2016), (www.robohow.eu) was a four-year European research project that started in February 2012. The consortium of this project included the Universität Bremen (UNIHB) (in a coordinating role), the Centre National de la Recherche Scientifique (CNRS), the École Polytechnique Fédérale de Lausanne (EPFL), Kungliga Tekniska Högskolan (KTH), the Katholieke Universiteit Leuven (KUL), the Foundation for Research and Technology-Hellias (FORTH), Univeriteit Leiden (UL), Aldebaran Rrobotics, and the Technische Universität München (TUM). It aims at enabling robots to competently perform everyday human-scale manipulation activities – both in human working and living environments.

  2. 5.

    Walk-Man (2013–2017), (www.walk-man.eu) is a four-year European research project that began in September 2013 (Whole-body Adaptive Locomotion and Manipulation, www.walk-man.eu) [66]. The consortium was formed by the Istituto Italiano di Tecnologia (IIT) (as coordinator) the École Polytechnique Federale de Lausanne (EPFL), Università di Pisa (UNIPI), Karlsruhe Institute of Technology (KIT), and the Universitä Catholique de Louvain (UCL). The objective is to develop a robotic platform, with an anthropomorphic form, which can operate in unstructured environments and work spaces as a result of natural and man-made disasters.

  3. 6.

    Named for the first recorded Olympic champion in history, Koroibot (http://orb.iwr.uni-heidelberg.de/koroibot/) is a four-year European research project scheduled to run from 2013 to 2017. Its consortium is composed by the Universität Heidelberg (coordinator), the Centre National de la Recherche Scientifique (CNRS), the Karlsruhe Institute of Technology Germany (KIT), the Istituto Italiano di Technological Italy (IIT), the Technische Universiteit Delft Netherlands (TUD), the Weizmann Institut in Israel, Universität Tübingen (UT), and the University of Marburg (external collaborators). It aims to improve humanoid walking capabilities by human-inspired mathematical models, optimization, and learning.

  4. 7.

    CodyCo (Compliant Dynamical Contacts, 2013–2017), (www.codyco.eu) is a four-year European research project. The consortium of this project includes the Istituto Italiano di Technological Italy (IIT) (coordinator), the Technische Universitaet Darmstadt (TUD), the Université Pierre et Marie Curie (UPMC), the University of Birmingham (UB), and the Jozef Stefan Institute (JSI) in Slovenia. The aim of CoDyCo is to advance the current control and cognitive understanding about robust, goal-directed whole-body motion interaction with multiple contacts.

  5. 8.

    ERC Actanthrope (Atelier de l’Action Anthropomorphe 2013–2018) (Computational Foundations of Anthropomorphic Action) is managed by Jean-Paul Laumond at the CNRS laboratory LAAS at Toulouse, France. This ERC project is exploring the computational foundation of human action to design more autonomous robots, while reciprocally developing robotic techniques to improve the understanding of human manipulation and dynamic locomotion.

  6. 9.

    ERC Cont-Act (Control of contact interactions for robots acting in the world, 2014–2019) (Humanoid robots and manipulation) is managed by Ludovic Righetti at the Max Planck Institute for Intelligent Systems (Autonomous Motion Department) in Germany. This ERC project’s ambition is to develop a consistent theoretical framework for motion generation and control. Contact interaction is at the core of the approach, and an efficient use of sensory information drives the development of high performance, adaptive and robust planning, and control methods.

  7. 10.

    COMANOID (Multi-Contact Collaborative Humanoids in Aircraft Manufacturing 2015–2019) is a four-year European research project as a part of the Horizon H2020 program. The consortium is composed of the Centre National de la Recherche Scientifique (CNRS), the German Aerospace Center (DLR), the Institut National de Recherche en Informatique et Automatique (Inria), the Università degli Studi di Roma” La Sapienza,” and Airbus Group Innovations. COMANOID aims to deploy humanoid robots to perform nonadded value tasks that have been identified by Airbus Group in civilian airliner assembly operations.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media B.V.

About this entry

Cite this entry

Aoustin, Y., Chevallereau, C., Laumond, JP. (2018). Historical Perspective of Humanoid Robot Research in Europe. In: Goswami, A., Vadakkepat, P. (eds) Humanoid Robotics: A Reference. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7194-9_144-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7194-9_144-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7194-9

  • Online ISBN: 978-94-007-7194-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics