Skip to main content

Magnon Spintronics

  • Reference work entry
Handbook of Spintronics

Abstract

Presented here is an introduction to magnon spintronics, the emerging field of research concerned with structures and devices which involve the interconversion between electronic spin currents (spin currents carried by electrons) and magnon currents (spin angular momentum fluxes which do not involve the motion of charged carriers). Aimed at the nonexpert reader, the text reviews fundamental and applied aspects of magnonics and examines how the study of the interplay between magnonic and electronic spin transport both shines a light on new physics, and opens doors to new technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stancil DD (1993) Theory of magnetostatic waves. Springer, New York

    Book  Google Scholar 

  2. Gurevich AG, Melkov GA (1996) Magnetization oscillations and waves. Press, CRC

    Google Scholar 

  3. Landau LD, Lifshitz E (1935) On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys Z Sowjet 8:153

    MATH  Google Scholar 

  4. Gilbert TL (2004) A phenomenological theory of damping in ferromagnetic materials. IEEE Trans Magn 40:3443

    Article  ADS  Google Scholar 

  5. Heinrich B, Bland JAC (1994) Ultrathin magnetic structures II. Springer, Berlin

    Book  Google Scholar 

  6. Plant JS (1977) Spin wave dispersion curves for yttrium iron garnet. J Phys Chem 10:4805

    Google Scholar 

  7. Geller S, Gilleo MA (1957) Structure and ferrimagnetism of yttrium and rare-earth-iron garnets. Acta Crystallogr 10:239

    Article  Google Scholar 

  8. Glass HL (1988) Ferrite films for microwave and millimeter-wave devices. Proc IEEE 76:151

    Article  ADS  Google Scholar 

  9. Serga AA, Chumak AV, Hillebrands B (2010) YIG magnonics. J Phys D Appl Phys 43:264002

    Article  ADS  Google Scholar 

  10. Cherepanov V, Kolokolov I, L’vov V (1993) The saga of YIG: spectra, thermodynamics, interaction and relaxation of magnons in a complex magnet. Phys Rep 229:81

    Article  ADS  Google Scholar 

  11. Yin LF, Wei DH, Lei N, Zhou LH, Tian CS, Dong GS, Jin XF, Guo LP, Jia QJ, Wu RQ (2006) Magnetocrystalline anisotropy in Permalloy revisited. Phys Rev Lett 97:067203

    Article  ADS  Google Scholar 

  12. Kalinikos BA, Slavin AN (1986) Theory of dipole-exchange spin wave spectrum for ferromagnetic films with mixed exchange boundary conditions. J Phys C Solid State Phys 19:7013

    Article  ADS  Google Scholar 

  13. Kalinikos BA, Kozhus NV, Kostylev MP, Slavin AN (1990) The dipole exchange spin wave spectrum for anisotropic ferromagnetic films with mixed exchange boundary conditions. J Phys Condens Matter 2:9861

    Article  ADS  Google Scholar 

  14. Patton CE (1984) Magnetic excitations in solids. Phys Rep 103:251

    Article  ADS  Google Scholar 

  15. Damon RW, Van De Vaart H (1965) Propagation of magnetostatic spin waves at microwave frequencies in a normally magnetized disk. J Appl Phys 36:3453

    Article  ADS  Google Scholar 

  16. Damon RW, Eshbach JR (1961) Magnetostatic modes of a ferromagnet slab. J Phys Chem Solid 19:308

    Article  ADS  Google Scholar 

  17. Eshbach JR, Damon RW (1960) Surface magnetostatic modes and surface spin waves. Phys Rev 118:1208

    Article  ADS  Google Scholar 

  18. Demidov VE, Demokritov SO, Rott K, Krzystecko P, Reiss G (2008) Linear and nonlinear spin-wave dynamics in macro- and microscopic magnetic confined structures. J Phys D Appl Phys 41:164012

    Article  ADS  Google Scholar 

  19. Akhiezer A, Baryakhtar V, Kaganov M (1960) Spin waves in ferromagnets and antiferromagnets. Uspekhi Fiz Nauk 71:108. English translation appears in collected papers in physics (1963) 124:108

    Google Scholar 

  20. Safonov VL (2012) Nonequilibrium magnons: theory, experiment and applications. Wiley-VCH, Weinheim

    Book  Google Scholar 

  21. Demokritov SO, Demidov VE, Dzyapko O, Melkov GA, Serga AA, Hillebrands B, Slavin AN (2006) Bose-Einstein condensation of quasi-equilibrium magnons at room temperature under pumping. Nature 443:430

    Article  ADS  Google Scholar 

  22. Bender SA, Duine RA, Tserkovnyak Y (2012) Electronic pumping of quasiequilibrium Bose-Einstein-condensed magnons. Phys Rev Lett 108:246601

    Article  ADS  Google Scholar 

  23. Kalarickal SS, Krivosik P, Wu M, Patton CE, Schneider ML, Kabos P, Silva TJ, Nibarger JP (2006) Ferromagnetic resonance linewidth in metallic thin films: comparision of measurement methods. J Appl Phys 99:093909

    Article  ADS  Google Scholar 

  24. Bilzer C, Devolder T, Crozat P, Chappert C, Cardoso S, Freitas PP (2007) Vector network analyzer ferromagnetic resonance of thin films on coplanar waveguides: comparison of different evaluation methods. J Appl Phys 101:074505

    Article  ADS  Google Scholar 

  25. Kakazei GN, Mewes T, Wigen PE, Hammel PC, Slavin AN, Pogorelov Yu G, Costa MD, Golub VO, Guslienko KY, Novosad V (2008) Probing arrays of circular magnetic microdots by ferromagnetic resonance. J Nanosci Nanotechnol 8:2811

    Google Scholar 

  26. Demokritov SO, Hillebrands B, Slavin AN (2001) Brillouin light scattering studies of confined spin waves: linear and nonlinear confinement. Phys Rep 348:442

    Article  ADS  Google Scholar 

  27. Serga AA, Hillebrands B, Demokritov SO, Slavin AN, Wierzbicki P, Vasyuchka V, Dzyapko O, Chumak A (2005) Parametric generation of forward and phase-conjugated spin-wave bullets in magnetic films. Phys Rev Lett 94:167202

    Article  ADS  Google Scholar 

  28. Serga AA, Demokritov SO, Hillebrands B, Slavin AN (2004) Self-generation of two-dimensional spin-wave bullets. Phys Rev Lett 92:117203

    Article  ADS  Google Scholar 

  29. Serga AA, Kostylev MP, Hillebrands B (2008) Formation of guided spin-wave bullets in ferrimagnetic film stripes. Phys Rev Lett 101:137204

    Article  ADS  Google Scholar 

  30. Bloembergen N, Damon RW (1952) Relaxation effects in ferromagnetic resonance. Phys Rev 85:699

    Article  ADS  Google Scholar 

  31. Suhl H (1957) The theory of ferromagnetic resonance at high signal power. J Phys Chem Solid 1:209

    Article  ADS  Google Scholar 

  32. Schlömann E, Green J, Milano V (1960) Recent development in ferromagnetic resonance at high power levels. J Appl Phys 31:386S

    Article  ADS  Google Scholar 

  33. Schlömann E, Joseph RI (1961) Instability of spin waves and magnetostatic modes in a microwave magnetic field applied parallel to DC field. J Appl Phys 32:1006

    Article  MathSciNet  ADS  Google Scholar 

  34. Sparks M (1964) Ferromagnetic relaxation theory. McGraw-Hill, New York

    Google Scholar 

  35. Dzyapko O, Kurebayashi H, Demidov VE, Evelt M, Ferguson AJ, Demokritov SO (2013) Effect of the magnetic film thickness on the enhancement of the spin current by multi-magnon processes. Appl Phys Lett 102:252409

    Article  ADS  Google Scholar 

  36. Agrawal M, Vasyuchka VI, Serga AA, Karenowska AD, Melkov GA, Hillebrands B (2013) Direct measurement of magnon temperature: new insight into magnon-phonon coupling in magnetic insulators. Phys Rev Lett 111:1072

    Google Scholar 

  37. Gurevich AG, Melkov GA (1996) Magnetization oscillations and waves. CRC Press, Boca Raton, Chap 14

    Google Scholar 

  38. Ganguly AK, Webb DC (1975) Microstrip excitation of magnetostatic surface waves: theory and experiment. IEEE Trans Microwave Theory Tech 23:998

    Article  ADS  Google Scholar 

  39. Kalinikos BA (1980) Excitation of propagating spin waves in ferromagnetic films. IEE Proc H Microwave Opt Antennas 127:1

    Article  Google Scholar 

  40. Schneider T, Serga AA, Neumann T, Hillebrands B, Kostylev MP (2008) Phase reciprocity of spin-wave excitation by a microstrip antenna. Phys Rev B 77:214411

    Article  ADS  Google Scholar 

  41. Demidov VE, Kostylev MP, Rott K, Krzysteczko P, Reiss G, Demokritov SO (2009) Excitation of microwaveguide modes by a stripe antenna. Appl Phys Lett 95:112509

    Article  ADS  Google Scholar 

  42. Ishak WS, Reese E, Huijer E (1985) Magnetostatic wave devices for UHF band applications. Circuits Devices Syst IEE Proc 4:285

    ADS  Google Scholar 

  43. Vlaminck V, Bailleul M (2010) Spin-wave transduction at the submicrometer scale: experiment and modeling. Phys Rev B 81:014425

    Article  ADS  Google Scholar 

  44. Huber R, Krawczyk M, Schwarze T, Yu H, Duerr G, Albert S, Grundler D (2013) Reciprocal Damon-Eshbach-type spin wave excitation in a magnonic crystal due to tunable magnetic symmetry. Appl Phys Lett 102:012403

    Article  ADS  Google Scholar 

  45. Au Y, Ahmad E, Dmytriiev O, Dvornik M, Davison T, Kruglyak VV (2012) Resonant microwave-to-spin-wave transducer. Appl Phys Lett 100:182404

    Article  ADS  Google Scholar 

  46. Au Y, Dvornik M, Davison T, Ahmad E, Keatley PS, Vansteenkiste A, Van Waeyenberge B, Kruglyak VV (2013) Direct excitation of propagating spin waves by focused ultrashort optical pulses. Phys Rev Lett 110:097201

    Article  ADS  Google Scholar 

  47. Lenk B, Ulrichs H, Münzenberg M (2011) The building blocks of magnonics. Phys Rep 507:107

    Article  ADS  Google Scholar 

  48. Sandweg CW, Kajiwara Y, Chumak AV, Serga AA, Vasyuchka VI, Jungfleisch MB, Saitoh E, Hillebrands B (2011) Spin pumping by parametrically excited exchange magnons. Phys Rev Lett 106:216601

    Article  ADS  Google Scholar 

  49. Demidov VE, Urazhdin S, Demokritov SO (2010) Direct observation and mapping of spin waves emitted by spin-torque nano-oscillators. Nat Mater 9:984

    Article  ADS  Google Scholar 

  50. Madami M, Bonetti S, Consolo G, Tacchi S, Carlotti G, Gubbiotti G, Mancoff FB, Yar MA, Åkerman J (2011) Direct observation of a propagating spin wave induced by spin-transfer torque. Nat Nanotechnol 6:635

    Article  ADS  Google Scholar 

  51. Neusser S, Bauer HG, Duerr G, Huber R, Mamica S, Woltersdorf G, Krawczyk M, Back CH, Grundler D (2011) Tunable metamaterial response of a Ni80Fe20 antidot lattice for spin waves. Phys Rev B 84:184411

    Article  ADS  Google Scholar 

  52. Park JP, Eames P, Engebretson DM, Berezovsky J, Crowell PA (2002) Spatially resolved dynamics of localized spin-wave modes in ferromagnetic wires. Phys Rev Lett 89:277201

    Article  ADS  Google Scholar 

  53. Zhang Z, Hammel PC, Wigen PE (1996) Observation of ferromagnetic resonance in a microscopic sample using magnetic resonance force microscopy. Appl Phys Lett 68:2005

    Article  ADS  Google Scholar 

  54. Klein O, Loubens G, Naletov VV, Boust F, Guillet T, Hurdequint H, Leksikov A, Slavin AN, Tiberkevich VS, Vukadinovic N (2008) Ferromagnetic resonance force spectroscopy of individual submicron-size samples. Phys Rev B 78:144410

    Article  ADS  Google Scholar 

  55. Kurebayashi H, Dzyapko O, Demidov VE, Fang D, Ferguson AJ, Demokritov SO (2011) Spin pumping by parametrically excited short-wavelength spin waves. Appl Phys Lett 99:162502

    Article  ADS  Google Scholar 

  56. Chumak AV, Serga AA, Jungfleisch MB, Neb R, Bozhko DA, Tiberkevich VS, Hillebrands B (2012) Direct detection of magnon spin transport by the inverse spin Hall effect. Appl Phys Lett 100:082405

    Article  ADS  Google Scholar 

  57. Demidov VE, Demokritov SO, Rott K, Krzysteczko P, Reiss G (2008) Mode interference and periodic self-focusing of spin waves in permalloy mi-crostripes. Phys Rev B 77:064406

    Article  ADS  Google Scholar 

  58. Demidov VE, Kostylev MP, Rott K, Krzysteczko P, Reiss G, Demokritov SO (2011) Generation of the second harmonic by spin waves propagating in microscopic stripes. Phys Rev B 83:054408

    Article  ADS  Google Scholar 

  59. Clausen P, Vogt K, Schultheiss H, Schäfer A, Obry B, Wolf G, Pirro P, Leven B, Hillebrands B (2011) Mode conversion by symmetry breaking of propagating spin waves. Appl Phys Lett 99:162505

    Article  ADS  Google Scholar 

  60. Chumak AV, Pirro P, Serga AA, Kostylev MP, Stamps RL, Schultheiss H, Vogt K, Hermsdoerfer SJ, Laegel B, Beck PA, Hillebrands B (2009) Spin-wave propagation in a microstructured magnonic crystal. Appl Phys Lett 95:262508

    Article  ADS  Google Scholar 

  61. Mathieu C, Jorzick J, Frank A, Demokritov SO, Hillebrands B, Slavin AN, Bartenlian B, Chappert C, Decanini D, Rousseaux F, Cambril E (1998) Lateral quantization of spin waves in micron size magnetic wires. Phys Rev Lett 81:3968

    Article  ADS  Google Scholar 

  62. Perzlmaier K, Buess M, Back CH, Demidov VE, Hillebrands B, Demokritov SO (2005) Spin-wave eigenmodes of permalloy squares with closure domain structure. Phys Rev Lett 94:057202

    Article  ADS  Google Scholar 

  63. Schultheiss H, Schäfer S, Candeloro P, Leven B, Hillebrands B, Slavin AN (2008) Observation of coherence and partial decoherence of quantized spin waves in nano-scaled magnetic ring structures. Phys Rev Lett 100:047204

    Article  ADS  Google Scholar 

  64. See also the cluster issue on magnonics (2010) J Phys D Appl Phys 43

    Google Scholar 

  65. Demidov VE, Demokritov SO, Rott K, Krzysteczko P, Reiss G (2007) Self-focusing of spin waves in Permalloy microstripes. Appl Phys Lett 91:252504

    Article  ADS  Google Scholar 

  66. Schwarze T, Huber R, Duerr G, Grundler D (2012) Complete band gaps for magnetostatic forward volume waves in a two-dimensional magnonic crystal. Phys Rev B 85:134448

    Article  ADS  Google Scholar 

  67. Tkachenko VS, Kuchko AN, Dvornik M, Kruglyak VV (2012) Propagation and scattering of spin waves in curved magnonic waveguides. Appl Phys Lett 101:152402

    Article  ADS  Google Scholar 

  68. Brächer T, Pirro P, Westermann J, Sebastian T, Lägel B, Van de Wiele B, Vansteenkiste A, Hillebrands B (2013) Generation of propagating backward volume spin waves by phase-sensitive mode conversion in two-dimensional microstructures. Appl Phys Lett 102:132411

    Article  ADS  Google Scholar 

  69. Vogt K, Schultheiss H, Jain S, Pearson JE, Hoffmann A, Bader SD, Hillebrands B (2012) Spin waves turning a corner. Appl Phys Lett 101:042410

    Article  ADS  Google Scholar 

  70. Oogane M, Wakitani T, Yakata S, Yilgin R, Ando Y, Sakuma A, Miyazaki T (2006) Magnetic damping in ferromagnetic thin films. Jpn J Appl Phys 45:3889

    Article  ADS  Google Scholar 

  71. Ikeda S, Hayakawa J, Ashizawa Y, Lee YM, Miura K, Hasegawa H, Tsunoda M, Matsukura F, Ohno H (2008) Tunnel magnetoresistance of 604 % at 300 K by suppression of Ta diffusion in CoFeB/MgO/CoFeB pseudo-spin-valves annealed at high temperature. Appl Phys Lett 93:082508

    Article  ADS  Google Scholar 

  72. Conca A, Greser J, Sebastian T, Klingler S, Obry B, Leven B, Hillebrands B (2013) Low spin-wave damping in amorphous Co40Fe40B20 thin films. J Appl Phys 113:213909

    Article  ADS  Google Scholar 

  73. Heusler F (1903) Über die Synthese ferromagnetischer Manganlegierungen. Verhandlungen der Deutschen Physikalischen Gesellschaft 5:217

    Google Scholar 

  74. de Groot RA, Mueller FM, van Engen PG, Buschow KHJ (1983) New class of materials: half-metallic ferromagnets. Phys Rev Lett 50:2024

    Article  ADS  Google Scholar 

  75. Trudel S, Gaier O, Hamrle J, Hillebrands B (2010) Magnetic anisotropy, exchange and damping in cobalt-based full-Heusler compounds: an experimental review. J Phys D Appl Phys 43:193001

    Article  ADS  Google Scholar 

  76. Shan R, Sukegawa H, Wang WH, Kodzuka M, Furubayashi T, Ohkubo T, Mitani S, Inomata K, Hono K (2009) Demonstration of half-metallicity in Fermi-level-tuned Heusler alloy Co2FeAl0.5Si0.5 at room temperature. Phys Rev Lett 102:246601

    Article  ADS  Google Scholar 

  77. Sakuraba Y, Hattori M, Oogane M, Ando Y, Kato H, Sakuma A, Miyazaki T, Kubota H (2006) Giant tunneling magnetoresistance in Co2MnSi/Al–O/Co2MnSi magnetic tunnel junctions. Appl Phys Lett 88:192508

    Article  ADS  Google Scholar 

  78. Kubota T, Tsunegi S, Oogane M, Mizukami S, Miyazaki T, Naganuma H, Ando Y (2009) Half-metallicity and Gilbert damping constant in Co2Fe x Mn1−x Si Heusler alloys depending on the film composition. Appl Phys Lett 94:122504

    Article  ADS  Google Scholar 

  79. Oogane M, Yilgin R, Shinano M, Yakata S, Sakuraba Y, Ando Y, Miyazaki T (2007) Magnetic damping constant of Co2FeSi Heusler alloy thin film. J Appl Phys 101:09J501

    Article  Google Scholar 

  80. Yilgin R, Oogane M, Ando Y, Miyazaki T (2007) Gilbert damping constant in polycrystalline Co2MnSi Heusler alloy films. J Magn Magn Mater 310:2332

    Article  ADS  Google Scholar 

  81. Yilgin R, Oogane M, Yakata S, Ando Y, Miyazaki T (2005) Intrinsic Gilbert damping constant in Co2MnAl Heusler alloy films. IEEE Trans Magn 41:2799

    Article  ADS  Google Scholar 

  82. Mizukami S, Watanabe D, Oogane M, Ando Y, Miura Y, Shirai M, Miyazaki T (2009) Low damping constant for Co2FeAl Heusler alloy films and its correlation with density of states. J Appl Phys 105:07D306

    Article  Google Scholar 

  83. Sebastian T, Ohdaira Y, Kubota T, Pirro P, Brächer T, Vogt K, Serga AA, Naganuma H, Oogane M, Ando Y, Hillebrands B (2012) Low-damping spin-wave propagation in a micro-structured Co2Mn0.6Fe0.4Si Heusler waveguide. Appl Phys Lett 100:112402

    Article  ADS  Google Scholar 

  84. Schlömann E (1963) Generation of spin waves in nonuniform DC magnetic fields. I. Conversion of electromagnetic power into spinwave power and vice versa. J Appl Phys 35:159

    Article  Google Scholar 

  85. Schlömann E, Joseph RI (1963) Generation of spin waves in nonuniform DC magnetic fields. II. Calculation of the coupling length. J Appl Phys 35:167

    Article  Google Scholar 

  86. Schneider T, Serga AA, Chumak AV, Hillebrands B, Stamps RL, Kostylev MP (2010) Spin-wave tunnelling through a mechanical gap. Europhys Lett 90:27003

    Article  ADS  Google Scholar 

  87. Stamps RL, Camley RE, Hillebrands B, Güntherodt G (1993) Spin-wave propagation on imperfect ultrathin ferromagnetic films. Phys Rev B 47:5072

    Article  ADS  Google Scholar 

  88. Kostylev M, Serga A, Schneider T, Neumann T, Leven B, Hillebrands B, Stamps R (2007) Resonant and nonresonant scattering of dipole-dominated spin waves from a region of inhomogeneous magnetic field in a ferromagnetic field. Phys Rev B 76:184419

    Article  ADS  Google Scholar 

  89. Demokritov SO, Serga AA, André A, Demidov VE, Kostylev MP, Hillebrands B (2004) Tunneling of dipolar spin waves through a region of inhomogeneous magnetic field. Phys Rev Lett 93:047201

    Article  ADS  Google Scholar 

  90. Serga AA, Neumann T, Chumak AV, Hillebrands B (2009) Generation of spin-wave pulse trains by current-controlled magnetic mirrors. Appl Phys Lett 94:112501

    Article  ADS  Google Scholar 

  91. Ustinov AB, Kolkov PI, Nikitin AA, Kalinikos BA, Fetisov YK, Srinivasan G (2011) Ferrite-ferroelectric phase shifters controlled by electric and magnetic fields. Tech Phys 56:821

    Article  Google Scholar 

  92. Fetisov YK, Srinivasan G (2006) Electric field tuning characteristics of a ferrite-piezoelectric microwave resonator. Appl Phys Lett 88:143503

    Article  ADS  Google Scholar 

  93. Rovillain P, de Sousa R, Gallais Y, Sacuto A, Measson MA, Colson D, Forget A, Bibes M, Barthelemy A, Cazayous M (2010) Electric-field control of spin waves at room temperature in multiferroic BiFeO3. Nat Mater 9:975

    Article  ADS  Google Scholar 

  94. Nozaki T, Shiota Y, Miwa S, Murakami S, Bonell F, Ishibashi S, Kubota H, Yakushiji K, Saruya T, Fukushima A, Yuasa S, Shinjo T, Suzuki Y (2012) Electric-field-induced ferromagnetic resonance excitation in an ultrathin ferromagnetic metal layer. Nat Phys 8:491

    Article  Google Scholar 

  95. Bauer GEW, Saitoh E, van Wees BJ (2012) Spin caloritronics. Nat Mater 11:391

    Article  ADS  Google Scholar 

  96. Obry B, Vasyuchka VI, Chumak AV, Serga AA, Hillebrands B (2012) Spin-wave propagation and transformation in a thermal gradient. Appl Phys Lett 101:192406

    Article  ADS  Google Scholar 

  97. Kolokoltsev O, Qureshi N, Mejia-Uriarte E, Ordonez-Romero CL (2012) Hot spin-wave resonators and scatterers. J Appl Phys 112:013902

    Article  ADS  Google Scholar 

  98. Adam JD, Collins JH (1976) Microwave magnetostatic delay devices on epitaxial yttrium iron garnet. Proc IEEE 64:794

    Article  Google Scholar 

  99. Ishak WS (1988) Magnetostatic wave technology: a review. Proc IEEE 76:171

    Article  ADS  Google Scholar 

  100. Owens JM, Collins JH, Carter RL (1985) System applications of magnetostatic wave devices. Circuits Dev Syst IEE Proc 4:317

    ADS  Google Scholar 

  101. Adam JD (1988) Analog signal processing with microwave magnetics. Proc IEEE 76:159

    Article  ADS  Google Scholar 

  102. Wu M, Kalinikos BA, Carr LD, Patton CE (2006) Observation of spin-wave soliton fractals in magnetic film active feedback rings. Phys Rev Lett 96:187202

    Article  ADS  Google Scholar 

  103. Demokritov SO, Serga AA, Demidov VE, Hillebrands B, Kostylev MP, Kalinikos BA (2003) Experimental observation of symmetry-breaking nonlinear modes in an active ring. Nature 426:159

    Article  ADS  Google Scholar 

  104. Karenowska AD, Chumak AV, Serga AA, Gregg JF, Hillebrands B (2010) Magnonic crystal based forced dominant wavenumber selection in a spin-wave active ring. Appl Phys Lett 96:082505

    Article  ADS  Google Scholar 

  105. Lock EH (2008) The properties of isofrequency dependences and the laws of geometrical optics. Uspekhi Fizicheskih Nauk 178:397

    Article  Google Scholar 

  106. Schneider T, Serga AA, Chumak AV, Sandweg CV, Trudel S, Wolff S, Kostylev MP, Tiberkevich VS, Slavin AN, Hillebrands B (2010) Nondiffractive subwavelength wave beams in a medium with externally controlled anisotropy. Phys Rev Lett 104:197203

    Article  ADS  Google Scholar 

  107. Demidov VE, Demokritov SO, Birt D, O’Gorman B, Tsoi M, Li X (2009) Radiation of spin waves from the open end of a microscopic magnetic-film waveguide. Phys Rev B 80:014459

    Article  ADS  Google Scholar 

  108. Kalinikos BA, Kovshikov NG, Slavin AN (1990) Experimental-observation of magnetostatic wave envelope solitons in yttrium-iron-garnet films. Phys Rev B 42:8658

    Article  ADS  Google Scholar 

  109. Bagada AV, Melkov GA, Serga AA, Slavin AN (1997) Parametric interaction of dipolar spin wave solitons with localized electromagnetic pumping. Phys Rev Lett 79:2137

    Article  ADS  Google Scholar 

  110. Kalinikos BA, Kovshikov NG, Patton CE (1998) Self-generation of microwave magnetic envelope soliton trains in Yttrium Iron Garnet thin fims. Phys Rev Lett 80:4301

    Article  ADS  Google Scholar 

  111. Balinskii MG, Danilov VV, Nechiporuk AY (1993) Experimental investigation of the quantum amplification effect for magnetostatic waves in ferrite-paramagnet structures. Zh Techn Fiz 63:122

    Google Scholar 

  112. Danilov VV, Nechiporuk AY (2002) Experimental investigation of the quantum amplification effect for magnetostatic waves in ferrite-paramagnet structures. Tech Phys Lett 28:369

    Article  ADS  Google Scholar 

  113. Schlömann E (1969) Amplification of magnetostatic surface waves by interaction with drifting charge carriers in crossed electric and magnetic fields. J Appl Phys 40:1422

    Article  ADS  Google Scholar 

  114. Bini M, Filetti PL, Millanta L, Rubino N (1978) Amplification of surface magnetic waves in transversely magnetized ferrite slabs. J Appl Phys 49:3554

    Article  ADS  Google Scholar 

  115. Chang NS, Yamada S, Matsuo Y (1976) Amplification of magnetostatic surface waves in a layered structure consisting of metals, dielectrics, a semiconductor, and YIG. J Appl Phys 47:385

    Article  ADS  Google Scholar 

  116. Ando K, Takahashi S, Harii K, Sasage K, Ieda J, Maekawa S, Saitoh E (2008) Electric manipulation of spin relaxation using the spin Hall effect. Phys Rev Lett 101:03660

    Article  Google Scholar 

  117. Seo S-M, Lee K-J, Yang H, Ono T (2009) Current-induced control of spin-wave attenuation. Phys Rev Lett 102:147202

    Article  ADS  Google Scholar 

  118. Demidov VE, Urazhdin S, Edwards ERJ, Demokritov SO (2011) Wide-range control of ferromagnetic resonance by spin Hall effect. Appl Phys Lett 99:172501

    Article  ADS  Google Scholar 

  119. Lu L, Sun YY, Jantz M, Wu MZ (2012) Control of ferromagnetic relaxation in magnetic thin films through thermally induced interfacial spin transfer. Phys Rev Lett 108:257202

    Article  ADS  Google Scholar 

  120. Wang ZH, Sun YY, Wu MZ, Tiberkevich V, Slavin A (2011) Control of spin waves in a thin film ferromagnetic insulator through interfacial spin scattering. Phys Rev Lett 107:146602

    Article  ADS  Google Scholar 

  121. Hahn C, de Loubens G, Klein O, Viret M, Naletov VV, Ben Youssef J (2013) Comparative measurements of inverse spin Hall effects and magnetoresistance in YIG/Pt and YIG/Ta. Phys Rev B 87:174417

    Article  ADS  Google Scholar 

  122. Melkov GA, Serga AA, Slavin AN, Tiberkevich VS, Oleinik AN, Bagada AV (1999) Parametric interaction of magnetostatic waves with a nonstationary local pump. J Exp Theor Phys 89:1189

    Article  ADS  Google Scholar 

  123. Chumak AV, Serga AA, Melkov GA, Tiberkevich V, Slavin AN, Hillebrands B (2009) Parametrically-stimulated recovery of a microwave signal using standing spin-wave modes of a magnetic film. Phys Rev B 79:014405

    Article  ADS  Google Scholar 

  124. Melkov GA, Serga AA, Tiberkevich VS, Kobljanskij Yu V, Slavin AN (2001) Nonadiabatic interaction of a propagating wave packet with localized parametric pumping. Phys Rev E Stat Nonlin Soft Matter Phys 63:066607

    Article  Google Scholar 

  125. Serga AA, Kostylev MP, Kalinikos BA, Demokritov SO, Hillebrands B, Benner H (2006) Parametric generation of soliton like spin-wave pulses in ring resonators based on ferromagnetic films. J Exp Theor Phys 102:497

    Article  ADS  Google Scholar 

  126. Hagerstrom AM, Tong W, Wu M, Kalinikos BA, Eykholt R (2009) Excitation of chaotic spin waves in magnetic film feedback rings through three-wave nonlinear interactions. Phys Rev Lett 102:207202

    Article  ADS  Google Scholar 

  127. Wu M, Hagerstrom AM, Kondrashov A, Kalinikos B (2009) Excitation of chaotic spin waves through modulational instability. Phys Rev Lett 102:237203

    Article  ADS  Google Scholar 

  128. Melkov GA, Serga AA, Tiberkevich VS, Oliynyk AN, Slavin AN (2000) Wave front reversal of a dipolar spin wave pulse in a nonstationary three-wave parametric interaction. Phys Rev Lett 84:3438

    Article  ADS  Google Scholar 

  129. Korpel A, Chatterjee M (1981) Nonlinear echoes, phase conjugation, time reversal, and electronic holography. Proc IEEE 69:1539

    Article  ADS  Google Scholar 

  130. Kaplan DE, Hill RM, Hermann GF (1969) Amplified ferrimagnetic echoes. J Appl Phys 40:1164

    Article  ADS  Google Scholar 

  131. Danilov VV, Tychinskii AV, Sugakov VI (1973) On the nature of the amplified spin echo in garnets. Russ Phys J 16:316

    Google Scholar 

  132. How H, Vittoria C (1991) Theory of amplified ferrimagnetic echoes. Phys Rev Lett 66:1626

    Article  ADS  Google Scholar 

  133. Melkov GA, Dzyapko AD, Chumak AV, Slavin AN (2004) Two-magnon relaxation reversal in ferrite spheres. JETP Lett 99:1193

    Article  Google Scholar 

  134. Melkov GA, Vasyuchka VI, Kobljanskyj Yu V, Slavin AN (2004) Wavefront reversal in a medium with inhomogeneities and an anisotropic wave spectrum. Phys Rev B 70:224407

    Article  ADS  Google Scholar 

  135. Melkov GA, Vasyuchka VI, Chumak AV, Slavin AN (2005) Double-wavefront reversal of dipole-exchange spin waves in yttrium-iron garnet films. J Appl Phys 98:074908

    Article  ADS  Google Scholar 

  136. Smith KR, Vasyuchka VI, Wu M, Melkov GA, Patton CE (2007) Cloning and trapping of magnetostatic spin-wave pulses by parametric pumping. Phys Rev B 76:054412

    Article  ADS  Google Scholar 

  137. Serga AA, Chumak AV, André A, Melkov GA, Slavin AN, Demokritov SO, Hillebrands B (2007) Parametrically stimulated recovery of a microwave signal stored in standing spin-wave modes of a magnetic film. Phys Rev Lett 99:227202

    Article  ADS  Google Scholar 

  138. Melkov GA, Kobljanskyj Yu V, Serga AA, Slavin AN, Tiberkevich VS (2001) Reversal of momentum relaxation. Phys Rev Lett 86:4918

    Article  ADS  Google Scholar 

  139. Chumak AV, Vasyuchka VI, Serga AA, Kostylev MP, Tiberkevich VS, Hillebrands B (2012) Storage-recovery phenomenon in magnonic crystal. Phys Rev Lett 108:257207

    Article  ADS  Google Scholar 

  140. Joannopoulos JD, Villeneuve PR, Fan S (1997) Photonic crystals: putting a new twist on light. Nature 386:143

    Article  ADS  Google Scholar 

  141. Yang S, Page JH, Liu Z, Cowan ML, Chan CT, Sheng P (2004) Focusing of sound in a 3D phononic crystal. Phys Rev Lett 93:024301

    Article  ADS  Google Scholar 

  142. Baba T (2008) Slow light in photonic crystals. Nat Photonics 2:465

    Article  ADS  Google Scholar 

  143. Croënne C, Manga ED, Morvan B, Tinel A, Dubus B, Vasseur J, Hladky-Hennion A-C (2011) Negative refraction of longitudinal waves in a two-dimensional solid-solid phononic crystal. Phys Rev B 83:054301

    Article  ADS  Google Scholar 

  144. Gulyaev Yu V, Nikitov SA (2001) Magnonic crystals and spin waves in periodic structures. Dokl Phys 46:687

    Article  ADS  MATH  Google Scholar 

  145. Chumak AV, Serga AA, Hillebrands B, Kostylev MP (2008) Scattering of backward spin waves in a one-dimensional magnonic crystal. Appl Phys Lett 93:022508

    Article  ADS  Google Scholar 

  146. Lee K-S, Han D-S, Kim S-K (2009) Physical origin and generic control of magnonic band gaps of dipole-exchange spin waves in width-modulated nanostrip waveguides. Phys Rev Lett 102:127202

    Article  ADS  Google Scholar 

  147. Beginin EN, Filimonov YA, Pavlov ES, Vysotskii SL, Nikitov SA (2012) Bragg resonances of magnetostatic surface spin waves in a layered structure: magnonic crystal-dielectric-metal. Appl Phys Lett 100:252412

    Article  ADS  Google Scholar 

  148. Ustinov AB, Drozdovskii AV, Kalinikos BA (2010) Multifunctional nonlinear magnonic devices for microwave signal processing. Appl Phys Lett 96:142513

    Article  ADS  Google Scholar 

  149. Wang ZK, Zhang VL, Lim HS, Ng SC, Kuok MH, Jain S, Adeyeye AO (2009) Observation of frequency band gaps in a one-dimensional nanostructured magnonic crystal. Appl Phys Lett 94:083112

    Article  ADS  Google Scholar 

  150. Tacchi S, Duerr G, Klos JW, Madami M, Neusser S, Gubbiotti G, Carlotti G, Krawczyk M, Grundler D (2012) Forbidden band gaps in the spin-wave spectrum of a two-dimensional bicomponent magnonic crystal. Phys Rev Lett 109:137202

    Article  ADS  Google Scholar 

  151. Gubbiotti G, Tacchi S, Madami M, Carlotti G, Adeyeye AO, Kostylev M (2010) Brillouin light scattering studies of planar metallic magnonic crystals. J Phys D Appl Phys 43:264003

    Article  ADS  Google Scholar 

  152. Kruglyak VV, Hicken RJ, Kuchko AN, Gorobets VY (2005) Spin waves in a periodically layered magnetic nanowire. J Appl Phys 98:014304

    Article  ADS  Google Scholar 

  153. Gubbiotti G, Tacchi S, Carlotti G, Singh N, Goolaup S, Adeyeye AO, Kostylev M (2007) Collective spin modes in monodimensional magnonic crystals consisting of dipolarly coupled nanowires. Appl Phys Lett 90:092503

    Article  ADS  Google Scholar 

  154. Zivieri R, Montoncello F, Giovannini L, Nizzoli F, Tacchi S, Madami M, Gubbiotti G, Carlotti G, Adeyeye AO (2011) Collective spin modes in chains of dipolarly interacting rectangular magnetic dots. Phys Rev B 83:054431

    Article  ADS  Google Scholar 

  155. Krawczyk M, Puszkarski H (2008) Plane-wave theory of three-dimensional magnonic crystals. Phys Rev B 77:054437

    Article  ADS  Google Scholar 

  156. Neusser S, Grundler D (2009) Magnonics: spin waves on the nanoscale. Adv Mater 21:2927

    Article  Google Scholar 

  157. Obry B, Meyer T, Pirro P, Brächer T, Lagel B, Osten J, Strache T, Fassbender J, Hillebrands B (2013) Microscopic magnetic structuring of a spin-wave waveguide by ion implantation in a Ni81Fe19 layer. Appl Phys Lett 102:022409

    Article  ADS  Google Scholar 

  158. Ustinov AB, Grigoryeva NY, Kalinikos BA (2008) Observation of spin-wave envelope solitons in periodic magnetic film structures. JETP Lett 88:31

    Article  ADS  Google Scholar 

  159. Chumak AV, Dhagat P, Jander A, Serga AA, Hillebrands B (2010) Reverse Doppler effect of magnons with negative group velocity scattered from a moving Bragg grating. Phys Rev B 81:140404(R)

    Article  ADS  Google Scholar 

  160. Kryshtal RG, Medved AV (2012) Surface acoustic wave in yttrium iron garnet as tunable magnonic crystals for sensors and signal processing applications. Appl Phys Lett 100:192410

    Article  ADS  Google Scholar 

  161. Chumak AV, Neumann T, Serga AA, Hillebrands B, Kostylev MP (2009) A current-controlled, dynamic magnonic crystal. J Phys D Appl Phys 42:205005

    Article  ADS  Google Scholar 

  162. Chumak AV, Karenowska AD, Serga AA, Hillebrands B (2012) The dynamic magnonic crystal: new horizons in artificial crystal based signal processing. In: Demokritov SO, Slavin AN (eds) Topics in applied physics, vol 125. Springer, New York

    Google Scholar 

  163. Chumak AV, Tiberkevich VS, Karenowska AD, Serga AA, Gregg JF, Slavin AN, Hillebrands B (2010) All-linear time reversal by a dynamic magnonic crystal. Nat Commun 1:141

    Article  ADS  Google Scholar 

  164. Karenowska AD, Tiberkevich VS, Chumak AV, Serga AA, Gregg JF, Slavin AN, Hillebrands B (2012) Oscillatory energy exchange between waves coupled by a dynamic artificial crystal. Phys Rev Lett 108:015505

    Article  ADS  Google Scholar 

  165. Sivan Y, Pendry JB (2011) Broadband time-reversal of optical pulses using a switchable photonic-crystal mirror. Opt Express 19:14502

    Article  ADS  Google Scholar 

  166. Kostylev MP, Serga AA, Schneider T, Leven B, Hillebrands B (2005) Spin-wave logical gates. Appl Phys Lett 87:153501

    Article  ADS  Google Scholar 

  167. Schneider T, Serga AA, Leven B, Hillebrands B, Stamps RL, Kostylev MP (2008) Realization of spin-wave logic gates. Appl Phys Lett 92:022505

    Article  ADS  Google Scholar 

  168. Hansen UH, Demidov VE, Demokritov SO (2009) Dual-function phase shifter for spin-wave logic applications. Appl Phys Lett 94:252502

    Article  ADS  Google Scholar 

  169. Hertel R, Wulfhekel W, Kirschner J (2004) Domain-wall induced phase shifts in spin waves. Phys Rev Lett 93:257202

    Article  ADS  Google Scholar 

  170. Khitun A, Bao M, Wang KL (2008) Spin wave magnetic nanofabric: a new approach to spin-based logic circuitry. IEEE Trans Magn 44:2141

    Article  ADS  Google Scholar 

  171. Khitun A, Bao MQ, Wang KL (2010) Magnonic logic circuits. J Phys D Appl Phys 43:264005

    Article  ADS  Google Scholar 

  172. Chumak AV, Serga AA, Hillebrands B (2014) Magnon transistors for all-magnon data processing. Nat Commun 5:4700

    Google Scholar 

  173. Aronov AG (1976) Spin injection and polarization of excitations and nuclei in superconductors. Ah Eksp Teor Fiz 71:371

    Google Scholar 

  174. Johnson M, Silsbee RH (1985) Interfacial charge-spin coupling: injection and detection of spin magnetization in metals. Phys Rev Lett 55:1790

    Article  ADS  Google Scholar 

  175. Taniyama T, Wada E, Itoh M, Yamaguchi M (2011) Electrical and optical spin injection in ferromagnet/semiconductor heterostructures. NPG Asia Mater 3:65

    Article  Google Scholar 

  176. van Roy W, van Dorpe P, Motsnyi V, Liu Z, Borghs G, de Boeck J (2004) Spin-injection in semiconductors: materials challenges and device aspects. Phys Status Solidi B 241:1470

    Article  ADS  Google Scholar 

  177. Dyakonov MI, Perel VI (1971) Current-induced spin orientation of electrons in semiconductors. Phys Lett A 35:459

    Article  ADS  Google Scholar 

  178. Dyakonov MI, Perel VI (1971) Possibility of orienting electron spins with current. JETP Lett 13:467

    ADS  Google Scholar 

  179. Hirsch JE (1999) Spin Hall effect. Phys Rev Lett 83:1834

    Article  ADS  Google Scholar 

  180. Rashba EI (2008) Side jump contribution to spin-orbit mediated Hall effects and Berry curvature. Semiconductors 42:905

    Article  ADS  Google Scholar 

  181. Mosendz O, Pearson JE, Fradin FY, Bauer GEW, Bader SD, Hoffmann A (2010) Quantifying spin Hall angles from spin pumping: experiments and theory. Phys Rev Lett 104:046601

    Article  ADS  Google Scholar 

  182. Kato YK (2004) Observation of the spin Hall effect in semiconductors. Science 306:1105514

    Article  Google Scholar 

  183. Valenzuela SO, Tinkham M (2006) Direct electronic measurement of the spin Hall effect. Nature 442:176

    Article  ADS  Google Scholar 

  184. Saitoh E, Ueda M, Miyajima H, Tatara G (2006) Conversion of spin current into charge current at room temperature: inverse spin-Hall effect. Appl Phys Lett 88:182509

    Article  ADS  Google Scholar 

  185. Ando K, Kajiwara Y, Sasage K, Uchida K, Saitoh E (2010) Inverse spin-Hall effect induced by spin pumping in various metals. IEEE Trans Magn 46:1331

    Article  ADS  Google Scholar 

  186. Jungwirth T, Wunderlich J, Olejnik K (2012) Spin Hall effect devices. Nat Mater 11:382

    Article  ADS  Google Scholar 

  187. Tserkovnyak Y, Brataas A, Bauer GEW (2002) Enhanced Gilbert damping in thin ferromagnetic films. Phys Rev Lett 88:117601

    Article  ADS  Google Scholar 

  188. Costache MV, Sladkov M, Watts SM, van der Wal CH, van Wees BJ (2006) Electrical detection of spin pumping due to the precessing magnetization of a single ferromagnet. Phys Rev Lett 97:216603

    Article  ADS  Google Scholar 

  189. Burrowes C, Heinrich B, Kardasz B, Montoya EA, Girt E, Sun Y, Song Y-Y, Wu M (2012) Enhanced spin pumping at yttrium iron garnet/Au interfaces. Appl Phys Lett 100:092403

    Article  ADS  Google Scholar 

  190. Jungfleisch MB, Lauer V, Neb R, Chumak AV, Hillebrands B (2013) Improvement of the yttrium iron garnet/platinum interface for spin pumping-based applications. Appl Phys Lett 103:022411

    Article  ADS  Google Scholar 

  191. Nakayama H, Ando K, Harii K, Yoshino T, Takahashi R, Kajiwara Y, Uchida K, Fujikawa Y, Saitoh E (2012) Geometry dependence on inverse spin Hall effect induced by spin pumping in Ni81Fe19/Pt films. Phys Rev B 85:144408

    Article  ADS  Google Scholar 

  192. Ulrichs H, Demidov VE, Demokritov SO, Lim WL, Melander J, Ebrahim-Zadeh N, Urazhdin S (2013) Optimization of Pt-based spin-Hall-effect spintronic devices. Appl Phys Lett 102:132402

    Article  ADS  Google Scholar 

  193. Castel V, Vlietstra N, Ben Youssef J, van Wees BJ (2012) Platinum thickness dependence of the inverse spin-Hall voltage from spin pumping in a hybrid yttrium iron garnet/platinum system. Appl Phys Lett 101:132414

    Article  ADS  Google Scholar 

  194. Castel V, Vlietstra N, Ben Youssef J, and van Wees BJ (2014) YIG thickness and frequency dependence of the spin-charge current conversion in YIG/Pt systems. Phys Rev B 90:214434

    Google Scholar 

  195. Jungfleisch MB, Chumak AV, Kehlberger A, Lauer V, Kim DH, Onbasli MC, Ross CA, Kläui M, and Hillebrands B (2015) Thickness and power dependence of the spin-pumping effect in Y3Fe5O12/Pt heterostructures measured by the inverse spin Hall effect. Phys Rev B 91:134407

    Google Scholar 

  196. Jungfleisch MB, Chumak AV, Vasyuchka VI, Serga AA, Obry B, Schultheiss H, Beck PA, Karenowska AD, Saitoh E, Hillebrands B (2011) Temporal evolution of inverse spin Hall effect voltage in a magnetic insulator-nonmagnetic metal structure. Appl Phys Lett 99:182512

    Article  ADS  Google Scholar 

  197. d’Allivy Kelly O, Anane A, Bernard R, Ben Youssef J, Hahn C, Molpeceres AH, Carretero C, Jacquet E, Deranlot C, Bortolotti P, Lebourgeois R, Mage J-C, de Loubens G, Klein O, Cros V, Fert A (2013) Inverse spin Hall effect in nanometer-thick yttrium iron garnet/Pt system. Appl Phys Lett 103:082408

    Article  ADS  Google Scholar 

  198. Slonczewski JC (1995) Current-driven excitation of magnetic multilayers. J Magn Magn Mater 159:L1–L7

    Article  Google Scholar 

  199. Berger L (1996) Emission of spin waves by a magnetic multilayer traversed by a current. Phys Rev B 54:9353

    Article  ADS  Google Scholar 

  200. Brataas A, Kent AD, Ohno H (2012) Current-induced torques in magnetic materials. Nat Mater 11:372

    Article  ADS  Google Scholar 

  201. Fert A (2008) Nobel lecture: origin, development, and future of spintronics. Rev Mod Phys 80:1517

    Article  ADS  Google Scholar 

  202. Grünberg PA (2008) Nobel lecture: from spin waves to giant magnetoresistance. Rev Mod Phys 80:1531

    Article  ADS  Google Scholar 

  203. Zimmler MA, Özyilmaz B, Chen W, Kent AD, Sun JZ, Rooks MJ, Koch RH (2004) Current-induced effective magnetic fields in Co/Cu/Co nanopillars. Phys Rev B 70:184438

    Article  ADS  Google Scholar 

  204. Xia K, Kelly PJ, Bauer GEW, Brataas A, Turek I (2002) Spin torques in ferromagnetic/normal-metal structures. Phys Rev B 65:220401(R)

    Article  ADS  Google Scholar 

  205. Schultheiss H, Janssens X, van Kampen M, Ciubotaru F, Hermsdoerfer SJ, Obry B, Laraoui A, Serga AA, Lagae L, Slavin AN, Leven B, Hillebrands B (2009) Direct current control of three magnon scattering processes in spin-valve nanocontacts. Phys Rev Lett 103:157202

    Article  ADS  Google Scholar 

  206. Katine JA, Albert FJ, Buhrman RA, Myers EB, Ralph DC (2000) Current-driven magnetization reversal and spin-wave excitations in Co /Cu /Co Pillars. Phys Rev Lett 84:3149

    Article  ADS  Google Scholar 

  207. Özyilmaz B, Kent AD, Sun JZ, Rooks MJ, Koch RH (2004) Current-induced excitations in single cobalt ferromagnetic layer nanopillars. Phys Rev Lett 93:176604

    Article  ADS  Google Scholar 

  208. Liu RH, Lim WL, Urazhdin S (2013) Spectral characteristics of the microwave emission by the spin Hall nano-oscillator. Phys Rev Lett 110:147601

    Article  ADS  Google Scholar 

  209. Demidov VE, Urazhdin S, Ulrichs H, Tiberkevich V, Slavin A, Baither D, Schmitz G, Demokritov SO (2012) Magnetic nano-oscillator driven by pure spin current. Nat Mater 11:1028

    ADS  Google Scholar 

  210. Kajiwara Y, Harii K, Takahashi S, Ohe J, Uchida K, Mizuguchi M, Umezawa H, Kawai H, Ando K, Takanashi K, Maekawa S, Saitoh E (2010) Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature 464:262

    Article  ADS  Google Scholar 

  211. Wang ZH, Sun YY, Song YY, Wu MZ, Schultheiss H, Pearson JE, Hoffmann A (2011) Electric control of magnetization relaxation in thin film magnetic insulators. Appl Phys Lett 99:162511

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexy D. Karenowska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Karenowska, A.D., Chumak, A.V., Serga, A.A., Hillebrands, B. (2016). Magnon Spintronics. In: Xu, Y., Awschalom, D., Nitta, J. (eds) Handbook of Spintronics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6892-5_53

Download citation

Publish with us

Policies and ethics