Skip to main content

Domain Wall Memory Device

  • Reference work entry
Handbook of Spintronics

Abstract

Magnetic domain walls in confined geometries have attracted much interest in the last couple of years for a number of reasons. On the one hand, new physical phenomena such as current-induced domain wall motion due to the highly debated nonadiabatic spin torque and novel spin–orbit torques have been investigated. On the other hand, the proposal of the racetrack memory concept as a universal data storage device has stimulated much research. In such a device, domain walls in magnetic nanowires are used as bits of information which can be shifted, e.g., to locate them at the position of a read head, without the need to move physically any material. The prospect of memory and logic devices has spurred an intense research, in particular into different materials with promising properties for domain walls and domain wall motion. The critical parameters to be optimized are mainly domain wall lateral sizes, directly governing the possible information density, and domain wall movement and pinning/depinning processes that determine access time and energy consumption. The ability to control and manipulate domain walls precisely opens up avenues to designing a range of novel and highly competitive devices.

In this chapter, a review of the properties of magnetic domain walls in nanowires and the possibilities to control and manipulate them is given. Precise control and efficient manipulation of domain walls is the prerequisite for any device. Different material classes and the resulting domain wall types are reviewed. The basic operations that are necessary for a device, i.e., nucleation, displacement, and detection of domain walls, are discussed for these material classes. Examples of devices using magnetic domain walls are briefly reviewed, including memory and logic applications. The first commercial nonvolatile multiturn sensor product that is based on magnetic domain walls and combines sensing and memory is described in more detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

1D, 2D, 3D:

One, two, or three dimensional

3d :

Elements from the first side group in the periodic table with 3D electron in the outer shell, from Sc to Zn, in magnetic context usually Fe, Co, Ni (Mn, Cr), and their alloys

AMR:

Anisotropic magnetoresistance

ccw:

Counterclockwise

CFAS:

Co2FeAl0.4Si0.6

CIDWM:

Current-induced domain wall motion

CIP:

Current in-plane

CMOS:

Complementary metal oxide semiconductor

CPP:

Current perpendicular to plane

cw:

Clockwise

DC:

Direct current

DMI:

Dzyaloshinskii–Moriya interaction

DW:

Domain wall

DWG:

Domain wall generator

EHE:

Extraordinary Hall effect

FTH:

Fourier transform holography (with X-rays)

GMR:

Giant magnetoresistance

IBM:

Industrial Business Machines Corporation

IST-RAM:

In-plane spin-torque random access memory

LLG:

Landau–Lifshitz–Gilbert equation

LSMO:

La0.33Sr0.67MnO3

MFM:

Magnetic force microscopy

MOKE:

Magneto-optical Kerr effect

MR:

Magnetoresistance

MRAM:

Magnetic random access memory

MTJ:

Magnetic tunnel junction

NEC:

NEC Corporation

OOMMF:

Object Oriented Micromagnetic Framework

OST-RAM:

Orthogonal (perpendicular) spin-torque random access memory

PEEM:

Photoemission electron microscopy

PL/FL/AL:

Perpendicular magnetized layer, free layer, analyzing layer

PMA:

Perpendicular magnetic anisotropy

Py:

Permalloy (Ni81Fe19)

RAMAC:

IBM 305 RAMAC (random access method of accounting and control), first computer with a hard disk drive

RF:

Radio frequency

SEM:

Scanning electron microscopy

SEMPA:

Scanning electron microscopy with polarization analyzer

STO:

SrTiO3

STT-RAM:

Spin transfer torque magnetic random access memory

STT:

Spin transfer torque

STXM:

Scanning transmission X-ray microscopy

SW:

Spin wave

TEY:

Total electron yield

TMR:

Tunnel magnetoresistance

TW:

Transverse domain wall

VW:

Vortex domain wall

XMCD:

X-ray magnetic circular dichroism

XMCD-PEEM:

X-ray magnetic circular dichroism–photoemission electron microscopy

μ:

Domain wall mobility

μ0 :

Vacuum permeability

A:

Exchange constant

D, d:

Diameter

e:

Electron charge

Heff :

“Effective” magnetic field acting on m

Hk :

Anisotropy field

Hnucleation, Hn :

Nucleation magnetic field for domain walls

HP :

Propagation magnetic field for domain walls, pinning field

HW :

Walker breakdown field

jc, Jc :

Critical current density

K:

Magnetic anisotropy constant

Kd :

Magnetostatic energy difference between Bloch and Néel wall; demagnetizing energy

Keff :

Effective anisotropy constant

m:

Magnetization vector

MS :

Saturation magnetization

NX,Y,Z :

Demagnetizing factors

P:

Spin polarization

RT:

Room temperature

t:

Thickness

TC :

Curie temperature

u:

Effective velocity

w:

Width

α:

Damping constant

β:

Nonadiabatic

γ0 :

Gyromagnetic ratio

θ:

Out-of-plane spin-canting angle

λex, Λ:

Exchange length

λsf :

Spin-flip length

References

  1. McFadyen R, Fullerton EE, Carey MJ (2006) State-of-the-art magnetic hard disk drives. MRS Bull 31:379

    Article  Google Scholar 

  2. Dee RH (2006) Magnetic tape: the challenge of reaching hard-disk-drive data densities on flexible media. MRS Bull 31:404

    Article  Google Scholar 

  3. Boulle O, Malinowski G, Kläui M (2011) Current-induced domain wall motion in nanoscale ferromagnetic elements. Mater Sci Eng R72:159

    Article  Google Scholar 

  4. Tehrani S, Slaughter JM, Chen E, Durlam M, Shi J, DeHerrera M (1999) Progress and outlook for MRAM technology. IEEE Trans Magn 35:2814

    Article  ADS  Google Scholar 

  5. Parkin SSP (2004) Shiftable magnetic shift register and method of using the same. US Patent 6,834,005 and Parkin SSP (2006) Magnetic shift register with shiftable magnetic domains between two regions, and method of using the same. US Patent 7031178 B2

    Google Scholar 

  6. Parkin SSP, Hayashi M, Thomas L (2008) Magnetic domain-wall racetrack memory. Science 320:190

    Article  ADS  Google Scholar 

  7. Cowburn R, Petit D, Read D, Petracic O (2007) Data storage device and method. Patent WO 2007/132174A1

    Google Scholar 

  8. Parkin SSP (2006) MRS Bull 31:389

    Article  Google Scholar 

  9. Kläui M (2008) Head-to-head domain walls in magnetic nanostructures. J Phys Condens Matter 20:313001

    Article  ADS  Google Scholar 

  10. Kläui M, Vaz CAF (2007) Magnetization configurations and reversal in small magnetic elements. In: Kronmüller H, Parkin SSP (eds) Handbook of magnetism and advanced magnetic materials, vol 2. Wiley, Chichester

    Google Scholar 

  11. Kronmüller H, Fähnle M (2003) Micromagnetism and the microstructure of ferromagnetic solids. Cambridge University Press, Cambridge

    Google Scholar 

  12. Rhensius J, Vaz CAF, Bisig A, Schweitzer S, Heidler J, Körner HS, Locatelli A, Niño MA, Weigand M, Méchin L, Gaucher F, Goering E, Heyderman LJ, Kläui M (2011) Control of spin configuration in half-metallic La0.7Sr0.3MnO3 nano-structures. Appl Phys Lett 99:062508

    Article  ADS  Google Scholar 

  13. Fonin M, Hartung C, Rüdiger U, Backes D, Heyderman L, Nolting F, Fraile Rodríguez A, Kläui M (2011) Formation of magnetic domains and domain walls in epitaxial Fe3O4(100) elements (invited). J Appl Phys 109:07D315

    Article  Google Scholar 

  14. Bruno P (1999) Geometrically constrained magnetic wall. Phys Rev Lett 83:2425

    Article  ADS  Google Scholar 

  15. Jubert PO, Allenspach R, Bischof A (2004) Magnetic domain walls in constrained geometries. Phys Rev B 69:220410

    Article  ADS  Google Scholar 

  16. Vaz CAF, Bland JAC, Lauhoff G (2008) Magnetism in ultrathin film structures. Rep Prog Phys 71:056501

    Article  ADS  Google Scholar 

  17. Dennis CL et al (2002) The defining length scales of mesomagnetism: a review. J Phys Cond Mat 14:R1175

    Article  ADS  Google Scholar 

  18. Parkin S, Yang SH (2015) Memory on the Ractrack, Nature Nanotech. 10:195

    Article  ADS  Google Scholar 

  19. Thiaville A, Nakatani Y (2006) Domain-wall dynamics in nanowires and nanostrips. In: Hillebrands B, Ounadjela K (eds) Spin dynamics in confined magnetic structures, vol 3. Springer, Berlin

    Google Scholar 

  20. Miltat J, Donahue MJ (2007) Numerical micromagnetics: finite difference methods. In: Kronmüller H, Parkin SSP (eds) Handbook of magnetism and advanced magnetic materials, vol 2. Wiley, Chichester

    Google Scholar 

  21. Schrefl T et al. (2007) Numerical methods in micromagnetics (finite element method). In: Kronmüller H, Parkin SSP (eds) Handbook of magnetism and advanced magnetic materials, vol 2. Wiley, Chichester

    Google Scholar 

  22. McMichael RD, Donahue MJ (1997) Head to head domain wall structures in thin magnetic strips. IEEE Trans Magn 33:4167

    Article  ADS  Google Scholar 

  23. Kläui M, Vaz CAF, Bland JAC, Heyderman LJ, Nolting F, Pavlovska A, Bauer E, Cherifi S, Heun S, Locatelli A (2004) Head-to-head domain wall phase diagram in mesoscopic ring magnets. Appl Phys Lett 85:5637

    Article  ADS  Google Scholar 

  24. Laufenberg M et al (2006) Observation of thermally activated domain wall transformations. Appl Phys Lett 88:052507

    Article  ADS  Google Scholar 

  25. Wachowiak A, Wiebe J, Bode M, Pietzsch O, Morgenstern M, Wiesendanger R (2002) Direct observation of internal spin structure of magnetic vortex cores. Science 298:577

    Article  ADS  Google Scholar 

  26. Junginger F, Kläui M, Backes D, Krzyk S, Rüdiger U, Kasama T, Dunin-Borkowski RE, Feinberg JM, Harrison RJ, Heyderman LJ (2008) Quantitative determination of vortex core dimensions in head-to-head domain walls using off-axis electron holography. Appl Phys Lett 92:112502

    Article  ADS  Google Scholar 

  27. Feldtkeller E, Thomas H (1965) Struktur und Energie von Blochlinien in dünnen ferromagnetischen Schichten. Phys Kondens Mater 4:8

    ADS  Google Scholar 

  28. Nakatani Y, Thiaville A, Miltat J (2005) Head-to-head domain walls in soft nano-strips: A refined phase diagram. J Magn Magn Mater 290:750

    Article  ADS  Google Scholar 

  29. Backes D et al (2007) Transverse domain walls in nanoconstrictions. Appl Phys Lett 91:112502

    Article  ADS  Google Scholar 

  30. The Object Oriented MicroMagnetic Framework project, ITL = NIST. For details see, http://math.nist.gov/oommf

  31. Hashim I, Joo HS, Atwater HA (1995) Structural and magnetic properties of epitaxial Ni80Fe20 thin films on Cu/Si. Surf Rev Lett 2:427

    Article  Google Scholar 

  32. Alexe M, Ziese M, Hesse D, Esquinazi P, Yamauchi K, Fukushima T, Picozzi S, Gösele U (2009) Ferroelectric switching in multiferroic magnetite (Fe3O4) thin films. Adv Mater 21:4452

    Article  Google Scholar 

  33. Dedkov YS, Rüdiger U, Günterodt G (2002) Evidence for the half-metallic ferromagnetic state of Fe3O4 by spin-resolved photoelectron spectroscopy. Phys Rev B 65:064417

    Article  ADS  Google Scholar 

  34. Fonin M, Pentcheva R, Dedkov YS, Sperlich M, Vyalikh DV, Scheffler M, Rüdiger U, Güntherodt G (2005) Surface electronic structure of the Fe3O4 (100): Evidence of a half-metal to metal transition. Phys Rev B 72:104436

    Article  ADS  Google Scholar 

  35. Fonin M, Dedkov YS, Pentcheva R, Rüdiger U, Güntherodt G (2007) Magnetite: a search for the half-metallic state. J Phys Condens Matter 19:315217

    Article  ADS  Google Scholar 

  36. Kläui M, Vaz CAF, Lopez-Diaz L, Bland JAC (2003) Vortex Formation in narrow ferromagnetic rings. J Phys Condens Matter 15:R985

    Article  ADS  Google Scholar 

  37. Coey JMD, Viret M, von Molnár S (1999) Mixed-valence manganites. Adv Phys 48:167

    Article  ADS  Google Scholar 

  38. Dagotto E (2005) Complexity in strongly correlated electronic systems. Science 309:257

    Article  ADS  Google Scholar 

  39. Wohlhüter P et al (2013) The effect of magnetic anisotropy on the spin configurations of patterned La0.7Sr0.3MnO3 elements. J Phys Condens Matter 25:176004

    Article  ADS  Google Scholar 

  40. Arnal T, Khvalkovskii AV, Bibes M, Mercey B, Lecoeur P, Haghiri-Gosnet A-M (2007) Electronic properties of domain walls in La2/3Sr1/3MnO3: Magnetotransport measurements on a nanopatterned device. Phys Rev B75:220409R

    Article  ADS  Google Scholar 

  41. Ruotolo A, Oropallo A, Miletto Granozio F, Pepe GP, Perna P, Scottidi Uccio U, Pullini D (2007) Current-induced domain wall depinning and magnetoresistance in La0.7Sr0.3MnO3 planar spin-valves. Appl Phys Lett 91:132502

    Article  ADS  Google Scholar 

  42. Foerster M et al (2014) Efficient spin transfer torque in La2/3Sr1/3MnO3 nanostructures. Appl Phys Lett 104:072410

    Article  ADS  Google Scholar 

  43. Finizio S et al (2014) Domain wall transformations and hopping in La0.7Sr0.3MnO3 nanostructures imaged with high resolution x-ray magnetic microscopy. J Phys Cond Matter 26:456003

    Article  ADS  Google Scholar 

  44. Jourdan M, Minar J, Braun J, Kronenberg A, Chadov S, Balke B, Gloskovskii A, Kolbe M, Elmers HJ, Schönhense G, Ebert H, Felser C, Kläui M (2014) Direct observation of half-metallicity in the Heusler compound Co2MnSi. Nat Commun 5:3974

    Article  ADS  Google Scholar 

  45. Vaz AF, Rhensius J, Heidler J, Wohlhüter P, Bisig A, Körner HS, Mentes TO, Locatelli A, Le Guyader L, Nolting F, Graf T, Felser C, Heyderman LJ, Kläui M (2011) Spin configurations in Co(2)FeAl(0.4)Si(0.6) Heusler alloy thin film elements. Appl Phys Lett 99:182510

    Article  ADS  Google Scholar 

  46. Miyawaki T et al. (2013) The effect of magnetocrystalline anisotropy on the domain structure of patterned Fe2CrSi Heusler alloy thin films. J Appl Phys 114:073905

    Article  ADS  Google Scholar 

  47. Kläui M et al (2005) Appl Phys Lett 87:102509

    Article  ADS  Google Scholar 

  48. Rothman J, Kläui M, Lopez-Diaz L, Vaz CAF, Bleloch A, Bland JAC, Cui Z, Speaks R (2001) Observation of a bi-domain state and nucleation free switching in mesoscopic ring magnets. Phys Rev Lett 86:1098

    Article  ADS  Google Scholar 

  49. Harte KJ (1968) Theory of magnetization ripple in ferromagnetic films. J Appl Phys 39:1503

    Article  ADS  Google Scholar 

  50. Kläui M, Jubert PO, Allenspach R, Bischof A, Bland JAC, Faini G, Rüdiger U, Vaz CAF, Vila L, Vouille C (2005) Direct observation of domain-wall configurations transformed by spin currents. Phys Rev Lett 95:026601

    Article  ADS  Google Scholar 

  51. Hayashi M, Thomas L, Bazaliy YB, Rettner C, Moriya R, Jiang X, Parkin SSP (2006) Influence of current on field-driven domain wall motion in permalloy nanowires from time resolved measurements of anisotropic magnetoresistance. Phys Rev Lett 96:197207

    Article  ADS  Google Scholar 

  52. Togawa Y, Kimura T, Harada K, Matsuda T, Tonomura A, Otani Y, Akashi T (2008) Current-excited magnetization reversal under in-plane magnetic field in a nanoscaled ferromagnetic wire. Appl Phys Lett 92:012505

    Article  ADS  Google Scholar 

  53. Hubert A, Schäfer R (1998) Magnetic domains. Springer, Berlin

    Google Scholar 

  54. Sobolev VL (1998) Internal structure of a domain wall in ultrathin magnetic film. J Magn Magn Mater 177:195

    Article  ADS  Google Scholar 

  55. Boulle O et al (2009) Reversible switching between bidomain states by injection of current pulses in a magnetic wire with out-of-plane magnetization. J Appl Phys 105:07C106

    Article  Google Scholar 

  56. Mougin A, Cormier M, Adam JP, Metaxas PJ, Ferre J (2007) Domain wall mobility, stability and Walker breakdown in magnetic nanowires. Europhys Lett 78:57007

    Article  ADS  Google Scholar 

  57. Ueda K et al. (2011) Current-induced domain wall motion in Co/Ni nano-wires with different Co and Ni thicknesses. J Phys Conf Ser 266:012110

    Article  ADS  Google Scholar 

  58. Ohshima N et al. (2011) Real space observation of current-induced magnetic domain wall displacement in Co/Ni nano-wire by photoemission electron microscopy. J Phys Condens Matter 23:382202

    Article  ADS  Google Scholar 

  59. Chiba D et al. (2010) Control of multiple magnetic domain walls by current in a Co/Ni nano-wire. Appl Phys Expr 3:073004

    Article  ADS  Google Scholar 

  60. O’Brien L, Petit D, Zeng HT, Lewis ER, Sampaio J, Jausovec AV, Read DE, Cowburn RP (2009) Near-field interaction between domain walls in adjacent permalloy nanowires. Phys Rev Lett 103:077206

    Article  ADS  Google Scholar 

  61. Ahn SM, Moon KW, Cho CG, Choe SB (2011) Control of domain wall pinning in ferromagnetic nanowires by magnetic stray fields. Nanotechnology 22:085201

    Article  ADS  Google Scholar 

  62. Kuch W, Chelaru LI, Fukumoto K, Porrati F, Offi F, Kotsugi M, Kirschner J (2003) Layer-resolved imaging of magnetic interlayer coupling by domain-wall stray fields. Phys Rev B 67:214403

    Article  ADS  Google Scholar 

  63. Yang S.-H. et al. (2015) Domain-wall velocities of up to 750 m s−1 driven by exchange-coupling torque in synthetic antiferromagnets Nature Nanotech 10:221

    Google Scholar 

  64. Katine JA, Albert FJ, Buhrman RA, Myers EB, Ralph DC (2000) Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars. Phys Rev Lett 84:3149

    Article  ADS  Google Scholar 

  65. Lee OJ et al (2009) Ultrafast switching of a nanomagnet by a combined out-of-plane and in-plane polarized spin current pulse. Appl Phys Lett 95:012506

    Article  ADS  Google Scholar 

  66. Papusoi C, Delaet B, Rodmacq B, Houssameddine D, Michel JP, Ebels U, Sousa RC, Buda-Prejbeanu L, Dieny B (2009) 100 ps precessional spin-transfer switching of a planar magnetic random access memory cell with perpendicular spin polarizer. Appl Phys Lett 95:072506

    Article  ADS  Google Scholar 

  67. Liu H, Bedau D, Backes D, Kantine JA, Langer J, Kent AD (2010) Ultrafast switching in magnetic tunnel junction based orthogonal spin transfer devices. Appl Phys Lett 97:242510

    Article  ADS  Google Scholar 

  68. Rowlands GE et al (2011) Ultrafast switching in magnetic tunnel junction based orthogonal spin transfer devices. Appl Phys Lett 98:102509

    Article  ADS  Google Scholar 

  69. Amiri H et al (2011) Ultrafast switching in magnetic tunnel junction based orthogonal spin transfer devices. Appl Phys Lett 98:112507

    Article  ADS  Google Scholar 

  70. Ikeda S, Miura K, Yamamoto H, Mizunuma K, Gan HD, Endo M, Kanai S, Hayakawa J, Matsukura F, Ohno H (2010) A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction. Nat Mater 9:721

    Article  ADS  Google Scholar 

  71. Kammerer M et al (2011) Magnetic vortex core reversal by excitation of spin waves. Nat Comm 2:279

    Article  ADS  Google Scholar 

  72. Landau L, Lifshits E (1935) On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Physikalische Zeitschrift der Sowjetunion 8:153

    MATH  Google Scholar 

  73. Brown WF (1963) Micromagnetics. Interscience, New York

    MATH  Google Scholar 

  74. Gilbert TL (2004) A phenomenological theory of damping in ferromagnetic materials. IEEE Trans Magn 40:3443

    Article  ADS  Google Scholar 

  75. Thiaville A, Nakatani Y, Miltat J, Suzuki Y (2005) Micromagnetic understanding of current-driven domain wall motion in patterned nanowires. Europhys Lett 69:990

    Article  ADS  Google Scholar 

  76. Tatara G, Kohno H (2004) Theory of current-driven domain wall motion: spin transfer versus momentum transfer. Phys Rev Lett 92:086601

    Article  ADS  Google Scholar 

  77. Zhang S, Li Z (2004) Roles of nonequilibrium conduction electrons on the magnetization dynamics of ferromagnets. Phys Rev Lett 93:127204

    Article  ADS  Google Scholar 

  78. Tatara G (2007) Spin torque and force due to current for general spin textures. J Phys Soc Japan 76:54707

    Article  ADS  Google Scholar 

  79. Barnes SE, Maekawa S. Theory of spin-transfer torque and domain wall motion in magnetic nanostructures. In: Maekawa S (ed) Concepts in spin electronics. Oxford University Press, Oxford

    Google Scholar 

  80. Tserkovnyak Y, Brataas A, Bauer GEW (2008) Theory of current-driven magnetization dynamics in inhomogeneous ferromagnets. J Magn Magn Mater 320:1282

    Article  ADS  Google Scholar 

  81. Schryer NL, Walker LR (1974) The motion of 180° domain walls in uniform dc magnetic fields. J Appl Phys 45:5406

    Article  ADS  Google Scholar 

  82. Schieback C, Kläui M, Nowak U, Rüdiger U, Nielaba P (2007) Numerical investigation of spin-torque using the Heisenberg model. Eur Phys J B 59:429

    Article  ADS  MATH  Google Scholar 

  83. Bryan MT, Schrefl T, Atkinson D, Allwood DA (2008) Magnetic domain wall propagation in nanowires under transverse magnetic fields. J Appl Phys 103:073906

    Article  ADS  Google Scholar 

  84. Bryan MT, Schrefl T, Allwood DA (2010) Dependence of transverse domain wall dynamics on permalloy nanowire dimensions. IEEE Trans Magn 46:1135

    Article  ADS  Google Scholar 

  85. Choi YS, Lee JY, Yoo MW, Lee KS, Guslienko KY, Kim SK (2009) Critical nucleation size of vortex core for domain wall transformation in soft magnetic thin film nanostrips. Phys Rev B 80:012402

    Article  ADS  Google Scholar 

  86. Dean JS, Bryan MT, Allwood DA, Bance S, Bashir MA, Hrkac G (2009) Tailoring domain wall dynamics with uniaxial anisotropy in nanowires. IEEE Trans Magn 45:4067

    Article  ADS  Google Scholar 

  87. Kim SK, Lee JY, Choi YS, Guslienko KY, Lee KS (2008) Underlying mechanism of domain-wall motions in soft magnetic thin-film nanostripes beyond the velocity breakdown regime. Appl Phys Lett 93:052503

    Article  ADS  Google Scholar 

  88. Kunz A, Reiff SC (2008) Enhancing domain wall speed in nanowires with transverse magnetic fields. J Appl Phys 103:07D903

    Google Scholar 

  89. Breitbach E, Smith C, Kunz AJ (2009) Anti-vortex dynamics in magnetic nanostripes. J Appl Phys 103:07D502

    Google Scholar 

  90. Kunz A (2006) Simulating the maximum domain wall speed in a magnetic nanowire. IEEE Trans Magn 42:3219–3221

    Article  ADS  Google Scholar 

  91. Kunz A (2006) Simulated domain wall dynamics in permalloy nanowires. J Appl Phys 99:08G107

    Google Scholar 

  92. Lee JY et al (2007) Dynamic transformations of the internal structure of a moving domain wall in magnetic nanostripes. Phys Rev B 76:184408

    Article  ADS  Google Scholar 

  93. Martinez E, Lopez-Diaz L, Torres L, Tristan C, Alejos O (2007) Thermal effects in domain wall motion: Micromagnetic simulations and analytical model. Phys Rev B 75:174409

    Article  ADS  Google Scholar 

  94. Nakatani Y, Thiaville A, Miltat J (2003) Faster magnetic walls in rough wires. Nat Mater 2:521

    Article  ADS  Google Scholar 

  95. Zeisberger M, Mattheis R (2012) Magnetization reversal in magnetic nanostripes via Bloch wall formation. J Phys Condens Matter 24:024202

    Article  ADS  Google Scholar 

  96. Berkov DV, Gorn NL MicroMagus: package for micromagnetic simulations. http://www.micromagus.de

  97. Lu J, Wang XR (2010) Motion of transverse domain walls in thin magnetic nanostripes under transverse magnetic fields. J Appl Phys 107:083915

    Article  ADS  Google Scholar 

  98. Ono T, Miyajima H, Shigeto K, Shinjo T (1998) Magnetization reversal in sub-micron magnetic wire studied by using giant magnetoresistance effect. Appl Phys Lett 72:1116

    Article  ADS  Google Scholar 

  99. Ono T, Miyajima H, Shigeto K, Mibu K, Hosoito N, Shinjo T (1999) Propagation of a magnetic domain wall in a submicrometer magnetic wire. Science 284:468

    Article  ADS  Google Scholar 

  100. Atkinson D, Allwood DA, Xiong G, Cooke MD, Faulkner CC, Cowburn RP (2003) Magnetic domain-wall dynamics in a submicrometre ferromagnetic structure. Nat Mater 2:85

    Article  ADS  Google Scholar 

  101. Beach GSD, Nistor C, Knutson C, Tsoi M, Erskine JL (2005) Dynamics of field-driven domain-wall propagation in ferromagnetic nanowires. Nat Mater 4:741

    Article  ADS  Google Scholar 

  102. Yang J, Nistor C, Beach GSD, Erskine JL (2008) Magnetic domain-wall velocity oscillations in permalloy nanowires. Phys Rev B 77:014413

    Article  ADS  Google Scholar 

  103. Hayashi M, Thomas L, Rettner C, Moriya R, Parkin SSP (2007) Direct observation of the coherent precession of magnetic domain walls propagating along permalloy nanowires. Nat Phys 3:21

    Article  Google Scholar 

  104. Hayashi M, Thomas L, Rettner C, Moriya R, Parkin SSP (2008) Real time observation of the field driven periodic transformation of domain walls in Permalloy nanowires at the Larmor frequency and its first harmonic. Appl Phys Lett 92:112510

    Article  ADS  Google Scholar 

  105. Glathe S, Mattheis R, Berkov DV (2008) Direct observation and control of the Walker breakdown process during a field driven domain wall motion. Appl Phys Lett 93:072508

    Article  ADS  Google Scholar 

  106. Glathe S, Berkov I, Mikolajick T, Mattheis R (2008) Experimental study of domain wall motion in long nanostrips under the influence of a transverse field. Appl Phys Lett 93:162505

    Article  ADS  Google Scholar 

  107. Weerts K, Van Roy W, Borghs G, Lagae L (2010) Suppression of complex domain wall behaviour in Ni80Fe20 nanowires by oscillating magnetic fields. Appl Phys Lett 96:062502

    Article  ADS  Google Scholar 

  108. Lewis ER, Petit D, O’Brien L, Fernandez-Pacheco A, Sampaio J, Jausovec AV, Zeng HT, Read DE, Cowburn RP (2010) Fast domain wall motion in magnetic comb structures. Nat Mater 9:980

    Article  ADS  Google Scholar 

  109. Glathe S, Zeisberger M, Hübner U, Mattheis R, Berkov DV (2010) Splitting of a moving transverse domain wall in a magnetic nanostripe in a transverse field. Phys Rev B 81:020412(R)

    Article  ADS  Google Scholar 

  110. Zinoni C, Vanhaverbeke A, Eib P, Salis G, Allenspach R (2011) Beyond the compact magnetic domain wall. Phys Rev Lett 107:207204

    Article  ADS  Google Scholar 

  111. Hayashi M, Kasai S, Mitani S (2010) Time resolved inductive detection of domain wall dynamics in magnetic nanowires. App Phys Express 3:113004

    Article  ADS  Google Scholar 

  112. Moriya R, Hayashi M, Thomas L, Rettner C, Parkin SSP (2010) Dependence of field driven domain wall velocity on cross-sectional area in Ni65Fe20Co15 nanowire. Appl Phys Lett 97:142506

    Article  ADS  Google Scholar 

  113. Jiang X, Thomas L, Moriya R, Hayashi M, Bergman B, Rettner C, Parkin SSP (2010) Enhanced stochasticity of domain wall motion in magnetic racetracks due to dynamic pinning. Nat Commun 1:25

    Article  ADS  Google Scholar 

  114. Kondou K, Ohshima N, Kasai S, Nakatani Y, Ono T (2008) Single shot detection of the magnetic domain wall motion by using tunnel magnetoresistance effect. Appl Phys Express 1:061302

    Article  ADS  Google Scholar 

  115. Rhensius J, Heyne L, Backes D, Krzyk S, Heyderman LJ, Joly L, Nolting F, Kläui M (2010) Imaging of domain wall inertia in permalloy half-ring nanowires by time-resolved photoemission electron microscopy. Phys Rev Lett 104:067201

    Article  ADS  Google Scholar 

  116. Kim J-S, Kläui M (2014) Magnetic device switchable by magnetic domain wall motion and method of operating the device. Patent EP2747086 A1

    Google Scholar 

  117. Seo S M et al. (2007) Effect of shape anisotropy on threshold current density for current-induced domain wall motion. Appl Phys Lett 90:252508

    Article  ADS  Google Scholar 

  118. Yamaguchi A, Ono T, Nasu S, Miyake K, Mibu K, Shinjo T (2004) Real-space observation of current-driven domain wall motion in submicron magnetic wires. Phys Rev Lett 92:077205

    Article  ADS  Google Scholar 

  119. Kläui M, Vaz CAF, Bland JAC, Wernsdorfer W, Faini G, Cambril E, Heyderman LJ, Nolting F, Rüdiger U (2005) Controlled and reproducible domain wall displacement by current pulses injected into ferromagnetic ring structures. Phys Rev Lett 94:106601

    Article  ADS  Google Scholar 

  120. Meier G et al (2007) Direct imaging of stochastic domain-wall motion driven by nanosecond current pulses. Phys Rev Lett 98:187202

    Article  ADS  Google Scholar 

  121. Marrows H (2005) Spin-polarised currents and magnetic domain walls. Adv Phys 54:585

    Article  ADS  Google Scholar 

  122. Beach GSD, Knutson C, Nistor C, Tsoi M, Erskine JL (2007) Nonlinear domain-wall velocity enhancement by spin-polarized electric current. Phys Rev Lett 97:057203

    Article  ADS  Google Scholar 

  123. Hayashi M, Thomas L, Rettner C, Moriya R, Bazaliy YB, Parkin SSP (2007) Current driven domain wall velocities exceeding the spin angular momentum transfer rate in permalloy nanowires. Phys Rev Lett 98:037204

    Article  ADS  Google Scholar 

  124. Jubert PO, Kläui M, Bischof A, Rüdiger U, Allenspach R (2006) Velocity of vortex walls moved by current. J Appl Phys 99:08G523

    Article  Google Scholar 

  125. Heyne L et al (2008) Relationship between nonadiabaticity and damping in permalloy studied by current induced spin structure transformations. Phys Rev Lett 100:066603

    Article  ADS  Google Scholar 

  126. Kläui M et al (2009) Concepts for domain wall motion in nanoscale ferromagnetic elements due to spin torque and in particular oersted fields. J Magn 14(2):53

    Article  Google Scholar 

  127. Fukami S, Suzuki T, Ohshima N, Nagahara K, Ishiwata N (2008) Intrinsic threshold current density of domain wall motion in nanostrips with perpendicular magnetic anisotropy for use in low-write-current mrams. IEEE Trans Magn 44:2539

    Article  ADS  Google Scholar 

  128. Suzuki T, Fukami S, Ohshima N, Nagahara K, Ishiwata N (2008) Analysis of current-driven domain wall motion from pinning sites in nanostrips with perpendicular magnetic anisotropy. J Appl Phys 103:113913

    Article  ADS  Google Scholar 

  129. Fukami S, Suzuki T, Ohshima N, Nagahara K, Ishiwata N (2008) Micromagnetic analysis of current driven domain wall motion in nanostrips with perpendicular magnetic anisotropy. J Appl Phys 103:07E718

    Article  Google Scholar 

  130. Fukami S, Nakatani Y, Suzuki T, Nagahara K, Ohshima N, Ishiwata N (2009) Relation between critical current of domain wall motion and wire dimension in perpendicularly magnetized Co/Ni nanowires. Appl Phys Lett 95:232504

    Article  ADS  Google Scholar 

  131. Martinez E, Lopez-Diaz L, Alejos O, Torres L (2009) Thermally activated domain wall depinning in thin strips with high perpendicular magnetocrystalline anisotropy. J Appl Phys 106:043914

    Article  ADS  Google Scholar 

  132. Garcia-Sanchez F, Szambolics H, Mihai AP, Vila L, Marty A, Attan JP, Toussaint JC, Buda-Prejbeanu LD (2010) Effect of crystalline defects on domain wall motion under field and current in nanowires with perpendicular magnetization. Phys Rev B 81:134408

    Article  ADS  Google Scholar 

  133. Yan M, Kokay A, Gliga S, Hertel R (2010) Beating the walker limit with massless domain walls in cylindrical nanowires. Phys Rev Lett 104:057201

    Article  ADS  Google Scholar 

  134. Tatara G, Entel P (2008) Calculation of current-induced torque from spin continuity equation. Phys Rev B 78:064429

    Article  ADS  Google Scholar 

  135. Garate I, Gilmore K, Stiles MD, MacDonald AH (2009) Nonadiabatic spin-transfer torque in real materials. Phys Rev B 79:104416

    Article  ADS  Google Scholar 

  136. Obata K, Tatara G (2008) Current-induced domain wall motion in Rashba spin-orbit system. Phys Rev B 77:214429

    Article  ADS  Google Scholar 

  137. Lucassen ME, van Driel HJ, Morais Smith C, Duine RA (2009) Current-driven and field-driven domain walls at nonzero temperature. Phys Rev B 79:224411

    Article  ADS  Google Scholar 

  138. Heinen J et al (2012) Determination of the spin torque non-adiabaticity in perpendicularly magnetized nanowires. J Phys Condens Matter 24:024220

    Article  ADS  Google Scholar 

  139. Ravelosona D, Mangin S, Katine JA, Fullerton E, Terris BD (2007) Treshhold currents to move domain walls in film with perpendicular anisotropy. Appl Phys Lett 90:072508

    Article  ADS  Google Scholar 

  140. Li S, Nakamura H, Kanazawa T, Liu X, Morisako A (2010) Current-Induced domain wall motion in TbFeCo wires with perpendicular magnetic anisotropy. IEEE Trans Magn 46:1695

    Article  ADS  Google Scholar 

  141. Koyama T et al (2011) Observation of the intrinsic pinning of a magnetic domain wall in a ferromagnetic nanowire. Nat Mater 10:194

    Article  ADS  Google Scholar 

  142. Suzuki T, Fukami S, Nagahara K, Ohshima N, Ishiwata N (2009) Evaluation of scalability for current-driven domain wall motion in a co/ni multilayer strip for memory applications. IEEE Trans Magn 45:3776

    Article  ADS  Google Scholar 

  143. Tanigawa H, Koyama T, Yamada G, Chiba D, Kasai S, Fukami S, Suzuki T, Ohshima N, Ishiwata N, Nakatani Y, Ono T (2009) Domain wall motion induced by electric current in a perpendicularly magnetized Co/Ni nano-wire. Appl Phys Express 2:053002

    Article  ADS  Google Scholar 

  144. Fukami S, Suzuki T, Nakatani Y, Ishiwata N, Yamanouchi M, Ikeda S, Kasai N, Ohno H (2011) Current-induced domain wall motion in perpendicularly magnetized CoFeB nanowire. Appl Phys Lett 98:082504

    Article  ADS  Google Scholar 

  145. Lee JC, Kim KJ, Ryu J, Moon KW, Yun SJ, Gim GH, Lee KS, Shin KH, Lee HW, Choe SB (2011) Universality classes of magnetic domain wall motion. Phys Rev Lett 107:067201

    Article  ADS  Google Scholar 

  146. Koyama T, Yamada G, Tanigawa H, Kasai S, Ohshima N, Fukami S, Ishiwata N, Nakatani Y, Ono T (2008) Control of domain wall position by electrical current in structured Co/Ni wire with perpendicular magnetic anisotropy. Appl Phys Express 1:101303

    Article  ADS  Google Scholar 

  147. Moore TA, Miron IM, Gaudin G, Serret G, Auffret S, Rodmacq B, Schuhl A, Pizzini S, Vogel J, Bonfim M (2008) High domain wall velocities induced by current in ultrathin Pt/Co/AlOx wires with perpendicular magnetic anisotropy. Appl Phys Lett 93:262504

    Article  ADS  Google Scholar 

  148. Miron M (2009) Etude de l’interaction entre un courant polarisé en spin et une paroi de domaine magnétique dans des matériaux à aimantation perpendiculaire. PhD thesis, Université Joseph Fourier

    Google Scholar 

  149. Miron M, Moore T, Szambolics H, Buda-Prejbeanu LD, Auffret S, Rodmacq B, Pizzini S, Vogel J, Bonfim M, Schuhl A, Gaudin G (2011) Fast current-induced domain-wall motion controlled by the Rashba effect. Nat Mater 10:419

    Article  ADS  Google Scholar 

  150. Koyama T, Chiba D, Ueda K, Tanigawa H, Fukami S, Suzuki T, Ohshima N, Ishiwata N, Nakatani Y, Ono T (2011) Magnetic field insensitivity of magnetic domain wall velocity induced by electrical current in Co/Ni nanowire. Appl Phys Lett 98:192509

    Article  ADS  Google Scholar 

  151. Miron M, Gaudin G, Auffret S, Rodmacq B, Schuhl A, Pizzini S, Vogel J, Gambardella P (2010) Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nat Mater 9:230

    ADS  Google Scholar 

  152. Ngo DT, Ikeda K, Awano H (2011) Direct observation of domain wall motion induced by low-current density in tbfeco wires. Appl Phys Express 4:093002

    Article  ADS  Google Scholar 

  153. Miron M, Garello K, Gaudin G, Zermatten P, Costache MV, Auffret S, Bandiera S, Rodmacq B, Schuhl A, Gambardella P (2011) Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476:189

    Article  ADS  Google Scholar 

  154. Kim K, Seo S, Ryu J, Lee K, Lee H (2012) Magnetization dynamics induced by in-plane currents in ultrathin magnetic nanostructures with Rashba spin-orbit coupling. Phys Rev B 85:180404

    Article  ADS  Google Scholar 

  155. Liu H, Pai CF, Li Y, Tseng HW, Ralph DC, Buhrman RA (2012) Spin-torque switching with the giant spin hall effect of tantalum. Science 336:555

    Article  ADS  Google Scholar 

  156. Ryu K-S, Thomas L, Yang S-H, Parkin SSP (2013) Chiral spin torque at magnetic domain walls. Nat Nanotech 8:527

    Article  ADS  Google Scholar 

  157. Emori S, Bauer U, Ahn S-M, Martinez E, Beach GSD (2013) Current-driven dynamics of chiral ferromagnetic domain walls. Nat Mater 12:611

    Article  ADS  Google Scholar 

  158. Lo Conte R, Hrabec A, Mihai AP, Schulz T, Noh S-J, Marrows CH, Moore TA, Kläui M (2014) Spin-orbit torque-driven magnetization switching and thermal effects studied in Ta/CoFeB/MgO nanowires. Appl Phys Lett 105:122404

    Article  ADS  Google Scholar 

  159. Lo Conte R et al (2015) Role of B diffusion in the interfacial Dzyaloshinskii-Moriya interaction in Ta/Co20Fe60B20/MgO nanowires. Phys Rev B 91:014433

    Article  ADS  Google Scholar 

  160. Haney PM, Lee H-W, Lee K-J, Stiles MD (2013) Current induced torques and interfacial spin-orbit coupling: Semiclassical modeling. Phys Rev B 87:174411

    Article  ADS  Google Scholar 

  161. Lee JY, Lee KS, Kim SK (2007) Remarkable enhancement of domain-wall velocity in magnetic nanostripes. Appl Phys Lett 91:122513

    Article  ADS  Google Scholar 

  162. Vanhaverbeke A, Bischof A, Allenspach R (2008) Control of domain wall polarity by current pulses. Phys Rev Lett 101:107202

    Article  ADS  Google Scholar 

  163. Rebei A, Mryasov O (2006) Dynamics of a trapped domain wall in a spin-valve nanostructure with current perpendicular to the plane. Phys Rev B. 74:014412

    Article  ADS  Google Scholar 

  164. Khvalkovskiy V, Zvezdin KA, Gorbunov YV, Cros V, Grollier J, Fert A, Zvezdin AK (2009) High domain wall velocities due to spin currents perpendicular to the plane. Phys Rev Lett 102:067206

    Article  ADS  Google Scholar 

  165. Boone CT, Katine JA, Carey M, Childress JR, Cheng X, Krivorotov IN (2010) Rapid domain wall motion in permalloy nanowires excited by a spin-polarized current applied perpendicular to the nanowire. Phys Rev Lett 104:097203

    Article  ADS  Google Scholar 

  166. Boone CT, Krivorotov IN (2010) Magnetic domain wall pumping by spin transfer torque. Phys Rev Lett 104:167205

    Article  ADS  Google Scholar 

  167. Chanthbouala A et al (2011) Vertical-current-induced domain-wall motion in MgO-based magnetic tunnel junctions with low current densities. Nat Phys 7:626

    Article  Google Scholar 

  168. Lavrijsen R, Malinowski G, Franken JH, Kohlhepp JT, Swagten HJM, Koopmans B, Czapkiewicz M, Stobiecki T (2010) Reduced domain wall pinning in ultrathin Pt/Co100-xBx/Pt with perpendicular magnetic anisotropy. Appl Phys Lett 96:022501

    Article  ADS  Google Scholar 

  169. Gottwald M, Girod S, Andrieu S, Mangin S (2010) Tuneable perpendicular magnetic anisotropy in single crystal [Co/Ni](111) superlattices. IOP Conf Ser Mater Sci Eng 12:012018

    Article  Google Scholar 

  170. Hinzke D, Nowak U (2011) Domain wall motion by the magnonic spin seebeck effect. Phys Rev Lett 107:027205

    Article  ADS  Google Scholar 

  171. Franken JH, Möhrke P, Kläui M, Rhensius J, Heyderman LJ, Thiele J-U, Swagten HJM, Gibson UJ, Rüdiger U (2009) Effects of combined current injection and laser irradiation on Permalloy microwire switching. Appl Phys Lett 95:212502

    Article  ADS  Google Scholar 

  172. Möhrke P, Rhensius J, Thiele JU, Heyderman LJ, Kläui M (2010) Tailoring laser-induced domain wall pinning. Solid State Commun 150:489

    Article  ADS  Google Scholar 

  173. Uchida K, Takahashi S, Ieda J, Harii K, Ikeda K, Koshibae W, Maekawa S, Saitoh E (2009) Phenomenological analysis for spin-seebeck effect in metallic magnets. J Appl Phys 105:07C908

    Article  Google Scholar 

  174. Jiang W et al (2013) Direct imaging of thermally driven domain wall motion in magnetic insulators. Phys Rev Lett 110:177202

    Article  ADS  Google Scholar 

  175. You Y (2008) Another method for domain wall movement by a nonuniform transverse magnetic field. Appl Phys Lett 92:152507

    Article  ADS  Google Scholar 

  176. You Y (2008) Equation of motion for a domain wall movement under a nonuniform transverse magnetic field. Appl Phys Lett 92:192514

    Article  ADS  Google Scholar 

  177. Johnson M, Silsbee RH (1985) Equation of motion for a domain wall movement under a nonuniform transverse magnetic field. Phys Rev Lett 55:1790

    Article  ADS  Google Scholar 

  178. Kimura T, Otani Y, Hamrle J (2006) Switching magnetization of a nanoscale ferromagnetic particle using nonlocal spin injection. Phys Rev Lett 96:037201

    Article  ADS  Google Scholar 

  179. Jedema FJ, Filip AT, van Wees B (2001) Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve. Nature 410:345

    Article  ADS  Google Scholar 

  180. Ji Y, Hoffmann A, Jiang JS, Pearson JE, Bader SD (2007) Non-local spin injection in lateral spin valves. J Phys D Appl Phys 40:1280

    Article  ADS  Google Scholar 

  181. Yang T, Kimura T, Laloe J-B, Otani Y (2008) Giant spin-accumulation signal and pure spin-current-induced reversible magnetization switching. Nat Phys 4:851

    Article  Google Scholar 

  182. Kimura T, Otani Y (2007) Domain wall nucleation assisted by nonlocal spin injection. J Phys D Appl Phys 40:1285

    Article  ADS  Google Scholar 

  183. Ilgaz D et al (2010) Domain-wall depinning assisted by pure spin currents. Phys Rev Lett 105:076601

    Article  ADS  Google Scholar 

  184. Tombros N, Jozsa C, Popinciuc M, Jonkman HT, van Wees B (2007) Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 448:571

    Article  ADS  Google Scholar 

  185. Han D-S, Kim S-K, Lee J-Y, Hermsoerfer SJ, Schutheiss H, Leven B, Hillebrands B (2009) Magnetic domain-wall motion by propagating spin waves. Appl Phys Lett 94:112502

    Article  ADS  Google Scholar 

  186. Jamali M, Yang H, Lee K-J (2010) Spin wave assisted current induced magnetic domain wall motion. Appl Phys Lett 96:242501

    Article  ADS  Google Scholar 

  187. Kim JS, Stärk M, Kläui M, Yoon J, You CY, Lopez-Diaz L, Martinez E (2012) Interaction between propagating spin waves and domain walls on a ferromagnetic nanowire. Phys Rev B 85:174428

    Article  ADS  Google Scholar 

  188. Kimel V, Kirilyuk A, Usachev PA, Pisarev RV, Balbashow AM, Rasing T (2005) Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses. Nature 435:655

    Article  ADS  Google Scholar 

  189. Bryan MT, Dean J, Allwood DA (2012) Dynamics of stress-induced domain wall motion. Phys Rev B 85:144411

    Article  ADS  Google Scholar 

  190. Hockel JL, Bur A, Wu T, Wetzlar KP, Carman GP (2012) Electric field induced magnetization rotation in patterned Ni ring/Pb(Mg1/3Nb2/3)O3](1–0.32)-[PbTiO3]0.32 heterostructures. Appl Phys Lett 100:022401

    Article  ADS  Google Scholar 

  191. Finizio S et al (2014) Magnetic anisotropy engineering in thin film ni nanostructures by magnetoelastic coupling. Phys Rev Appl 1:021001

    Article  ADS  Google Scholar 

  192. Lavrijsen R, Lee J-H, Fernandez-Pacheco A, Petit DC, Mansell R, Cowburn RP (2013) Magnetic ratchet for three-dimensional spintronic memory and logic. Nature 493:647

    Article  ADS  Google Scholar 

  193. Malozemoff P, Slonczewski JC (1979) Magnetic domain walls in bubble materials. Academic, New York

    Google Scholar 

  194. Ilgaz D, Kläui M, Heyne L, Boulle O, Zinser F, Krzyk S, Fonin M, Rüdiger U, Backes D, Heyderman LJ (2008) Selective domain wall depinning by localized Oersted fields and Joule heating. Appl Phys Lett 93:132503

    Article  ADS  Google Scholar 

  195. Ha S-S, You C-Y (2007) Validity of the analytic expression for the temperature of Joule heated nano-wire. J Magn 12:7

    Article  Google Scholar 

  196. Allwood DA, Gang X, Cooke MD, Faulkner CC, Atkinson D, Vernier N, Cowburn RP (2002) Submicrometer ferromagnetic not gate and shift register. Science 296:2003

    Article  ADS  Google Scholar 

  197. Allwood DA, Xiong G, Faulkner CC, Atkinson D, Petit D, Cowburn RP (2005) Magnetic domain-wall logic. Science 309:1688

    Article  ADS  Google Scholar 

  198. Diegel M, Glathe S, Mattheis R, Scherzinger M, Halder E (2009) A new four bit magnetic domain wall based multiturn counter. IEEE Trans Magn 45:3792

    Article  ADS  Google Scholar 

  199. Diegel M, Mattheis R, Halder E (2004) 360° Domain wall investigation for sensor applications. IEEE Trans Magn 40:2655

    Article  ADS  Google Scholar 

  200. Diegel M, Mattheis R, Halder E (2007) Multiturn counter using movement and storage of 180° magnetic domain walls. Sensor Lett 5:118

    Article  Google Scholar 

  201. The Novotechnik RSM 2800 sensor on www.novotechnik.de/en/products/rotary-sensors/

  202. Mattheis R, Glathe S, Diegel M, Huebner U (2012) Concepts and steps for the realization of a new domain wall based GMR nanowire device: from the available 24 multiturn counter to a 212 turn counter. J Appl Phys 111:113920

    Article  ADS  Google Scholar 

  203. Allwood A, Gang X, Cowburn RP (2004) Domain wall diodes in ferromagnetic planar nanowires. Appl Phys Lett 85:2848

    Article  ADS  Google Scholar 

  204. Bryan MT, Schrefl T, Allwood DA (2007) Symmetric and asymmetric domain wall diodes in magnetic nanowires. Appl Phys Lett 91:142502

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank F. Büttner, A. Bisig, and C. Moutafis for help with various parts of the text and I. Berber for her support. We thank D. Hinzke and U. Nowak for permission to use Fig. 16 and D. Ravelosona for permission to use Figs. 8 and 9.

The authors would like to acknowledge the financial support by the DFG (SFB 767, SPP Graphene, SPP SpinCaT, KL1811), the Landesstiftung Baden Württemberg, the European Research Council via its Starting Independent Researcher Grant (Grant No. ERC-2007-Stg 208162) and Proof-of-Concept Grant schemes, EU RTN SPINSWITCH (MRTN-CT2006035327), the EU IP project IFOX (NMP3-LA-2010 246102), the EU STREP project MAGWIRE (FP7-ICT-2009-5 257707), the EU STREP project MoQuas (FP7-ICT-2013-10 610449), the EU ITN WALL (FP7-PEOPLE-2013-ITN 608031), the Swiss National Science Foundation, and the Graduate School of Excellence Materials Science in Mainz (MAINZ – GSC 266).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Foerster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Foerster, M., Boulle, O., Esefelder, S., Mattheis, R., Kläui, M. (2016). Domain Wall Memory Device. In: Xu, Y., Awschalom, D., Nitta, J. (eds) Handbook of Spintronics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6892-5_48

Download citation

Publish with us

Policies and ethics