Skip to main content

Spin Transport in Carbon Nanotubes and Graphene: Experiments and Theory

  • Reference work entry
Handbook of Spintronics

Abstract

Carbon Nanotubes and graphene are attractive for spintronics as a long spin lifetime can be expected from the small spin-orbit interaction in carbon and the absence of nuclear spins for the main isotope. A second interest comes from their sensitivity to proximity effects that can be used to introduce local magnetic or spin-orbit interactions for the manipulation of spin currents. In this review, written in 2012 and updated in 2015, we have mainly discussed the problems of spin lifetime and spin diffusion length rather than those of magnetism and spin-orbit more recently investigated. For graphene the experimental spin lifetimes and spin diffusion lengths can be relatively long (typically above 1 ns and 10 μm) if the conduction channel is protected from external influences and separated from the electrodes by large contact resistances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AP:

Antiparallel

BLG:

Bilayer graphene

BN:

Boron nitride

CMOS:

Complementary metal-oxide-semiconductor

CNT:

Carbon nanotube

CVD:

Chemical vapor deposition

DP:

Dyakonov-Perel

EG:

Epitaxial graphene

EY:

Elliot-Yafet

FLG:

Few-layer graphene

GMR:

GIANT magnetoresistance

ITRS:

international technology roadmap for semiconductors

LSMO:

La0.7Sr0.3MnO3

LSV:

Lateral spin valve

MLEG:

Multilayer epitaxial graphene

MLG:

Multilayer graphene

MR:

Magnetoresistance

MWCNT:

Multiwall carbon nanotube

NP:

Neutrality point

P:

Parallel

RT:

Room temperature

SO:

Spin-orbite

SWNT:

Singlewall nanotube

References

  1. Charlier JC, Blase X, Roche S (2007) Electronic and transport properties of nanotubes. Rev Mod Phys 79(2):677–732

    Article  ADS  Google Scholar 

  2. Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2010) The electronic properties of graphene. Rev Mod Phys 82(3):2673–2700

    Article  Google Scholar 

  3. Novoselov KS, Geim AK, Morosov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  ADS  Google Scholar 

  4. Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, De Heer WA (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312(5777):1191–1196

    Article  ADS  Google Scholar 

  5. de Heer WA, Berger C, Wu X, Sprinkle M, Hu Y, Ruan M, Stroscio JA, First PN, Haddon R, Piot B, Faugeras C, Potemski M, Moon JS (2010) Epitaxial graphene electronic structure and transport. J Phys D Appl Phys 43(37):374007

    Article  Google Scholar 

  6. Jozsa C, van Wees B (2011) Graphene spintronics. In: Tsymbal EY, Zutic I (eds) Handbook of spin transport and magnetism. CRC Press, Boca Raton, pp 579–598

    Chapter  Google Scholar 

  7. Tsukagoshi K, Alphenaar BW, Ago H (1999) Coherent transport of electron spin in a ferromagnetically contacted carbon nanotube. Nature 401(6753):572–574

    Article  ADS  Google Scholar 

  8. Zhao B, Mönch I, Vinzelberg H, Mühl T, Schneider CM (2002) Spin-coherent transport in ferromagnetically contacted carbon nanotubes. Appl Phys Lett 80(17):3144–3146

    Article  ADS  Google Scholar 

  9. Jensen A, Hauptmann JR, Nygård J, Lindelof PE (2005) Magnetoresistance in ferromagnetically contacted single-wall carbon nanotubes. Phys Rev B 72(3):035419–035423

    Article  ADS  Google Scholar 

  10. Sahoo S, Kontos T, Schönenberger C, Sürgers C (2005) Electrical spin injection in multiwall carbon nanotubes with transparent ferromagnetic contacts. Appl Phys Lett 86(11):112109–112111

    Article  ADS  Google Scholar 

  11. Tombros N, van der Molen SJ, van Wees BJ (2006) Separating spin and charge transport in single-wall carbon nanotubes. Phys Rev B 73(23):233403–233406

    Article  ADS  Google Scholar 

  12. Aurich H, Baumgartner A, Freitag F, Eichler A, Trbovic J, Schonenberger C (2010) Permalloy-based carbon nanotube spin-valve. Appl Phys Lett 97(15):153116–153118

    Article  ADS  Google Scholar 

  13. Hueso LE, Pruneda JM, Ferrari V et al (2007) Transformation of spin information into large electrical signals using carbon nanotubes. Nature 445(7126):410–413

    Article  ADS  Google Scholar 

  14. Mieville L, Worledge D, Geballe TH, Contreras R, Char K (1998) Transport across conducting ferromagnetic oxide/metal interfaces. Appl Phys Lett 73(12):1736–1738

    Article  ADS  Google Scholar 

  15. Hill EW, Geim AK, Novoselov K, Schedin F, Blake P (2006) Graphene spin valve devices. IEEE Trans Magnet 42(10):2694–2696

    Article  ADS  Google Scholar 

  16. Tombros N, Jozsa C, Popinciuc M, Jonkman HT, van Wees BJ (2007) Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 448(7153):571–574

    Article  ADS  Google Scholar 

  17. Cho S, Chen YF, Fuhrer M (2007) Gate-tunable graphene spin valve. Appl Phys Lett 91(12):123105–123107; Ohishi M, Shiraishi M, Nouchi R, Nozaki T, Shinjo T, Suzuki Y (2007) Spin injection into a graphene thin film at room temperature. Jpn J Appl Phys 46(25):L605–L607

    Google Scholar 

  18. Popinciuc M, Jozsa C, Zomer PJ, Tombros N, Veligura A, Jonkman HT, van Wees BJ (2009) Electronic transport in graphene field-effect transistors. Phys Rev 80(21):214427–214439

    Article  Google Scholar 

  19. Jedema F, Heersche HB, Filip AT, Baselmans JJA, and Van Wees B (2002) Electrical detection of spin precession in a metallic mesoscopic spin valve. Nature 416:713–716

    Google Scholar 

  20. Han W, Pi K, McCreary KM, Li Y, Wong JI, Swartz AG, Kawakami RK (2010) Tunneling spin injection into single layer grapheme. Phys Rev Lett 105(16):167202–167205

    Article  ADS  Google Scholar 

  21. Han W, Kawakami RK (2011) Spin-relaxation in single-layer and bilayer grapheme. Phys Rev Lett 107(4):047207–047210

    Article  ADS  Google Scholar 

  22. Avsar A, Yang TY, Bae S, Balakrishnan J, Volmer F, Jaiswal M, Yi Z, Ali SR, Guntherodt G, Hong BH, Beschoten B, Ozyilmaz B (2011) Toward wafer scale fabrication of grapheme based spin valve devices. Nano Lett 11(6):2363–2368

    Article  ADS  Google Scholar 

  23. Maassen T, van den Berg JJ, Ijbema N, Fromm F, Seyller T, Yakimova R, van Wees BJ (2012) Long spin relaxation times in wafer scale epitaxial graphene on SiC(001). Nano Lett 12(3):1498–1502

    Article  ADS  Google Scholar 

  24. Dlubak B, Seneor P, Anane A, Deranlot C, Servet B, Xavier S, Sprinkle M, Berg C, De Heer WA, Petroff F, Fert A (2012) Nat Phys 8:557–561

    Google Scholar 

  25. Sprinkle M, Siegel D, Hu Y, Hicks J, Tejeda A, Taleb-Ibrahimi A, Le Fèvre P, Bertran F, Vizzini S, Enriquez H, Chiang S, Soukiassian P, Berger C, de Heer WA, Lanzara A, Conrad E (2009) First direct observation of a nearly ideal grapheme band structure. Phys Rev Lett 103(22):226803–226806

    Article  ADS  Google Scholar 

  26. Elliott RJ (1954) Theory of the effect of spin-orbit coupling on magnetic resonance in some semiconductors. Phys Rev 96(12):266–279

    Article  MATH  ADS  Google Scholar 

  27. Dyakonov MI, Perel VI (1971) Possibility of orienting electron spins with current. Soviet Phys JETP Lett 13(11):467–469

    ADS  Google Scholar 

  28. Zomer PJ, Guimaraes MHD, Tombros N, and Van Wees BJ (2012) Long-distance spin transport in high-mobility graphene on hexagonal boron nitride. Phys Rev B 86:1614161–1614164

    Google Scholar 

  29. Guimaraes MHD, Zomer PJ, Ingla-Aynés J, Brant JC, Tombros N, and Van Wees BJ (2014) Controlling spin relaxation in hexagonal BN-encapsulated graphene with a transverse electric field. Phys Rev Lett 113:086602–086606

    Google Scholar 

  30. Drögeler M, Volmer F, Wolter M, Terrés B, Watanabe K, Tanigushi T, Güntherodt, Stampfer C Beschoten B (2014) Nanosecond spin lifetimes in ingle- anf few-layer graphene-hBN heterostructures at room temperature. Nano Lett 14:6050–6055

    Google Scholar 

  31. Volmer F, Drögeler F, Maynicke E, von den Driesch N, Boschen ML, Güntherodt G, Beschoten B (2013) Role of MgO barriers for spin and charge transport in Co/Mg/graphene nonlocal spin-valve devices. Phys Rev B 88:161405–161409

    Google Scholar 

  32. Kalamakar MV, Dankert A, Bergsten J, Ive T, Dash SP (2014) Enhanced Tunnel Spin Injection into Graphene using Chemical Vapor Deposited Hexagonal Boron Nitride. Scientific Report 4:6146–6152

    Google Scholar 

  33. Idzuchi H, Fukuma Y, Takahashi S, Maekawa S, Otani Y (2014) Effect of anisotropic spin absorption on the Hanle effect in lateral spin valves. Phys Rev B 89:081308–081312

    Google Scholar 

  34. Maassen T, Vera-Marun IJ, Guimarães MHD, van Wees BJ (2012) Contact-induced spin relaxation in Hanle spin precession measurements. Phys Rev B 86:2354081–2354088

    Google Scholar 

  35. Sosenko E, Wei H, Aji V (2014) Effect of contacts on spin lifetime measurements in graphene. Phys Rev B 89:245436

    Google Scholar 

  36. Idzuchi H, Fert A, Otani Y (2015) Revisiting the measurement of the spin relaxation time in graphene-based devices. Phys Rev B 91:241407(R)

    Google Scholar 

  37. Fukuma Y, Wang L, Idzuchi H, Takahashi S, Maekawa S, Otani Y (2011) Giant enhancement of spin accumulation and long-distance spin precession in metallic lateral spin valves. Nat Mater 10(7):527–531

    Article  ADS  Google Scholar 

  38. Jaffrès H, George JM, Fert A (2010) Spin transport in multiterminal devices: large spin signals in devices with confined geometry. Phys Rev B 82(14):140408(R)–140411(R)

    Article  ADS  Google Scholar 

  39. van Son PC, van Kempen H, Wyder P (1987) Boundary resistance of the ferromagnetic-nonferromagnetic metal interface. Phys Rev Lett 58(21):2271–2273

    Article  ADS  Google Scholar 

  40. Johnson M and Silsbee RH (1985) Interfacial charge-spin coupling: injection and detection of spin magnetization in metals. Phys Rev Lett 55(17):1790–1793

    Google Scholar 

  41. Valet T, Fert A (1993) Theory of the perpendicular magnetoresistance in magnetic multilayers. Phys Rev B 48(10):7099–7113

    Article  ADS  Google Scholar 

  42. Takahashi S, Maekawa S (2006) Spin injection and transport in magnetic structures. Phys C 437–438:309–313

    Article  Google Scholar 

  43. Fert A, Jaffrès H (2001) Conditions for efficient spin injection. Phys Rev B 64:184420–184429

    Article  ADS  Google Scholar 

  44. Abanin DA, Morozov SV, Ponomarenko LA, Gorbachev RV, Mayorov AS, Katsnelson MI, Watanabe K, Taniguchi T, Novoselov KS, Levitov LS, Geim AK (2011) Giant nonlocality near the Dirac point in graphene. Science 332(6027):328–330

    Google Scholar 

  45. Vera-Marun IJ, Ranjan V, van Wees BJ (2011) Nonlinear interaction of spin and charge currents in graphene. Phys Rev B 84(24):241408(R)–241411(R)

    Article  ADS  Google Scholar 

  46. Dery H, Huang M, Song Y, Kawakami R, Shi J, Krivorotov I (2011) Reconfigurable nnaoelectronics using graphene based spintronic logic gates. ArXiv:1101.1497v2

    Google Scholar 

  47. 2011 International Technology Roadmap for Semiconductors, www.itrs.net

  48. Behin-Aein B, Datta D, Salahuddin S, Datta S (2010) Proposal for an all-spin logic device with built-in memory. Nat Nanotechnol 5:266–270

    Article  ADS  Google Scholar 

  49. Castro Neto AH, Guinea F (2009) Impurity-induced spin-orbit coupling in graphene. Phys Rev Lett 103(2):026804–026807

    Google Scholar 

  50. Uchoa B, Kotov VN, Peres NMR, Castro Neto AH (2008) Localized magnetic states in graphene. Phys Rev Lett 101:026805-026808

    Google Scholar 

  51. Balakrishnan J, Koon GKW, Jaiswal1 M, A. H, Castro Neto AH, Özyilmaz B (2013) Colossal enhancement of spin–orbit coupling in weakly hydrogenated graphene. Nature Phy 9:284–287

    Google Scholar 

  52. Balakrishnan J, Koon GKW, Avsar A, Ho Y, Lee JH, Jaiswal, Baeck SJ, Ahn JH, Ferreira A, Cazlilla MA, Castro Neto AH, Özyilmaz B (2013) Giant spin Hall effect in graphen grown by chemical vapour deposition. Nature Comm 5:4748–4752

    Google Scholar 

  53. Ferreira A, Rappoport TG, Cazalilla MA, Castro Neto AH (2014) Extrinsic spin Hall effect induced by resonant skew scattering in graphene. Phys Rev Lett 112:066601–066605

    Google Scholar 

  54. Wunsch B, Stauber T, Sols F, Guinea F (2008) Interactions and magnetism in graphene boundary states. Phys Rev Lett 101:036803–036807

    Article  ADS  Google Scholar 

  55. Munoz-Rojas F, Fernandez-Rossier J, Palacios JJ (2009) Giant magnetoresistance in ultrasmall graphene based devices. Phys Rev Lett 102:136810–136814

    Article  ADS  Google Scholar 

  56. Yang HX, Chshiev M, Boulhavalov DW, Waintal X, Roche S (2011) Inducing and optimizing magnetism in graphene. Phys Rev B 84:214404–214413

    Article  ADS  Google Scholar 

  57. Yazyev OV (2010) Emergence of magnetism in graphene materials and nanostructures. Rep Prog Phys 73:056501–056516

    Article  ADS  Google Scholar 

  58. San-Jose P, Prada E, McCann E, Schomerus H (2009) Pseudospin valve in bilayer graphene: towards graphene-based pseudospintronics. Phys Rev Lett 102:247204–247208

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Fert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Anane, A. et al. (2016). Spin Transport in Carbon Nanotubes and Graphene: Experiments and Theory. In: Xu, Y., Awschalom, D., Nitta, J. (eds) Handbook of Spintronics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6892-5_27

Download citation

Publish with us

Policies and ethics