Skip to main content

Low Dimensional Molecular Magnets and Spintronics

  • Reference work entry
Handbook of Spintronics
  • 7325 Accesses

Abstract

Molecular spintronics, which combines spintronics and molecular electronics, is an emerging field of research. Low-dimensional molecular magnets such as single molecule magnets (SMMs) and single chain magnets (SCMs) can potentially be used as spin carriers in spintronic devices, and hence have attracted considerable interest. By using different bridging ligands, a number of compounds showing SMM or SCM behaviors have been reported. This review article covers the following aspects: (1) SMMs based on the oxo-bridged transition metal clusters with the main focus on the Mn-O and Fe-O clusters; (2) SMMs based on single metal (lanthanide, actinide, transition metal) ions as well as polynuclear lanthanide clusters; (3) single chain magnets; and (4) recent development of spintronics based on SMMs such as molecular spin transistors and spin valves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sessoli R, Gatteschi D, Caneschi A, Novak MA (1993) Magnetic bistability in a metal-ion cluster. Nature 365:141

    Article  ADS  Google Scholar 

  2. Caneschi A, Gatteschi D, Lalioti N, Sangregorio C, Sessoli R, Venturi G, Vindigni A, Rettori A, Pini MG, Novak MA (2001) Cobalt(II)-Nitronylnitroxide chains as molecular magnetic nanowires. Angew Chem Int Ed 40:1760

    Article  Google Scholar 

  3. Gatteschi D, Sessoli R, Villain J (2006) Molecular nanomagnets. Oxford University Press, Oxford, UK

    Book  Google Scholar 

  4. Sorai M, Nakano M, Miyazaki Y (2006) Calorimetric investigation of phase transitions occurring in molecule-based magnets. Chem Rev 106:976–1031

    Article  Google Scholar 

  5. Miller JS (2011) Magnetically ordered molecule-based materials. Chem Soc Rev 40:3266–3296

    Article  Google Scholar 

  6. Wang XY, Avendano C, Dunbar KR (2011) Molecular magnetic materials based on 4d and 5d transition metals. Chem Soc Rev 40:3213–3238

    Article  Google Scholar 

  7. Gütlich P, Goodwin HA (2004) In: Gütlich P, Goodwin HA (eds) Spin crossover in transition metal compounds. Springer, New York

    Chapter  Google Scholar 

  8. Sato O, Tao J, Zhang YZ (2007) Control of magnetic properties through external stimuli. Angew Chem Int Ed 46:2152–2187

    Article  Google Scholar 

  9. Hendrickson DN, Pierpont CG (2004) Valence tautomeric transition metal complexes. Top Curr Chem 234:63

    Article  Google Scholar 

  10. Wang S, Ding XH, Zuo JL, You XZ, Huang W (2011) Tricyanometalate molecular chemistry: a type of versatile building blocks for the construction of cyano-bridged molecular architectures. Coord Chem Rev 255(15–16):1713–1732

    Article  Google Scholar 

  11. Christou G, Gatteschi D, Hendrickson DN, Sessoli R (2000) Single-molecule magnets. MRS Bull 25:66

    Article  Google Scholar 

  12. Nakano M, Oshio H (2011) Magnetic anisotropies in paramagnetic polynuclear metal complexes. Chem Soc Rev 40:3239–3248

    Article  Google Scholar 

  13. Gatteschi D, Sessoli R (2003) Quantum tunneling of magnetization and related phenomena in molecular materials. Angew Chem Int Ed 42:268–297

    Article  Google Scholar 

  14. Lecren L, Roubeau O, Coulon C, Li YG, Le Goff XF, Wernsdorfer W, Miyasaka H, Clérac R (2005) Slow relaxation in a one-dimensional rational assembly of antiferromagnetically coupled [Mn4] single-molecule magnets. J Am Chem Soc 127:17353

    Article  Google Scholar 

  15. Leuenberger MN, Loss D (2001) Quantum computing in molecular magnets. Nature 410:789–793

    Article  ADS  Google Scholar 

  16. Aromí G, Brechin EK (2006) Synthesis of 3d metallic single-molecule magnets. Struct Bond 122:1–69

    Article  Google Scholar 

  17. Kostakis GE, Ako AM, Powell AK (2010) Structural motifs and topological representation of Mn coordination clusters. Chem Soc Rev 39:2238–2271

    Article  Google Scholar 

  18. Tasiopoulos AJ, Vinslava A, Wernsdorfer W, Abboud KA, Christou G (2004) Giant single-molecule magnets: a {Mn84} torus and its supramolecular nanotubes. Angew Chem Int Ed 43:2117–2121

    Article  Google Scholar 

  19. Ako AM, Hewitt IJ, Mereacre V, Clerac R, Wernsdorfer W, Anson CE, Powell AK (2006) A ferromagnetically coupled Mn19 aggregate with a record S = 83/2 ground spin state. Angew Chem Int Ed 45:4926–4929

    Article  Google Scholar 

  20. Waldmann O (2007) A criterion for the anisotropy barrier in single-molecule magnets. Inorg Chem 46:10035–10037

    Article  Google Scholar 

  21. Bagai R, Christou G (2009) The drosophila of single-molecule magnetism: [Mn12O12(O2CR)16(H2O)4]. Chem Soc Rev 38:1011–1026

    Article  Google Scholar 

  22. Milios CJ, Vinslava A, Wernsdorfer W, Moggach S, Parsons S, Perlepes SP, Christou G, Brechin EK (2007) A record anisotropy barrier for a single-molecule magnet. J Am Chem Soc 129:2754–2755

    Article  Google Scholar 

  23. Thomas L, Lionti F, Ballou R, Gatteschi D, Sessoli R, Barbara B (1996) Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets. Nature 383:145

    Article  ADS  Google Scholar 

  24. Friedman JR, Sarachik MP, Tejada J, Maciejewski J, Ziolo R (1996) Steps in the hysteresis loops of a high-spin molecule. J Appl Phys 79:6031

    Article  ADS  Google Scholar 

  25. Wernsdorfer W, Sessoli R (1999) Quantum phase interference and parity effects in magnetic molecular clusters. Science 284:133

    Article  ADS  Google Scholar 

  26. Sessoli R, Tsai HL, Schake AR, Wang SY, Vincent JB, Folting K, Gatteschi D, Christou G, Hendrickson DN (1993) High-spin molecules: [Mn12O12(O2CR)16(H2O)4]. J Am Chem Soc 115:1804

    Article  Google Scholar 

  27. Eppley HJ, Tsai HL, Devries N, Folting K, Christou G, Hendrickson DN (1995) High-spin molecules: unusual magnetic susceptibility relaxation effects in [Mn12O12(O2CEt)16(H2O)3] (S = 9) and the one-electron reduction product (PPh4)[Mn12O12(O2CEt)16(H2O)4] (S = 19/2). J Am Chem Soc 117:301

    Article  Google Scholar 

  28. Ruiz-Molina D, Gerbier P, Rumberger E, Amabilino DB, Guzei IA, Folting K, Huffman JC, Rheingold A, Christou G, Veciana J, Hendrickson DN (2002) Characterisation of nanoscopic [Mn12O12(O2CR)16(H2O)4] single-molecule magnets: physicochemical properties and LDI- and MALDI-TOF mass spectrometry. J Mater Chem 12:1152

    Article  Google Scholar 

  29. Aubin SMJ, Sun ZM, Eppley HJ, Rumberger EM, Guzei IA, Folting K, Gantzel PK, Rheingold AL, Christou G, Hendrickson DN (2001) Single-molecule magnets: Jahn-Teller isomerism and the origin of two magnetization relaxation processes in Mn12 complexes. Inorg Chem 40:2127

    Article  Google Scholar 

  30. Sun Z, Ruiz D, Dilley NR, Soler M, Ribas J, Folting K, Maple MB, Christou G, Hendrickson DN (1999) The origin of the second relaxation process in the [Mn12O12(O2CR)16(H2O)4] single-molecule magnets: ‘Jahn–Teller isomerism’ in the [Mn12O12] core. Chem Commun 1973–1974

    Google Scholar 

  31. Chakov NE, Lee SC, Harter AG, Kuhns PL, Reyes AP, Hill SO, Dalal NS, Wernsdorfer W, Abboud KA, Christou G (2006) The properties of the [Mn12O12(O2CR)16(H2O)4] single-molecule magnets in truly axial symmetry: [Mn12O12(O2CCH2Br)16(H2O)4] · 4CH2Cl2. J Am Chem Soc 128:6975–6989

    Article  Google Scholar 

  32. Barra AL, Caneschi A, Cornia A, Gatteschi D, Gorini L, Heiniger LP, Sessoli R, Sorace L (2007) The origin of transverse anisotropy in axially symmetric single molecule magnets. J Am Chem Soc 129:10754

    Article  Google Scholar 

  33. (a) Hill S, Anderson N, Wilson A, Takahashi S, Chakov NE, Murugesu M, North JM, Dalal NS, Christou G (2005) A spectroscopic comparison between several high-symmetry S = 10 Mn12 single-molecule magnets. J Appl Phys 97:10M510 (b) Hill S, Anderson N, Wilson A, Takahashi S, Petukhov K, Chakov NE, Murugesu M, North JM, del Barco E, Kent AD, Dalal NS, Christou G (2005) A comparison between high-symmetry Mn12 single-molecule magnets in different ligand/solvent environments. Polyhedron 24:2284–2292

    Google Scholar 

  34. (a) Petukhov K, Hill S, Chakov NE, Abboud KA, Christou G (2004) Evidence for the S = 9 excited state in Mn12-bromoacetate measured by electron paramagnetic resonance. Phys Rev B 70:054426 (b) Wernsdorfer W, Murugesu M, Christou G (2006) Resonant tunneling in truly axial symmetry Mn12 single-molecule magnets: sharp crossover between thermally assisted and pure quantum tunneling. Phys Rev Lett 96:057208

    Google Scholar 

  35. Lampropoulos C, Redler G, Data S, Abboud KA, Hill S, Christou G (2010) Binding of higher alcohols onto Mn single-molecule magnets (SMMs): access to the highest barrier Mn12 SMM. Inorg Chem 49:1325

    Article  Google Scholar 

  36. Zobbi L, Mannini M, Pacchioni M, Chastanet G, Bonacchi D, Zanardi C, Biagi R, Del Pennino U, Gatteschi D, Cornia A, Sessoli R (2005) Isolated single-molecule magnets on native gold. Chem Commun 1640–1642

    Google Scholar 

  37. Bian GQ, Kuroda-Sowa T, Konaka H, Hatano M, Maekawa M, Munakata M, Miyasaka H, Yamashita M (2004) A Mn12 single-molecule magnet [Mn12O12(OAc)12(dpp)4] (dppH = diphenyl phosphate) with no coordinating water molecules. Inorg Chem 43:4790

    Article  Google Scholar 

  38. Zhao HH, Berlinguette CP, Bacsa J, Prosvirin AV, Bera JK, Tichy SE, Schelter EJ, Dunbar KR (2004) Structural characterization, magnetic properties, and electrospray mass spectrometry of two Jahn-Teller isomers of the single-molecule magnet [Mn12O12(CF3COO)16(H2O)4]. Inorg Chem 43:1359

    Article  Google Scholar 

  39. Chakov NE, Soler M, Wernsdorfer W, Abboud KA, Christou G (2005) Single-molecule magnets: structural characterization, magnetic properties, and F-19 NMR spectroscopy of a Mn12 family spanning three oxidation levels. Inorg Chem 44:5304

    Article  Google Scholar 

  40. Chakov NE, Zakharov LN, Rheingold AL, Abboud KA, Christou G (2005) New polynuclear manganese clusters from the use of the hydrophobic carboxylate ligand 2,2-dimethylbutyrate. Inorg Chem 44:4555

    Article  Google Scholar 

  41. Lim JM, Do Y, Kim J (2006) Molecular Structures and magnetism of Mn12 nanomagnets containing the 3-thiophenecarboxylate ligand. Eur J Inorg Chem 711

    Google Scholar 

  42. Soler M, Artus P, Folting K, Huffman JC, Hendrickson DN, Christou G (2001) Single-molecule magnets: preparation and properties of mixed-carboxylate complexes [Mn12O12(O2CR)8(O2CR′)8(H2O)4]. Inorg Chem 40:4902

    Article  Google Scholar 

  43. Pacchioni M, Cornia A, Fabretti AC, Zobbi L, Bonacchi D, Caneschi A, Chastanet G, Gatteschi D, Sessoli R (2004) Site-specific ligation of anthracene-1,8-dicarboxylates to an Mn12 core: a route to the controlled functionalisation of single-molecule magnets. Chem Commun 2604

    Google Scholar 

  44. Artus P, Boskovic C, Yoo J, Streib WE, Brunel LC, Hendrickson DN, Christou G (2001) Single-molecule magnets: site-specific ligand abstraction from [Mn12O12(O2CR)16(H2O)4] and the preparation and properties of [Mn12O12(NO3)4(O2CCH2But)12(H2O)4]. Inorg Chem 40:4199

    Article  Google Scholar 

  45. Chakov NE, Wernsdorfer W, Abboud KA, Hendrickson DN, Christou G (2003) Single-molecule magnets. A Mn12 complex with mixed carboxylate-sulfonate ligation: [Mn12O12(O2CMe)8(O3SPh)8(H2O)4]. Dalton Trans 2243

    Google Scholar 

  46. Forment-Aliaga A, Coronado E, Feliz M, Gaita-Arino A, Llusar R, Romero FM (2003) Cationic Mn12 single-molecule magnets and their polyoxometalate hybrid salts. Inorg Chem 42:8019

    Article  Google Scholar 

  47. Tasiopoulos AJ, Wernsdorfer W, Abboud K, Christou G (2004) A Reductive-aggregation route to [Mn12O12(OMe)2(O2CPh)16(H2O)2]2: single-molecule magnets related to the [Mn12] family. Angew Chem Int Ed 43:6338

    Article  Google Scholar 

  48. Tasiopoulos AJ, Wernsdorfer W, Abboud KA, Christou G (2005) [Mn12O12(OMe)2(O2CPh)16(H2O)2]2 single-molecule magnets and other manganese compounds from a reductive aggregation procedure. Inorg Chem 44:6324

    Article  Google Scholar 

  49. Aubin SMJ, Sun ZM, Pardi L, Krzystek J, Folting K, Brunel LC, Rheingold AL, Christou G, Hendrickson DN (1999) Reduced anionic Mn12 molecules with half-integer ground states as single-molecule magnets. Inorg Chem 38:5329

    Article  Google Scholar 

  50. Takeda K, Awaga K (1997) Magnetic properties of (m-MPYNN+)[Mn12O12(O2CPh)16(H2O)4]: enhancement of magnetic relaxation in the Mnl2 cluster caused by the organic radical. Phys Rev B 56:14560

    Article  ADS  Google Scholar 

  51. Bagai R, Christou G (2007) A fourth isolated oxidation level of the [Mn12O12(O2CR)16(H2O)4] family of single-molecule magnets. Inorg Chem 46:10810

    Article  Google Scholar 

  52. Kuroda-Sowa T, Lam M, Rheingold AL, Frommen C, Reiff WM, Nakano M, Yoo J, Maniero AL, Brunel LC, Christou G, Hendrickson DN (2001) Effects of paramagnetic ferrocenium cations on the magnetic properties of the anionic single-molecule magnet [Mn12O12(O2CC6F5)16(H2O)4]. Inorg Chem 40:6469

    Article  Google Scholar 

  53. Soler M, Wernsdorfer W, Abboud KA, Huffman JC, Davidson ER, Hendrickson DN, Christou G (2003) Single-molecule magnets: two-electron reduced version of a Mn12 complex and environmental influences on the magnetization relaxation of (PPh4)2[Mn12O12(O2CCHCl2)16(H2O)4]. J Am Chem Soc 125:3576

    Article  Google Scholar 

  54. Soler M, Chandra SK, Ruiz D, Davidson ER, Hendrickson DN, Christou G (2000) A third isolated oxidation state for the Mn12 family of single-molecule magnets. Chem Commun 2417

    Google Scholar 

  55. Coronado E, Forment-Aliaga A, Gaita-Arino A, Gimenez-Saiz C, Romero FM, Wernsdorfer W (2004) Polycationic Mn12 single-molecule magnets as electron reservoirs with S > 10 ground states. Angew Chem Int Ed 43:6152

    Article  Google Scholar 

  56. Clemente-Juan JM, Forment-Aliaga A, Coronado E, Gaita-Arino A, Gimenez-Saiz C, Romero FM, Wernsdorfer W, Biagi R, Corradini V (2010) Electronic and magnetic study of polycationic Mn12 single-molecule magnets with a ground spin state S = 11. Inorg Chem 49:386

    Article  Google Scholar 

  57. Miyasaka H, Clérac R, Wernsdorfer W, Lecren L, Bonhomme C, Sugiura K, Yamashita M (2004) A dimeric manganese(iii) tetradentate Schiff base complex as a single-molecule magnet. Angew Chem Int Ed 43:2801–2805

    Article  Google Scholar 

  58. Lu Z-L, Yuan M, Pan F, Gao S, Zhang D-Q, Zhu D-B (2006) Syntheses, crystal structures, and magnetic characterization of five new dimeric manganese(III) tetradentate Schiff base complexes exhibiting single-molecule-magnet behavior. Inorg Chem 45:3538–3548

    Article  Google Scholar 

  59. Lecren L, Wernsdorfer W, Li YG, Vindigni A, Miyasaka H, Clérac R (2007) One-dimensional supramolecular organization of single-molecule magnets. J Am Chem Soc 129:5045–5051

    Article  Google Scholar 

  60. Kachi-Terajima C, Miyasaka H, Sugiura K, Clérac R, Nojiri H (2006) From an ST = 3 single-molecule magnet to diamagnetic ground state depending on the molecular packing of MnIII salen-type dimers decorated by N, N′-dicyano-1,4-naphthoquinonediiminate radicals. Inorg Chem 45:4381–4390

    Article  Google Scholar 

  61. Miyasaka H, Nezu T, Sugimoto K, Sugiura K, Yamashita M, Clérac R (2005) [MnIII 2 (5-Rsaltmen)2NiII(pao)2(L)]2+: an ST = 3 building block for a single-chain magnet that behaves as a single-molecule magnet. Chem Eur J 11:1592–1602

    Article  Google Scholar 

  62. Kachi-Terajima C, Miyasaka H, Saitoh A, Shirakawa N, Yamashita M, Clérac R (2007) Single-molecule magnet behavior in heterometallic MII − MnIII 2 − MII tetramers (MII = Cu, Ni) containing MnIII Salen-type dinuclear core. Inorg Chem 46:5861–5872

    Article  Google Scholar 

  63. Scott RTW, Parsons S, Murugesu M, Wernsdorfer W, Christou G, Brechin EK (2005) Synthesis, structure and magnetic properties of a trinuclear [MnIIIMnII 2] single-molecule magnet. Chem Commun 2083–2085

    Google Scholar 

  64. Vincent JB, Chang HR, Folting K, Huffman JC, Christou G, Hendrickson DN (1987) Preparation and physical properties of trinuclear oxo-centered manganese complexes of the general formulation [Mn3O(O2CR)6 L3]0, + (R = Me or Ph, L = A neutral donor group) and the crystal structures of [Mn3O(O2CMe)6(PyR)3](PyR) and [Mn3O(O2CPh)6(PyR)2(H2O)].0.5MeCN. J Am Chem Soc 109:5703–5711, and references therein

    Google Scholar 

  65. Jones LF, Rajaraman G, Brockman J, Murugesu M, Sanudo CE, Raftery J, Teat SJ, Wernsdorfer W, Christou G, Brechin EK, Collison D (2004) New routes to polymetallic clusters: fluoride-based tri-, deca-, and hexaicosametallic MnIII clusters and their magnetic properties. Chem Eur J 10:5180

    Article  Google Scholar 

  66. Stamatatos TC, Foguet-Albiol D, Stoumpos CC, Raptopoulou CP, Terzis A, Wernsdorfer W, Perlepes SP, Christou G (2005) Initial example of a triangular single-molecule magnet from ligand-induced structural distortion of a [MnIII 3O]7+ complex. J Am Chem Soc 127:15380–15381

    Article  Google Scholar 

  67. Stamatatos TC, Foguet-Albiol D, Lee SC, Stoumpos CC, Raptopoulou CP, Terzis A, Wernsdorfer W, Hill SO, Perlepes SP, Christou G (2007) “Switching On” the properties of single-molecule magnetism in triangular manganese(III) complexes. J Am Chem Soc 129:9484

    Article  Google Scholar 

  68. Yang CI, Wernsdorfer W, Cheng KH, Nakano M, Lee GH, Tsai HL (2008) A [MnIII 3O]7+ single-molecule magnet: the anisotropy barrier enhanced by structural distortion. Inorg Chem 47:10184–10186

    Article  Google Scholar 

  69. Inglis R, Taylor SM, Jones LF, Papaefstathiou GS, Perlepes SP, Datta S, Hill S, Wernsdorfer W, Brechin EK (2009) Twisting, bending, stretching: strategies for making ferromagnetic [MnIII 3] triangles. Dalton Trans 9157–9168

    Google Scholar 

  70. Inglis R, Jones LF, Mason K, Collins A, Moggach SA, Parsons S, Perlepes SP, Wernsdorfer W, Brechin EK (2008) Ground spin state changes and 3D networks of exchange coupled [MnIII 3] single-molecule magnets. Chem Eur J 14:9117–9121

    Article  Google Scholar 

  71. Inglis R, Jones LF, Karotsis G, Collins A, Parsons S, Perlepes SP, Wernsdorfer W, Brechin EK (2008) Enhancing SMM properties via axial distortion of [MnIII 3] clusters. Chem Commun 5924–5926

    Google Scholar 

  72. Feng PL, Koo C, Henderson JJ, Nakano M, Hill S, del Barco E, Hendrickson DN (2008) Single-molecule-magnet behavior and spin changes affected by crystal packing effects. Inorg Chem 47:8610–8612

    Article  Google Scholar 

  73. Feng PL, Koo C, Henderson JJ, Manning P, Nakano M, del Barco E, Hill S, Hendrickson DN (2009) Nanomodulation of molecular nanomagnets. Inorg Chem 48:3480–3492

    Article  Google Scholar 

  74. Aubin SMJ, Wemple MW, Adams DM, Tsai HL, Christou G, Hendrickson DN (1996) Distorted MnIVMnIII 3 cubane complexes as single-molecule magnets. J Am Chem Soc 118:7746

    Article  Google Scholar 

  75. Aubin SMJ, Dilley NR, Pardi L, Krzystek J, Wemple MW, Brunel LC, Maple MB, Christou G, Hendrickson DN (1998) Resonant magnetization tunneling in the trigonal pyramidal MnIVMnIII 3 complex [Mn4O3Cl(O2CCH3)3(dbm)3]. J Am Chem Soc 120:4991

    Article  Google Scholar 

  76. Kramers HA (1930) Proc R Acad Sci Amst 33:959

    Google Scholar 

  77. Wernsdorfer W, Aliaga-Alcalde N, Hendrickson DN, Christou G (2002) Exchange-biased quantum tunnelling in a supramolecular dimer of single-molecule magnets. Nature 416:406

    Article  ADS  Google Scholar 

  78. Brechin EK, Yoo J, Nakano M, Huffman JC, Hendrickson DN, Christou G (1999) A new class of single-molecule magnets: mixed-valent [Mn4(O2CMe)2(Hpdm)6][ClO4]2 with an S = 8 ground state. Chem Commun 783

    Google Scholar 

  79. Yoo J, Brechin EK, Yamaguchi A, Nakano M, Huffman JC, Maniero AL, Brunel LC, Awaga K, Ishimoto H, Christou G, Hendrickson DN (2000) Single-molecule magnets: a new class of tetranuclear manganese magnets. Inorg Chem 39:3615

    Article  Google Scholar 

  80. Yoo J, Yamaguchi A, Nakano M, Krzystek J, Streib WE, Brunel LC, Ishimoto H, Christou G, Hendrickson DN (2001) Mixed-valence tetranuclear manganese single-molecule magnets. Inorg Chem 40:4604

    Article  Google Scholar 

  81. Lecren L, Wernsdorfer W, Li YG, Roubeau O, Miyasaka H, Clerac R (2005) Quantum tunneling and quantum phase interference in a [MnII 2MnIII 2] single-molecule magnet. J Am Chem Soc 127:11311–11317

    Article  Google Scholar 

  82. Lecren L, Roubeau O, Li YG, Le Goff XF, Miyasaka H, Richard F, Wernsdorfer W, Coulon C, Clerac R (2008) One-dimensional coordination polymers of antiferromagnetically-coupled [Mn4] single-molecule magnets. Dalton Trans 755

    Google Scholar 

  83. Miyasaka H, Nakata K, Lecren L, Coulon C, Nakazawa Y, Fijisaki T, Sugiura K-I, Yamashita M, Clérac R (2006) Two-dimensional networks based on Mn4 complex linked by dicyanamide anion: from single-molecule magnet to classical magnet behavior. J Am Chem Soc 128:3770–3783

    Article  Google Scholar 

  84. Hiraga H, Miyasaka H, Nakata K, Kajiwara T, Takaichi S, Oshima Y, Nojiri H, Yamashita M (2007) Hybrid molecular material exhibiting single-molecule magnet behavior and molecular conductivity. Inorg Chem 46:9661–9671

    Article  Google Scholar 

  85. Morimoto M, Miyasaka H, Yamashita M, Irie M (2009) Coordination assemblies of [Mn4] single-molecule magnets linked by photochromic ligands: photochemical control of the magnetic properties. J Am Chem Soc 131:9823

    Article  Google Scholar 

  86. Wittick LM, Murray KS, Moubaraki B, Batten SR, Spiccia L, Berry KJ (2004) Synthesis, structure and magnetism of new single molecule magnets composed of MnII 2MnIII 2 alkoxo-carboxylate bridged clusters capped by triethanolamine ligands. Dalton Trans 1003

    Google Scholar 

  87. Foguet-Albiol D, O’Brien TA, Wernsdorfer W, Moulton B, Zaworotko MJ, Abboud KA, Christou G (2005) DFT computational rationalization of an unusual spin ground state in an Mn12 single-molecule magnet with a low-symmetry loop structure. Angew Chem Int Ed 44:897–901

    Article  Google Scholar 

  88. Ako AM, Mereacre V, Hewitt IJ, Clerac R, Lecren L, Anson CE, Powell AK (2006) Enhancing single molecule magnet parameters. Synthesis, crystal structures and magnetic properties of mixed-valent Mn4 SMMs. J Mater Chem 16:2579

    Article  Google Scholar 

  89. Heroux KJ, Rheingold AL, Hendrickson DN (2009) Ferrocene-substituted [Mn4] dicubane single-molecule magnets. Eur J Inorg Chem 3541

    Google Scholar 

  90. Heroux KJ, Quddusi HM, Liu J, O’Brien JR, Nakano M, del Barco E, Hill S, Hendrickson DN (2011) Cationic Mn4 single-molecule magnet with a sterically isolated core. Inorg Chem 50:7367–7369

    Article  Google Scholar 

  91. Taylor SM, Karotsis G, McIntosh RD, Kennedy S, Teat SJ, Beavers CM, Wernsdorfer W, Piligkos S, Dalgarno SJ, Brechin EK (2011) A family of calix[4]arene-supported [MnIII 2MnII 2] clusters. Chem Eur J 17:7521

    Article  Google Scholar 

  92. Li D, Wang H, Wang S, Pan Y, Li C, Dou J, Song Y (2010) A linear tetranuclear single-molecule magnet of MnII 2MnIII 2 with the anion of 2-(hydroxymethyl)pyridine. Inorg Chem 49:3688

    Article  Google Scholar 

  93. Boskovic C, Bircher R, Tregenna-Piggott PLW, Gudel HU, Paulsen C, Wernsdorfer W, Barra AL, Khatsko E, Neels A, Stoeckli-Evans H (2003) Ferromagnetic and antiferromagnetic intermolecular interactions in a new family of Mn4 complexes with an energy barrier to magnetization reversal. J Am Chem Soc 125:14046

    Article  Google Scholar 

  94. Milios CJ, Raptopoulou CP, Terzis A, Lloret F, Vicente R, Perlepes SP, Escuer A (2004) Hexanuclear manganese(III) single-molecule magnets. Angew Chem Int Ed 43:210

    Article  Google Scholar 

  95. Milios CJ, Inglis R, Vinslava A, Bagai R, Wernsdorfer W, Parsons S, Perlepes SP, Christou G, Brechin EK (2007) Toward a magnetostructural correlation for a family of Mn6 SMMs. J Am Chem Soc 129:12505

    Article  Google Scholar 

  96. Inglis R, Jones LF, Milios CJ, Datta S, Collins A, Parsons S, Wernsdorfer W, Hill S, Perlepes SP, Piligkos S, Brechin EK (2009) Attempting to understand (and control) the relationship between structure and magnetism in an extended family of Mn6 single-molecule magnets. Dalton Trans 3403–3412

    Google Scholar 

  97. Moro F, Corradini V, Evangelisti M, De Renzi V, Biagi R, del Pennino U, Milios CJ, Jones LF, Brechin EK (2008) Grafting derivatives of Mn6 single-molecule magnets with high anisotropy energy barrier on Au(111) surface. J Phys Chem B 112:9729

    Article  Google Scholar 

  98. Milios CJ, Vinslava A, Wood PA, Parsons S, Wernsdorfer W, Christou G, Perlepes SP, Brechin EK (2007) A single-molecule magnet with a “twist”. J Am Chem Soc 129:8

    Article  Google Scholar 

  99. Jones LF, Cochrane ME, Koivisto BD, Leigh DA, Perlepes SP, Wernsdorfer W, Brechin EK (2008) Tuning magnetic properties using targeted structural distortion: New additions to a family of Mn6 single-molecule magnets. Inorg Chim Acta 361:3420

    Article  Google Scholar 

  100. Jones LF, Inglis R, Cochrane ME, Mason K, Collins A, Parsons S, Perlepes SP, Brechin EK (2008) New structural types and different oxidation levels in the family of Mn6-oxime single-molecule magnets. Dalton Trans 6205

    Google Scholar 

  101. Haryono M, Kalisz M, Sibille R, Lescouezec R, Fave C, Trippe-Allard G, Li Y, Seuleiman M, Rousseliere H, Balkhy AM, Lacroix J-C, Journaux Y (2010) One dimensional assembly of Mn6 single molecule magnets linked by oligothiophene bridges. Dalton Trans 39:4751

    Article  Google Scholar 

  102. Delfs C, Gatteschi D, Pardi L, Sessoli R, Wieghardt K, Hade D (1993) Magnetic properties of an octanuclear iron(III) cation. Inorg Chem 32:3099–3103

    Article  Google Scholar 

  103. (a) Gatteschi D, Sessoli R, Cornia A (2000) Single-molecule magnets based on iron(III) oxo clusters. Chem Commun 725–732 (b) Wernsdorfer W, Sessoli R, Caneschi A, Gatteschi D, Cornia A (2000) Nonadiabatic Landau-Zener tunneling in Fe8 molecular nanomagnets. Europhys Lett 50:552–558

    Google Scholar 

  104. Sangregorio C, Ohm T, Paulsen C, Sessoli R, Gatteschi D (1997) Quantum tunneling of the magnetization in an iron cluster nanomagnet. Phys Rev Lett 78:4645–4648

    Article  ADS  Google Scholar 

  105. Barra AL, Caneschi A, Cornia A, de Biani FF, Gatteschi D, Sangregorio C, Sessoli R, Sorace L (1999) Single-molecule magnet behavior of a tetranuclear iron(III) complex. The origin of slow magnetic relaxation in iron(III) clusters. J Am Chem Soc 121:5302

    Article  Google Scholar 

  106. Cornia A, Fabretti AC, Garrisi P, Mortalo C, Bonacchi D, Gatteschi D, Sessoli R, Sorace L, Wernsdorfer W, Barra A-L (2004) Energy-barrier enhancement by ligand substitution in tetrairon(iii) single-molecule magnets. Angew Chem Int Ed 43:1136–1136

    Article  Google Scholar 

  107. Accorsi S, Barra AL, Caneschi A, Chastanet G, Cornia A, Fabretti AC, Gatteschi D, Mortalo C, Olivieri E, Parenti F, Rosa P, Sessoli R, Sorace L, Wernsdorfer W, Zobbi L (2006) Tuning anisotropy barriers in a family of tetrairon(III) single-molecule magnets with an S = 5 ground state. J Am Chem Soc 128:4742–4755

    Article  Google Scholar 

  108. Barra AL, Bianchi F, Caneschi A, Cornia A, Gatteschi D, Gorini L, Gregoli L, Maffini M, Parenti F, Sessoli R, Sorace L, Talarico AM (2007) New single-molecule magnets by site-specific substitution: incorporation of “alligator clips” into Fe4 complexes. Eur J Inorg Chem 4145–4152

    Google Scholar 

  109. Gregoli L, Danieli C, Barra AL, Neugebauer P, Pellegrino G, Poneti G, Sessoli R, Cornia A (2009) Magnetostructural correlations in tetrairon(III) single-molecule magnets. Chem Eur J 15:6456–6467

    Article  Google Scholar 

  110. Condorelli GG, Motta A, Pellegrino G, Cornia A, Gorini L, Fragala IL, Sangregorio C, Sorace L (2008) Site-specific anchoring of tetrairon(III) single molecule magnets on functionalized Si(100) surfaces. Chem Mater 20:2405–2411

    Article  Google Scholar 

  111. Bogani L, Danieli C, Biavardi E, Bendiab N, Barra AL, Dalcanale E, Wernsdorfer W, Cornia A (2009) Single-molecule-magnet carbon-nanotube hybrids. Angew Chem Int Ed 48:746–750

    Article  Google Scholar 

  112. Rodriguez-Douton MJ, Cornia A, Sessoli R, Sorace L, Barra AL (2010) Introduction of ester and amido functions in tetrairon(III) single-molecule magnets: synthesis and physical characterization. Dalton Trans 39:5851–5859

    Article  Google Scholar 

  113. Tancini E, Rodriguez-Douton MJ, Sorace L, Barra AL, Sessoli R, Cornia A (2010) Slow magnetic relaxation from hard-axis metal ions in tetranuclear single-molecule magnets. Chem Eur J 16:10482–10493

    Article  Google Scholar 

  114. Zhu YY, Guo X, Cui C, Wang BW, Wang ZM, Gao S (2011) An enantiopure FeIII 4 single-molecule magnet. Chem Commun 47:8049–8051

    Article  Google Scholar 

  115. Powell GW, Lancashire HN, Brechin EK, Collison D, Heath SL, Mallah T, Wernsdorfer W (2004) Building molecular minerals: all ferric pieces of molecular magnetite. Angew Chem Int Ed 43:5772–5775

    Article  Google Scholar 

  116. Bagai R, Wernsdorfer W, Abboud KA, Christou G (2007) Exchange-biased dimers of single-molecule magnets in OFF and ON states. J Am Chem Soc 129:12918–12919

    Article  Google Scholar 

  117. Jones LF, Brechin EK, Collison D, Helliwell M, Mallah T, Piligkos S, Rajaraman G, Wernsdorfer W (2003) A novel undecametallic iron(III) cluster with an S = 11/2 spin ground state. Inorg Chem 42:6601–6603

    Article  Google Scholar 

  118. Ako AM, Mereacre V, Lan Y, Wernsdorfer W, Clerac R, Anson CE, Powell AK (2010) An undecanuclear FeIII single-molecule magnet. Inorg Chem 49:1–3

    Article  Google Scholar 

  119. Murugesu M, Clerac R, Wernsdorfer W, Anson CE, Powell AK (2005) Hierarchical assembly of {Fe13} oxygen-bridged clusters into a close-packed superstructure. Angew Chem Int Ed 44:6678–6682

    Article  Google Scholar 

  120. Goodwin JC, Sessoli R, Gatteschi D, Wernsdorfer W, Powell AK, Heath SL (2000) Towards nanostructured arrays of single molecule magnets: new Fe19 oxyhydroxide clusters displaying high ground state spins and hysteresis. J Chem Soc Dalton Trans 1835–1840

    Google Scholar 

  121. (a) Oshio H, Hoshino N, Ito T (2000) Superparamagnetic behavior in an alkoxo-bridged iron(II) cube. J Am Chem Soc 122:12602–12603 (b) Oshio H, Hoshino N, Ito T, Nakano M (2004) Single-molecule magnets of ferrous cubes: structurally controlled magnetic anisotropy. J Am Chem Soc 126:8805–8812

    Google Scholar 

  122. Boudalis AK, Donnadieu B, Nastopoulos V, Clemente-Juan JM, Mari A, Sanakis Y, Tuchagues JP, Perlepes SP (2004) A nonanuclear iron(ii) single-molecule magnet. Angew Chem Int Ed 43:2266–2270

    Article  Google Scholar 

  123. Yang EC, Hendrickson DN, Wernsdorfer W, Nakano M, Zhakarov LN, Sommer RD, Rheingold AL, Ledezma-Gairaud M, Christou G (2002) Cobalt single-molecule magnet. J Appl Phys 91:7382–7384

    Article  ADS  Google Scholar 

  124. Murrie M, Teat SJ, Stoeckli-Evans H, Güdel HU (2003) Synthesis and characterization of a cobalt(II) single-molecule magnet. Angew Chem Int Ed 42:4653–4656

    Article  Google Scholar 

  125. Galloway KW, Whyte AM, Wernsdorfer W, Sanchez-Benitez J, Kamenev KV, Parkin A, Peacock RD, Murrie M (2008) Cobalt(II) citrate cubane single-molecule magnet. Inorg Chem 47:7438–7442

    Article  Google Scholar 

  126. Moubaraki B, Murray KS, Hudson TA, Robson R (2008) Tetranuclear and octanuclear cobalt(II) citrate cluster single molecule magnets. Eur J Inorg Chem 2008:4525–4529

    Article  Google Scholar 

  127. Zeng MH, Yao MX, Liang H, Zhang WX, Chen XM (2007) A Single-molecule-magnetic, cubane-based, triangular Co12 supercluster. Angew Chem Int Ed 46:1832–1835

    Article  Google Scholar 

  128. Zhou YL, Zeng MH, Liu XC, Liang H, Kurmoo M (2011) Exploring the effect of metal ions and counteranions on the structure and magnetic properties of five dodecanuclear CoII and NiII clusters. Chem Eur J 17:14084–14093

    Article  Google Scholar 

  129. Wu D, Guo D, Song Y, Huang W, Duan C, Meng Q, Sato O (2009) CoII molecular square with single-molecule magnet properties. Inorg Chem 48:854–860

    Article  Google Scholar 

  130. Ibrahim M, Lan Y, Bassil BS, Xiang Y, Suchopar A, Powell AK, Kortz U (2011) Hexadecacobalt(II)-containing polyoxometalate-based single-molecule magnet. Angew Chem Int Ed 50:4708–4711

    Article  Google Scholar 

  131. Klower F, Lan Y, Nehrkorn J, Waldmann O, Anson CE, Powell AK (2009) Modelling the magnetic behaviour of square-pyramidal CoII 5 aggregates: tuning SMM behaviour through variations in the ligand shell. Chem Eur J 15:7413–7422

    Article  Google Scholar 

  132. Chen Q, Zeng MH, Zhou YL, Zou HH, Kurmoo M (2010) Hydrogen-bonded dicubane CoII 7 single-molecule-magnet coordinated by in situ solvothermally generated 1,2-bis(8-hydroxyquinolin-2-yl)-ethane-1,2-diol arranged in a trefoil. Chem Mater 22:2114–2119

    Article  Google Scholar 

  133. Yoshihara D, Karasawa S, Koga N (2008) Cyclic single-molecule magnet in heterospin system. J Am Chem Soc 130:10460–10461

    Article  Google Scholar 

  134. Kanegawa S, Karasawa S, Maeyama M, Nakano M, Koga N (2008) Crystal design of monometallic single-molecule magnets consisting of cobalt-aminoxyl heterospins. J Am Chem Soc 130:3079–3094

    Article  Google Scholar 

  135. Karasawa S, Yoshihara D, Watanabe N, Nakano M, Koga N (2008) Formation of monometallic single-molecule magnets with an Stotal value of 3/2 in diluted frozen solution. Dalton Trans 1418–1420

    Google Scholar 

  136. Kanegawa S, Karasawa S, Nakano M, Koga N (2004) Magnetic behavior of tetrakis[4-(N-tert-butyl-N-oxylamino)pyridine]bis(isocyanato-N)cobalt(II) in frozen solution. Chem Commun 1750–1751

    Google Scholar 

  137. Karasawa S, Zhou GY, Morikawa H, Koga N (2003) Magnetic properties of tetrakis[4-(alpha-diazobenzyl)pyridine]bis(thiocyanato-N)cobalt(II) in frozen solution after irradiation. Formation of a single-molecule magnet in frozen solution. J Am Chem Soc 125:13676–13677

    Article  Google Scholar 

  138. Tobinaga H, Suehiro M, Ito T, Zhou G, Karasawa S, Koga N (2007) Magnetic property of 1:2 mixture of Co(p-tolsal)2; p-tolsal = N-p-tolylsalicylideniminato, and cyclic pentacarbene-pyridine with S = 10/2 in dilute frozen solution. Polyhedron 26:1905–1911

    Article  Google Scholar 

  139. Ferguson A, Lawrence J, Parkin A, Sanchez-Benitez J, Kamenev KV, Brechin EK, Wernsdorfer W, Hill S, Murrie M (2008) Synthesis and characterisation of a Ni4 single-molecule magnet with S4 symmetry. Dalton Trans 6409–6414

    Google Scholar 

  140. Yang EC, Wernsdorfer W, Zakharov LN, Karaki Y, Yamaguchi A, Isidro RM, Lu GD, Wilson SA, Rheingold AL, Ishimoto H, Hendrickson DN (2006) Fast magnetization tunneling in tetranickel(II) single-molecule magnets. Inorg Chem 45:529–546

    Article  Google Scholar 

  141. Cadiou C, Murrie M, Paulsen C, Villar V, Wernsdorfer W, Winpenny REP (2001) Studies of a nickel-based single molecule magnet: resonant quantum tunnelling in an S = 12 molecule. Chem Commun 2666–2667

    Google Scholar 

  142. Andres H, Basler R, Blake AJ, Cadiou C, Chaboussant G, Grant CM, Güdel HU, Murrie M, Parsons S, Paulsen C, Semadini F, Villar V, Wernsdorfer W, Winpenny REP (2002) Studies of a nickel-based single-molecule magnet. Chem Eur J 8:4867

    Article  Google Scholar 

  143. Bell A, AromíG TSJ, Wernsdorfer W, Winpenny REP (2005) Synthesis and characterisation of a {Ni8} single molecule magnet and another octanuclear nickel cage. Chem Commun 2808–2810

    Google Scholar 

  144. Aromí G, Parsons S, Wernsdorfer W, Brechin EK, McInnes EJL (2005) Synthesis, structure and magnetic properties of a decametallic Ni single-molecule magnet. Chem Commun 40:5038–5040

    Article  Google Scholar 

  145. Ochsenbein ST, Murrie M, Rusanov E, Stoeckli-Evans H, Sekine C, Güdel HU (2002) Synthesis, structure, and magnetic properties of the single-molecule magnet [Ni21(cit)12(OH)10(H2O)10]16−. Inorg Chem 41:5133–5140

    Article  Google Scholar 

  146. Sun Z, Grant CM, Castro SL, Hendrickson DN, Christou G (1998) Single-molecule magnets: out-of-phase ac susceptibility signals from tetranuclear vanadium(III) complexes with an S = 3 ground state. Chem Commun 6:721

    Article  Google Scholar 

  147. Giraud R, Wernsdorfer W et al (2001) Nuclear spin driven quantum relaxation in LiY0.998Ho0.002 F4. Phys Rev Lett 87(5):057203

    Article  ADS  Google Scholar 

  148. Koike N, Uekusa H et al (1996) Relationship between the skew angle and interplanar distance in four bis(phthalocyaninato)lanthanide(III) tetrabutylammonium salts ([NBun 4][LnIIIPc2]; Ln = Nd, Gd, Ho, Lu). Inorg Chem 35(20):5798–5804

    Article  Google Scholar 

  149. Ishikawa N, Sugita M, Ishikawa T, Koshihara S-y, Kaizu Y (2003) Lanthanide double-decker complexes functioning as magnets at the single-molecular level. J Am Chem Soc 125:8694–8695

    Article  Google Scholar 

  150. Ishikawa N, Sugita M, Wernsdorfer W (2005) Nuclear spin driven quantum tunneling of magnetization in a new lanthanide single-molecule magnet: bis(phthalocyaninato)holmium anion. J Am Chem Soc 127(11):3650–3651

    Article  Google Scholar 

  151. Ishikawa N, Sugita M et al (2004) Mononuclear lanthanide complexes with a long magnetization relaxation time at high temperatures: a new category of magnets at the single-molecular level. J Phys Chem B 108(31):11265–11271

    Article  Google Scholar 

  152. Gonidec M, Davies ES et al (2010) Probing the magnetic properties of three interconvertible redox states of a single-molecule magnet with magnetic circular dichroism spectroscopy. J Am Chem Soc 132(6):1756–1757

    Article  Google Scholar 

  153. Gonidec M, Luis F, Vílchez A, Esquena J, Amabilino DB, Veciana J (2010) A liquid-crystalline single-molecule magnet with variable magnetic properties. Angew Chem Int Ed 49(9):1623–1626

    Article  Google Scholar 

  154. Ishikawa N, Sugita M et al (2005) Quantum tunneling of magnetization in lanthanide single-molecule magnets: bis(phthalocyaninato)terbium and bis(phthalocyaninato)dysprosium anions. Angew Chem Int Ed 44(19):2931–2935

    Article  Google Scholar 

  155. Ishikawa N, Sugita M, Tanaka N, Ishikawa T, Koshihara S-y, Kaizu Y (2004) Upward temperature shift of the intrinsic phase lag of the magnetization of bis(phthalocyaninato)terbium by ligand oxidation creating an S = 1/2 spin. Inorg Chem 43:5498–5500

    Article  Google Scholar 

  156. Takamatsu S, Ishikawa T, Koshihara S-y, Ishikawa N (2007) Significant increase of the barrier energy for magnetization reversal of a single-4f-ionic single-molecule magnet by a longitudinal contraction of the coordination space. Inorg Chem 46:7250–7252

    Article  Google Scholar 

  157. Ishikawa N, Mizuno Y, Takamatsu S, Ishikawa T, Koshihara S-Y (2008) Effects of chemically induced contraction of a coordination polyhedron on the dynamical magnetism of bis(phthalocyaninato)dysprosium, a single-4f-ionic single-molecule magnet with a Kramers ground state. Inorg Chem 47:10217–10219

    Article  Google Scholar 

  158. AlDamen MA, Clemente-Juan JM, Coronado E, Martí-Gastaldo C, Gaita-Ariño A (2008) Mononuclear lanthanide single-molecule magnets based on polyoxometalates. J Am Chem Soc 130(28):8874–8875

    Article  Google Scholar 

  159. AlDamen MA, Cardona-Serra S, Clemente-Juan JM, Coronado E, Gaita-Ariño A, Martí-Gastaldo C, Luis F, Montero O (2009) Mononuclear lanthanide single molecule magnets based on the polyoxometalates [Ln(W5O18)2]9− and [Ln(β2-SiW11O39)2]13− (LnIII = Tb, Dy, Ho, Er, Tm, and Yb). Inorg Chem 48:3467–3479

    Article  Google Scholar 

  160. Li DP, Wang TW, Li CH, Liu DS, Li YZ, You XZ (2010) Single-ion magnets based on mononuclear lanthanide complexes with chiral Schiff base ligands [Ln(FTA)3 L] (Ln = Sm, Eu, Gd, Tb and Dy). Chem Commun 46(17):2929–2931

    Article  Google Scholar 

  161. Li DP, Zhang XP et al (2011) Distinct magnetic dynamic behavior for two polymorphs of the same Dy(III) complex. Chem Commun 47(24):6867–6869

    Article  Google Scholar 

  162. Jiang SD, Wang BW et al (2010) A mononuclear dysprosium complex featuring single-molecule-magnet behavior. Angew Chem Int Ed 49(41):7448–7451

    Article  Google Scholar 

  163. Bi Y, Guo YN et al (2011) Capping ligand perturbed slow magnetic relaxation in dysprosium single-ion magnets. Chem Eur J 17(44):12476–12481

    Article  Google Scholar 

  164. Watanabe A, Yamashita A et al (2011) Multi-path magnetic relaxation of mono-dysprosium(III) single-molecule magnet with extremely high barrier. Chem Eur J 17(27):7428–7432

    Article  Google Scholar 

  165. Feltham HLC, Lan Y, Klöwer F, Ungur L, Chibotaru LF, Powell AK, Brooker S (2011) A non-sandwiched macrocyclic monolanthanide single-molecule magnet: the key role of axiality. Chem Eur J 17(16):4362–4365

    Article  Google Scholar 

  166. Yamashita A, Watanabe A, Akine S, Nabeshima T, Nakano M, Yamamura T, Kajiwara T (2011) Wheel-shaped ErIIIZnII 3 single-molecule magnet: a macrocyclic approach to designing magnetic anisotropy. Angew Chem Int Ed 50(17):4016–4019

    Article  Google Scholar 

  167. Jiang SD, Wang BW et al (2011) An organometallic single-ion magnet. J Am Chem Soc 133(13):4730–4733

    Article  Google Scholar 

  168. Jeletic M, Lin PH, Le Roy JJ, Korobkov I, Gorelsky SI, Murugesu M (2011) An organometallic sandwich lanthanide single-ion magnet with an unusual multiple relaxation mechanism. J Am Chem Soc 133:19286–19289

    Article  Google Scholar 

  169. Car P-E, Perfetti M, Mannini M, Favre A, Caneschi A, Sessoli R (2011) Giant field dependence of the low temperature relaxation of the magnetization in a dysprosium(III)-DOTA complex. Chem Commun 47 (13): 3751–3753

    Google Scholar 

  170. (a) Long J, Habib F, Lin PH, Korobkov I, Enright G, Ungur L, Wernsdorfer W, Chibotaru LF, Murugesu M (2011) Single-molecule magnet behavior for an antiferromagnetically superexchange-coupled dinuclear dysprosium(III) complex. J Am Chem Soc 133(14):5319–5328 (b) Habib F, Lin PH, Long J, Korobkov I, Wernsdorfer W, Murugesu M (2011) The use of magnetic dilution to elucidate the slow magnetic relaxation effects of a Dy2 single-molecule magnet. J Am Chem Soc 133:8830–8833

    Google Scholar 

  171. Guo YN, Xu GF, Wernsdorfer W, Ungur L, Guo Y, Tang J, Zhang HJ, Chibotaru LF, Powell AK (2011) Strong axiality and Ising exchange interaction suppress zero-field tunneling of magnetization of an asymmetric Dy2 single-molecule magnet. J Am Chem Soc 133(31):11948–11951

    Google Scholar 

  172. Rinehart JD, Fang M, Evans WJ, Long JR (2011) Strong exchange and magnetic blocking in N3− 2 radical-bridged lanthanide complexes. Nat Chem 3(7):538–542

    Google Scholar 

  173. Rinehart JD, Fang M, Evans WJ, Long JR (2011) A N3− 2 radical-bridged terbium complex exhibiting magnetic hysteresis at 14 K. J Am Chem Soc 133(36):14236–14239

    Google Scholar 

  174. Tang J, Hewitt I, Madhu NT, Chastanet G, Wernsdorfer W, Anson CE, Benelli C, Sessoli R, Powell AK (2006) Dysprosium triangles showing single-molecule magnet behavior of thermally excited spin states. Angew Chem Int Ed 45(11):1729–1733

    Article  Google Scholar 

  175. Luzon J, Bernot K et al (2008) Spin chirality in a molecular dysprosium triangle: the archetype of the noncollinear ising model. Phys Rev Lett 100(24):247205

    Article  ADS  Google Scholar 

  176. Salman Z, Giblin SR, et al (2010) Probing the magnetic ground state of the molecular dysprosium triangle with muon spin relaxation. Phys Rev B 82(17):174427

    Google Scholar 

  177. Chibotaru LF, Ungur L, Soncini A (2008) The origin of nonmagnetic Kramers doublets in the ground state of dysprosium triangles: evidence for a toroidal magnetic moment. Angew Chem Int Ed 47(22):4126–4129

    Article  Google Scholar 

  178. Ungur L, Van den Heuvel W, Chibotaru LF (2009) Ab initio investigation of the non-collinear magnetic structure and the lowest magnetic excitations in dysprosium triangles. New J Chem 33(6):1224–1230

    Article  Google Scholar 

  179. Hewitt IJ, Tang J, Madhu NT, Anson CE, Lan Y, Luzon J, Etienne M, Sessoli R, Powell AK (2010) Coupling Dy3 triangles enhances their slow magnetic relaxation. Angew Chem Int Ed 49(36):6352–6356

    Article  Google Scholar 

  180. Blagg RJ, Muryn CA, McInnes EJL, Tuna F, Winpenny REP (2011) Single pyramid magnets: Dy5 pyramids with slow magnetic relaxation to 40 K. Angew Chem Int Ed 50(29):6530–6533

    Article  Google Scholar 

  181. Antunes MA, Pereira LCJ et al (2011) [U(TpMe2)2(bipy)]+: a cationic uranium(III) complex with single-molecule-magnet behavior. Inorg Chem 50(20):9915–9917

    Article  Google Scholar 

  182. Mazzanti M (2011) Molecular magnetism: uranium memory. Nat Chem 3(6):426–427

    Article  Google Scholar 

  183. Rinehart JD, Long JR (2009) Slow magnetic relaxation in a trigonal prismatic uranium(III) complex. J Am Chem Soc 131(35):12558–12559

    Article  Google Scholar 

  184. Magnani N, Apostolidis C et al (2011) Magnetic memory effect in a transuranic mononuclear complex. Angew Chem Int Ed 50(7):1696–1698

    Article  Google Scholar 

  185. Rinehart JD, Meihaus KR et al (2010) Observation of a secondary slow relaxation process for the field-induced single-molecule magnet U(H2BPz2)3. J Am Chem Soc 132(22):7572–7573

    Article  Google Scholar 

  186. Meihaus KR, Rinehart JD et al (2011) Dilution-induced slow magnetic relaxation and anomalous hysteresis in trigonal prismatic dysprosium(III) and uranium(III) complexes. Inorg Chem 50(17):8484–8489

    Article  Google Scholar 

  187. Freedman DE, Harman WH et al (2010) Slow magnetic relaxation in a high-spin iron(II) complex. J Am Chem Soc 132(4):1224–1225

    Article  Google Scholar 

  188. Harman WH, Harris TD et al (2010) Slow magnetic relaxation in a family of trigonal pyramidal iron(II) pyrrolide complexes. J Am Chem Soc 132(51):18115–18126

    Article  Google Scholar 

  189. Lin PH, Smythe NC et al (2011) Importance of out-of-state spin-orbit coupling for slow magnetic relaxation in mononuclear FeII complexes. J Am Chem Soc 133(40):15806–15809

    Article  Google Scholar 

  190. Jurca T, Farghal A et al (2011) Single-molecule magnet behavior with a single metal center enhanced through peripheral ligand modifications. J Am Chem Soc 133(40):15814–15817

    Article  Google Scholar 

  191. (a) Coulon C, Miyasaka H, Clerac R (2006) Single-chain magnets: theoretical approach and experimental systems. Struct Bond 122:163–206 (b) Lescouezec R, Toma LM, Vaissermann J, Verdaguer M, Delgado FS, Ruiz-Perez C, Lloret F, Julve M (2005) Design of single chain magnets through cyanide-bearing six-coordinate complexes. Coord Chem Rev 249:2691

    Google Scholar 

  192. Bogani L, Vindigni A, Sessolia R, Gatteschi D (2008) Single chain magnets: where to from here? J Mater Chem 18:4750–4758

    Article  Google Scholar 

  193. Sun HL, Wang ZM, Gao S (2010) Strategies towards single-chain magnets. Coord Chem Rev 254:1081–1100

    Article  Google Scholar 

  194. Morrish AH (1966) The physical principles of magnetism. Wiley, New York

    Google Scholar 

  195. Villain J, Hartmann-Boutron F, Sessoli R, Rettori A (1994) Magnetic relaxation in big magnetic molecules. Europhys Lett 27:159

    Article  ADS  Google Scholar 

  196. Glauber RJ (1963) Time-dependent statistics of Ising model. J Math Phys 4:294–307

    Article  MathSciNet  ADS  MATH  Google Scholar 

  197. (a) Kahn O (1993) Molecular magnetism. VCH, New York (b) Carlin RL (1986) Magnetochemistry. Springer-Verlag: New York

    Google Scholar 

  198. (a) Liu TF, Fu D, Gao S, Zhang YZ, Sun HL, Su G, Liu YJ (2003) An azide-bridged homospin single-chain magnet: [Co(2,2′-bithiazoline)(N3)2]n. J Am Chem Soc 125:13976–13977 (b) Sun HL, Wang ZM, Gao S (2009) [M(N3)2(H2O)2] · bpeado: unusual antiferromagnetic Heisenberg chain (M = Mn) and ferromagnetic Ising chain (M = Co) with large coercivity and magnetic relaxation (bpeado = 1,2-Bis(4-pyridyl)ethane-N,N′-dioxide). Chem Eur J 15:1757–1764 (c) Li ZX, Zeng YF, Ma H, Bu XH (2010) Homospin single-chain magnet with 1D ferromagnetic azido-cobalt Ising-type chain. Chem Commun 46:8540–8542 (d) Wang YQ, Sun WW, Wang ZD, Jia QX, Gao EQ, Song Y (2011) Solvent-modulated slow magnetic relaxation in a two-dimensional compound composed of cobalt(II) single-chain magnets. Chem Commun 47:6386–6388 (e) Zhang XM, Wang YQ, Wang K, Gao EQ, Liu CM (2011) Metamagnetism and slow magnetic dynamics in an antiferromagnet composed of cobalt(II) chains with mixed azide-carboxylate bridges. Chem Commun 47:1815–1817 (f) Zhao JP, Hu BW, Zhang XF, Yang Q, Fallah MSE, Ribas J, Bu XH (2010) One pot synthesis of heterometallic 3d-3d azide coordination architectures: effect of the single-ion anisotropy. Inorg Chem 49:11325–11332

    Google Scholar 

  199. (a) Chang F, Gao S, Sun HL, Hou YL, Su G, (2002) Proceeding of the ICSM 2002 Conference (June 29–July 5th 2002), Fudan University, Shanghai, p 182 (b) Lescouzec R, Vaissermann J, Ruiz-Perez C, Lloret F, Carrasco R, Julve M, Verdaguer M, Dromzee Y, Gatteschi D, Wernsdorfer W (2003) Cyanide-bridged iron(III)-cobalt(II) double zigzag ferromagnetic chains: two new molecular magnetic nanowires. Angew Chem Int Ed 42:1483–1486 (c) Wang S, Zuo JL, Gao S, Song Y, Zhou HC, Zhang YZ, You XZ (2004) The observation of superparamagnetic behavior in molecular nanowires. J Am Chem Soc 126:8900–8901 (d) Ferbinteanu M, Miyasaka H, Wernsdorfer W, Nakata K, Sugiura K, Yamashita M, Coulon C, Clerac R (2005) Single-chain magnet (NEt4)[Mn2(5-MeOsalen)2Fe(CN)6] made of MnIII–FeIII–MnIII trinuclear single-molecule magnet with an ST = 9/2 spin ground state. J Am Chem Soc 127:3090–3099 (e) Guo JF, Wang XT, Wang BW, Gao S, Szeto L, Wong WT, Wong WY, Lau TC (2010) One-dimensional ferromagnetically coupled bimetallic chains constructed with trans-[Ru(acac)2(CN)2]: syntheses, structures, magnetic properties, and density functional theoretical study. Chem Eur J 16:3524–3535 (f) Hoshino N, Sekine Y, Nihei M, Oshio H (2010) Achiral single molecule magnet and chiral single chain magnet. Chem Commun 46:6117–6119 (g) Zhang D, Zhang LF, Chen Y, Wang H, Ni ZH, Wernsdorfer W, Jiang J (2010) Heterobimetallic porphyrin-based single-chain magnet constructed from manganese(III)-porphyrin and trans-dicyanobis(acetylacetonato) ruthenate(III) containing co-crystallized bulk anions and cations. Chem Commun 46:3550–3552 (h) Liu T, Zhang YJ, Kanegawa S, Sato O (2010) Photoinduced metal-to-metal charge transfer toward single-chain magnet. J Am Chem Soc 132:8250–8251

    Google Scholar 

  200. Coronado E, Galan-Mascaros JR, Martí-Gastaldo C (2008) Single chain magnets based on the oxalate ligand. J Am Chem Soc 130:14987–14989

    Article  Google Scholar 

  201. Zheng YZ, Tong ML, Zhang WX, Chen XM (2006) Assembling magnetic nanowires into networks: a layered CoII carboxylate coordination polymer exhibiting single-chain-magnet behavior. Angew Chem Int Ed 45:6310–6314

    Article  Google Scholar 

  202. Clerac R, Miyasaka H, Yamashita M, Coulon C (2002) Evidence for single-chain magnet behavior in a MnIII–NiII chain designed with high spin magnetic units: a route to high temperature metastable magnets. J Am Chem Soc 124:12837–12844

    Article  Google Scholar 

  203. Shaikh N, Panja A, Goswami S, Banerjee P, Vojtisek P, Zhang YZ, Su G, Gao S (2004) Slow magnetic relaxation in a mixed-valence Mn(II/III) complex: [MnII 2(bispicen)23 − Cl)2MnIII(Cl4Cat)2MnIII(Cl4Cat)2(H2O2)]. Inorg Chem 43:849–851

    Article  Google Scholar 

  204. Stamatatos TC, Abboud KA, Wernsdorfer W, Christou G (2009) {Mn6} n single-chain magnet bearing azides and di-2-pyridylketone-derived ligands. Inorg Chem 48:807–809

    Article  Google Scholar 

  205. (a) Ruiz E, Cano J, Alvarez S, Alemany P (1998) Magnetic coupling in end-on azido-bridged transition metal complexes: a density functional study. J Am Chem Soc 120:11122–11129 (b) Ribas J, Escuer A, Monfort M, Vicente R, Cortes R, Lezama L, Rojo T (1999) Polynuclear NiII and MnII azido bridging complexes. Structural trends and magnetic behavior. Coord Chem Rev 193–195:1027–1068

    Google Scholar 

  206. (a) Cole KS, Cole RHJ (1941) Chem Phys 9:341 (b) Boettcher CJF (1952) Theory of electric polarization. Elsevier, Amsterdam

    Google Scholar 

  207. Ishii N, Okamura Y, Chiba S, Nogami T, Ishida T (2008) Giant coercivity in a one-dimensional cobalt-radical coordination magnet. J Am Chem Soc 130:24–25

    Article  Google Scholar 

  208. Miyasaka H, Madanbashi T, Sugimoto K, Nakazawa Y, Wernsdorfer W, Sugiura K, Yamashita M, Coulon C, Clerac R (2006) Single-chain magnet behavior in an alternated one-dimensional assembly of a MnIII Schiff-base complex and a TCNQ radical. Chem Eur J 12:7028–7040

    Article  Google Scholar 

  209. Pardo E, Ruiz-Garcia R, Lloret F, Faus J, Julve M, Journaux Y, Delgado FS, Ruiz-Perez C (2004) Cobalt(II)-copper(II) bimetallic chains as a new class of single-chain magnets. Adv Mater 16:1597–1600

    Article  Google Scholar 

  210. Miyasaka H, Takayama K, Saitoh A, Furukawa S, Yamashita M, Clérac R (2010) Three-dimensional antiferromagnetic order of single-chain magnets: a new approach to design molecule-based magnets. Chem Eur J 16:3656–3662

    Article  Google Scholar 

  211. (a) Choi SW, Kwak HY, Yoon JH, Kim HC, Koh EK, Hong CS (2008) Intermolecular contact-tuned magnetic nature in one-dimensional 3d-5d bimetallic systems: from a metamagnet to a single-chain magnet. Inorg Chem 47:10214–10216 (b) Yoon JH, Lee JW, Ryu DW, Choi SY, Yoon SW, Suh BJ, Koh EK, Kim HC, Hong CS (2011) Cyanide-bridged WVMnIII single-chain magnet with isolated MnIII moieties exhibiting two types of relaxation dynamics. Inorg Chem 50:11306–11308 (c) Mitsumoto K, Ui M, Nihei M, Nishikawa H, Oshio H (2010) Single chain magnet of a cyanide bridged FeII/FeIII complex. CrystEngComm 12:2697–2699

    Google Scholar 

  212. Kajiwara T, Nakano M, Kaneko Y, Takaishi S, Ito T, Yamashita M, Igashira-Kamiyama A, Nojiri H, Ono Y, Kojima N (2005) A single-chain magnet formed by a twisted arrangement of ions with easy-plane magnetic anisotropy. J Am Chem Soc 127:10150–10151

    Article  Google Scholar 

  213. Li XJ, Wang XY, Gao S, Cao R (2006) Two three-dimensional metal-organic frameworks containing one-dimensional hydroxyl/carboxylate mixed bridged metal chains: Syntheses, crystal structures, and magnetic properties. Inorg Chem 45:1508–1516

    Article  Google Scholar 

  214. Yang CI, Hung SP, Lee GH, Nakano M, Tsai HL (2010) Slow magnetic relaxation in an octanuclear manganese chain. Inorg Chem 49:7617–7619

    Article  Google Scholar 

  215. Yang CI, Tsai YJ, Hung SP, Tsai HL, Nakano M (2010) A manganese single-chain magnet exhibits a large magnetic coercivity. Chem Commun 46:5716–5718

    Article  Google Scholar 

  216. Caneschi A, Gatteschi D, Lalioti N, Sessoli R, Sorace L, Tangoulis V, Vindigni A (2002) Ising-type magnetic anisotropy in a cobalt(II) nitronyl nitroxide compound: a key to understanding the formation of molecular magnetic nanowires. Eur J Chem A 8:286–292

    Article  Google Scholar 

  217. (a) Sun ZM, Prosvirin AV, Zhao HH, Mao JG, Dunbar KR (2005) New type of single chain magnet based on spin canting in an antiferromagnetically coupled Co(II) chain. J Appl Phys 97:10B305 (b) Palii AV, Ostrovsky SM, Klokishner SI, Reu OS, Sun ZM, Prosvirin AV, Zhao HH, Mao JG, Dunbar KR (2006) Origin of the single chain magnet behavior of the Co(H2L)(H2O) compound with a 1D structure. J Phys Chem A 110:14003–14012 (c) Palii AV, Reu OS, Ostrovsky SM, Klokishner SI, Tsukerblat BS, Sun ZM, Mao JG, Prosvirin AV, Zhao HH, Dunbar KR (2008) A highly anisotropic cobalt(II)-based single-chain magnet: exploration of spin canting in an antiferromagnetic array. J Am Chem Soc 130:14729–14738

    Google Scholar 

  218. Bernot K, Luzon J, Sessoli R, Vindigni A, Thion J, Richeter S, Leclercq D, Larionova J, Lee A (2008) The canted antiferromagnetic approach to single-chain magnets. J Am Chem Soc 130:1619–1627

    Article  Google Scholar 

  219. Ouellette W, Prosvirin AV, Whitenack K, Dunbar KR, Zubieta J (2009) A thermally and hydrolytically stable microporous framework exhibiting single-chain magnetism: structure and properties of [Co2(H0.67bdt)3] · 20H2O. Angew Chem Int Ed 48:2140–2143

    Article  Google Scholar 

  220. (a) Xu HB, Wang BW, Pan F, Wang ZM, Gao S (2007) Stringing oxo-centered trinuclear MnIII 3O units into single-chain magnets with formate or azide linkers. Angew Chem Int Ed 46:7388–7392 (b) Bai YL, Tao J, Wernsdorfer W, Sato O, Huang RB, Zheng LS (2006) Coexistence of magnetization relaxation and dielectric relaxation in a single-chain magnet. J Am Chem Soc 128:16428–16429

    Google Scholar 

  221. Yoon JH, Lee JW, Ryu DW, Yoon SW, Suh BJ, Kim HC, Hong CS (2011) One-dimensional end-to-end azide-bridged MnIII complexes incorporating alkali metal ions: slow magnetic relaxations and metamagnetism. Chem Eur J 17:3028–3034

    Article  Google Scholar 

  222. (a) Bogani L, Sangregorio C, Sessoli R, Gatteschi D (2005) Molecular engineering for single-chain-magnet behavior in a one-dimensional dysprosium-nitronyl nitroxide compound. Angew Chem Int Ed 44:5817–5821 (b) Bogani L, Cavigli L, Bernot K, Sessoli R, Guriolib M, Gatteschi D (2006) Evidence of intermolecular pi-stacking enhancement of second-harmonic generation in a family of single chain magnets. J Mater Chem 16:2587–2592

    Google Scholar 

  223. Yang CI, Chuang PH, Lu KL (2011) Slow magnetic relaxation in a cobalt magnetic chain. Chem Commun 47:4445–4447

    Article  Google Scholar 

  224. Sessoli R (2008) Record hard magnets: Glauber dynamics are key. Angew Chem Int Ed 47:5508–5510

    Article  Google Scholar 

  225. Rocha AR, García-Suárez VM, Bailey SW, Lambert CJ (2005) Towards molecular spintronics. Nat Mater 4:335–339

    Article  ADS  Google Scholar 

  226. Wolf SA, Awschalom DD, Buhrman RA, Daughton JM, von Molnár S, Roukes ML, Chtchelkanova AY, Treger DM (2001) Spintronics: a spin-based electronics vision for the future. Science 294:1488–1495

    Article  ADS  Google Scholar 

  227. Bogani L, Wernsdorfer W (2008) Molecular spintronics using single-molecule magnets. Nat Mater 7:179–186

    Article  ADS  Google Scholar 

  228. Katoh K, Isshiki H, Komeda T, Yamashita M (2012) Molecular spintronics based on single-molecule magnets composed of multiple-decker phthalocyaninato terbium(III) complex. Chem Asian J. 7:1154–1169

    Google Scholar 

  229. Cavallini M, Facchini M, Albonetti C, Biscarini F (2008) Single molecule magnets: from thin films to nano-patterns. Phys Chem Chem Phys 10:784–793

    Article  Google Scholar 

  230. Cornia A, Costantino AF, Zobbi L, Caneschi A, Gatteschi D, Mannini M, Sessoli R (2006) Preparation of novel materials using SMMs. Struct Bond 122:133–161

    Article  Google Scholar 

  231. Coronado E, Marti-Gastaldo C, Tatay S (2007) Magnetic molecular nanostructures: design of magnetic molecular materials as monolayers, multilayers and thin films. Appl Surf Sci 254:225–235

    Article  ADS  Google Scholar 

  232. Gomez-Segura J, Veciana J, Ruiz-Molina D (2007) Advances on the nanostructuration of magnetic molecules on surfaces: the case of single-molecule magnets (SMM). Chem Commun 3699–3707

    Google Scholar 

  233. Gatteschi D, Cornia A, Mannini M, Sessoli R (2009) Organizing and addressing magnetic molecules. Inorg Chem 48:3408–3419

    Article  Google Scholar 

  234. Cornia A, Mannini M, Sainctavit P, Sessoli R (2011) Chemical strategies and characterization tools for the organization of single molecule magnets on surfaces. Chem Soc Rev 40:3076–3091, and references therein

    Article  Google Scholar 

  235. Wende H et al (2007) Substrate-induced magnetic ordering and switching of iron porphyrin molecules. Nat Mater 6:516–520

    Article  ADS  Google Scholar 

  236. Saywell A, Magnano G, Satterley CJ, Perdigão LMA, Britton AJ, Taleb N, del Carmen Giménez-López M, Champness NR, O’Shea JN, Beton PH (2010) Self-assembled aggregates formed by single-molecule magnets on a gold surface. Nat Commun 1:75

    Article  ADS  Google Scholar 

  237. (a) Heersche HB, de Groot Z, Folk JA, van der Zant HSJ, Romeike C, Wegewijs MR, Zobbi L, Barreca D, Tondello E, Cornia A (2006) Electron transport through single Mn12 molecular magnets. Phys Rev Lett 96:206801 (b) Jo MH et al (2006) Signatures of molecular magnetism in single-molecule transport spectroscopy. Nano Lett 6:2014–2020

    Google Scholar 

  238. Mannini M et al (2008) XAS and XMCD investigation of Mn12 monolayers on gold. Chem Eur J 14:7530–7535

    Article  Google Scholar 

  239. Mannini M, Pineider F, Sainctavit P, Joly L, Fraile-Rodríguez A, Arrio M-A, dit Moulin CC, Wernsdorfer W, Cornia A, Gatteschi D, Sessoli R (2009) X-ray magnetic circular dichroism picks out single-molecule magnets suitable for nanodevices. Adv Mater 21:167–171

    Article  Google Scholar 

  240. Margheriti L et al (2009) Thermal deposition of intact tetrairon(III) single-molecule magnets in high-vacuum conditions. Small 5:1460–1466

    Article  Google Scholar 

  241. Zyazin AS et al (2010) Electric field controlled magnetic anisotropy in a single molecule. Nano Lett 10:3307–3311

    Article  ADS  Google Scholar 

  242. Mannini M et al (2009) Magnetic memory of a single-molecule quantum magnet wired to a gold surface. Nat Mater 8:194–197

    Article  ADS  Google Scholar 

  243. Mannini M, Pineider F, Danieli C, Totti F, Sorace L, Sainctavit P, Arrio M-A, Otero E, Joly L, Cezar JC, Cornia A, Sessoli R (2010) Quantum tunnelling of the magnetization in a monolayer of oriented single-molecule magnets. Nature 468:417

    Article  ADS  Google Scholar 

  244. Katoh K, Yoshida Y, Yamashita M, Miyasaka H, Breedlove BK, Kajiwara T, Takaishi S, Ishikawa N, Isshiki H, Zhang YF, Komeda T, Yamagishi M, Takeya J (2009) Direct observation of lanthanide(III)-phthalocyanine molecules on Au(111) by using scanning tunneling microscopy and scanning tunneling spectroscopy and thin-film field-effect transistor properties of Tb(III)- and Dy(III)-phthalocyanine molecules. J Am Chem Soc 131:9967–9976

    Article  Google Scholar 

  245. Katoh K, Komeda T, Yamashita M (2010) Surface morphologies, electronic structures, and Kondo effect of lanthanide(III)-phthalocyanine molecules on Au(111) by using STM, STS and FET properties for next generation devices. Dalton Trans 39:4708–4723

    Article  Google Scholar 

  246. Toader M, Knupfer M, Zahn DRT, Hietschold M (2011) Initial growth of lutetium(III) bis-phthalocyanine on Ag(111) surface. J Am Chem Soc 133:5538–5544

    Article  Google Scholar 

  247. Kyatskaya S, Mascarós JRG, Bogani L, Hennrich F, Kappes M, Wernsdorfer W, Ruben M (2009) Anchoring of rare-earth-based single-molecule magnets on single-walled carbon nanotubes. J Am Chem Soc 131:15143–15151

    Article  Google Scholar 

  248. Gonidec M, Biagi R, Corradini V, Moro F, De Renzi V, del Pennino U, Summa D, Muccioli L, Zannoni C, Amabilino DB, Veciana J (2011) Surface supramolecular organization of a terbium(III) double-decker complex on graphite and its single molecule magnet behavior. J Am Chem Soc 133:6603–6612

    Article  Google Scholar 

  249. Candini A, Klyatskaya S, Ruben M, Wernsdorfer W, Affronte M (2011) Graphene spintronic devices with molecular nanomagnets. Nano Lett 11:2634–2639

    Article  Google Scholar 

  250. Camarero J, Coronado E (2009) Molecular vs. inorganic spintronics: the role of molecular materials and single molecules. J Mater Chem 19:1678–1684

    Article  Google Scholar 

  251. del Carmen Giménez-López M, Moro F, La Torre A, Gómez-García CJ, Brown PD, van Slageren J, Khlobystov AN (2011) Encapsulation of single-molecule magnets in carbon nanotubes. Nat Commun 2:407

    Article  Google Scholar 

  252. Komeda T, Isshiki H, Liu J, Zhang YF, Lorente N, Katoh K, Breedlove BK, Yamashita M (2011) Observation and electric current control of a local spin in a single-molecule magnet. Nat Commun 2:217

    Article  ADS  Google Scholar 

  253. Yoo JW, Chen CY, Jang HW, Bark CW, Prigodin VN, Eom CB, Epstein AJ (2010) Spin injection/detection using an organic-based magnetic semiconductor. Nat Mater 9:638

    Article  ADS  Google Scholar 

  254. Urdampilleta M, Klyatskaya S, Cleuziou J-P, Ruben M, Wernsdorfer W (2011) Supramolecular spin valves. Nat Mater 10(7):502–506

    Article  ADS  Google Scholar 

  255. Naggert H, Bannwarth A, Chemnitz S, von Hofe T, Quandt E, Tuczek F (2011) First observation of light-induced spin change in vacuum deposited thin films of iron spin crossover complexes. Dalton Trans 40:6364

    Article  Google Scholar 

  256. Droghetti A, Sanvito S (2011) Electric field control of valence tautomeric interconversion in cobalt dioxolene. Phys Rev Lett 107:047201

    Article  ADS  Google Scholar 

  257. Prins F, Monrabal-Capilla M, Osorio EA, Coronado E, van der Zant HSJ (2011) Room-temperature electrical addressing of a bistable spin-crossover molecular system. Adv Mater 23:1545

    Article  Google Scholar 

  258. Meded V, Bagrets A, Fink K, Chandrasekar R, Ruben M, Evers F, Bernand-Mantel A, Seldenthuis JS, Beukman A, van der Zant HSJ (2011) Electrical control over the Fe(II) spin crossover in a single molecule: theory and experiment. Phys Rev B 83:245415

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Min Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Zheng, LM., Tang, J., Sun, HL., Ren, M. (2016). Low Dimensional Molecular Magnets and Spintronics. In: Xu, Y., Awschalom, D., Nitta, J. (eds) Handbook of Spintronics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6892-5_26

Download citation

Publish with us

Policies and ethics