Skip to main content

Magneto-Transport Behaviors of (Ga,Mn)As Based Nano-structures and Devices

  • Reference work entry
  • 7112 Accesses

Abstract

As a widely accepted magnetic semiconductor with an intrinsic ferromagnetism, (Ga,Mn)As has attracted much attention in the past decades, and many kinds of extraordinary spintronic functionalities have been realized based on this kind of material. However, increasing the Curie temperature (T C ) of (Ga,Mn)As above room temperature is a necessity for potential applications. In this chapter, an overview of several ways used recently to increase T C will be provided. Firstly, we will show that T C of (Ga,Mn)As can be increased to 190 K by heavy Mn doping employing low-temperature molecular-beam epitaxy and post-growth annealing. Then, we will demonstrate that T C as high as 200 K can be achieved in (Ga,Mn)As by combining a nano-patterning technique with high Mn doping and low-temperature annealing. After that, we will present the strong carrier localization effect existing in heavily Mn-doped (Ga,Mn)As films. Finally, we will mention an unconventional way to fabricate (Ga,Mn)As-based magnetic tunneling junction, in which a highest tunneling magnetoresistance ratio of 101 % could be achieved at 2 K.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AFM:

Atomic force microscope

AMR:

Anisotropic magnetoresistance

BEP:

Beam equivalent pressure

FMR:

Ferromagnetic resonance

HRXRD:

High-resolution x-ray diffraction

MBE:

Molecular-beam epitaxy

MTJs:

Magnetic tunnel junctions

PCAR:

Point contact Andreev reflection

PMMA:

Polymethyl methacrylate

PPMS:

Physical property measurement system

RHEED:

Reflection high-energy electron diffraction

RMS:

Root mean square

SEM:

Scanning electron microscopy

SQUID:

Superconducting quantum interference device

TMR:

Tunneling magnetoresistance

References

  1. Ohno H, Shen A, Matsukura F, Oiwa A, Endo A, Katsumoto S, Iye Y (1996) (Ga, Mn)As: a new diluted magnetic semiconductor based on GaAs. Appl Phys Lett 69:363–365

    Article  ADS  Google Scholar 

  2. Ohno H (1998) Making nonmagnetic semiconductors ferromagnetic. Science 281:951–956

    Article  ADS  Google Scholar 

  3. Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D (2000) Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287:1019–1022

    Article  ADS  Google Scholar 

  4. Dietl T, Ohno H, Matsukura F (2007) Ferromagnetic semiconductor heterostructures for spintronics. IEEE Trans Electron Devices 54:945–954

    Article  ADS  Google Scholar 

  5. Gould C, Schmidt G, Molenkamp LW (2007) Tunneling anisotropic magnetoresistance-based devices. IEEE Trans Electron Devices 54:977–983

    Article  ADS  Google Scholar 

  6. Chiba D, Matsukura F, Ohno H (2006) Electric-field control of ferromagnetism in (Ga, Mn)As. Appl Phys Lett 89:162505

    Article  ADS  Google Scholar 

  7. Sawicki M, Chiba D, Korbecka A, Nishitani Y, Majewski JA, Matsukura F, Dietl T, Ohno H (2009) Experimental probing of the interplay between ferromagnetism and localization in (Ga, Mn)As. Nat Phys 6:22–25

    Article  Google Scholar 

  8. Chiba D, Sawicki M, Nishitani Y, Nakatani Y, Matsukura F, Ohno H (2008) Magnetization vector manipulation by electric fields. Nature 455:515–518

    Article  ADS  Google Scholar 

  9. Ohno Y, Young DK, Beschoten B, Matsukura F, Ohno H, Awschalom DD (1999) Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature 402:790–792

    Article  ADS  Google Scholar 

  10. Chiba D, Akiba N, Matsukura F, Ohno Y, Ohno H (2000) Magnetoresistance effect and interlayer coupling of (Ga, Mn)As trilayer structure. Appl Phys Lett 77:1873–1875

    Article  ADS  Google Scholar 

  11. Tanaka M, Higo Y (2001) Large tunneling magnetoresistance in GaMnAs/AlAs/GaMnAs ferromagnetic semiconductor tunnel junction. Phys Rev Lett 87:026602

    Article  ADS  Google Scholar 

  12. Gould C, Rüster C, Jungwirth T, Girgis E, Schott GM, Giraud R, Brunner K, Schmidt G, Molenkamp LW (2004) Tunneling anisotropic magnetoresistance: a spin-valve-like tunnel magnetoresistance using a single magnetic layer. Phys Rev Lett 93:117203

    Article  ADS  Google Scholar 

  13. Giddings AD, Khalid MN, Jungwirth T, Wunderlich J, Yasin S, Campion RP, Edmonds KW, Sinova J, Ito K, Wang KY, Williams D, Gallagher BL, Foxon CT (2005) Large tunneling anisotropic magnetoresistance in (Ga, Mn)As nanoconstrictions. Phys Rev Lett 94:127202

    Article  ADS  Google Scholar 

  14. Rüster C, Gould C, Jungwirth T, Sinova J, Schott GM, Giraud R, Brunner K, Schmidt G, Molenkamp LW (2005) Very large tunneling anisotropic magnetoresistance of a (Ga, Mn)As/GaAs/(Ga, Mn)As stack. Phys Rev Lett 94:027203

    Article  ADS  Google Scholar 

  15. Yamanouchi M, Chiba D, Matsukura F, Ohno H (2004) Current-induced domain-wall switching in a ferromagnetic semiconductor structure. Nature 428:539–542

    Article  ADS  Google Scholar 

  16. Yamanouchi M, Chiba D, Matsukura F, Dietl T, Ohno H (2006) Velocity of domain-wall motion induced by electrical current in the ferromagnetic semiconductor (Ga, Mn)As. Phys Rev Lett 96:096601

    Article  ADS  Google Scholar 

  17. Chen L, Yan S, Xu PF, Lu J, Wang WZ, Deng JJ, Qian X, Ji Y, Zhao JH (2009) Low-temperature magnetotransport behaviors of heavily Mn-doped (Ga, Mn)As films with high ferromagnetic transition temperature. Appl Phys Lett 95:182505

    Article  ADS  Google Scholar 

  18. Chen L, Yang X, Yang FH, Zhao JH, Misuraca J, Xiong P, von Molnár S (2011) Enhancing the Curie temperature of ferromagnetic semiconductor (Ga, Mn)As to 200 K via nanostructure engineering. Nano Lett 11:2584–2589

    Article  Google Scholar 

  19. Dietl T (2010) A ten-year perspective on dilute magnetic semiconductors and oxides. Nat Mater 9:965–974

    Article  ADS  Google Scholar 

  20. Dietl T (2008) Interplay between carrier localization and magnetism in diluted magnetic and ferromagnetic semiconductors. J Phys Soc Jpn 77:031005

    Article  ADS  Google Scholar 

  21. Julliere M (1975) Tunneling between ferromagnetic films. Phys Lett 54A:225

    Article  ADS  Google Scholar 

  22. Dietl T, Ohno H, Matsukura F (2001) Hole-mediated ferromagnetism in tetrahedrally coordinated semiconductors. Phys Rev B 63:195205

    Article  ADS  Google Scholar 

  23. Yu GQ, Chen L, Rizwan R, Zhao JH, Xu K, Han XF (2011) Improved tunneling magnetoresistance in (Ga, Mn)As/AlOx/CoFeB magnetic tunnel junctions. Appl Phys Lett 98:262501

    Article  ADS  Google Scholar 

  24. Yu KM, Walukiewicz W, Wojtowicz T, Kuryliszyn I, Liu X, Sasaki Y, Furdyna JK (2002) Effect of the location of Mn sites in ferromagnetic Ga1−x Mn x As on its Curie temperature. Phys Rev B 65:201303(R)

    Article  ADS  Google Scholar 

  25. Potashnik SJ, Ku KC, Chun SH, Berry JJ, Samarth N, Schiffer P (2001) Effect of annealing time on defect-controlled ferromagnetism in Ga1−x Mn x As. Appl Phys Lett 79:1495–1497

    Article  ADS  Google Scholar 

  26. Edmonds KW, Boguslawski P, Wang KY, Campion RP, Novikov SN, Farley NRS, Gallagher BL, Foxon CT, Sawicki M, Dietl T, Buongiorno NM, Bernholc J (2004) Mn interstitial diffusion in (Ga, Mn)As. Phys Rev Lett 92:037201

    Article  ADS  Google Scholar 

  27. Edmonds KW, Wang KY, Campion RP, Neumann AC, Farley NRS, Gallagher BL, Foxon CT (2002) High-Curie-temperature Ga1−x Mn x As obtained by resistance-monitored annealing. Appl Phys Lett 81:4991–4993

    Article  ADS  Google Scholar 

  28. Wang KY, Edmonds KW, Zhao LX, Sawicki M, Campion RP, Gallagher BL, Foxon CT (2005) (Ga, Mn)As grown on (311) GaAs substrates: modified Mn incorporation and magnetic anisotropies. Phys Rev B 72:115207

    Article  ADS  Google Scholar 

  29. Cho YJ, Yu KM, Liu X, Walukiewicz W, Furdyna JK (2008) Effects of donor doping on Ga1−x Mn x As. Appl Phys Lett 93:262505

    Article  ADS  Google Scholar 

  30. Wang WZ, Deng JJ, Lu J, Chen L, Ji Y, Zhao JH (2008) Influence of Si doping on magnetic properties of (Ga, Mn)As. Physica E 41:84–87

    Article  ADS  Google Scholar 

  31. Sato K, Katayama-Yoshida H (2007) Design of colossal solubility of magnetic impurities for semiconductor spintronics. Jpn J Appl Phys 46:L1120–L1122

    Article  ADS  Google Scholar 

  32. Fujii H, Sato K, Bergqvis L, Dederichs PH, Katayama-Yoshida H (2011) Interstitial donor codoping method in (Ga, Mn)As to increase solubility of Mn and Curie temperature. Appl Phys Express 4:043003

    Article  ADS  Google Scholar 

  33. Bergqvist L, Sato K, Katayama-Yoshida H, Dederichs PH (2011) Computational materials design for high-TC (Ga, Mn)As with Li codoping. Phys Rev B 83:165201

    Article  ADS  Google Scholar 

  34. Ohya S, Ohno K, Tanaka M (2007) Magneto-optical and magnetotransport properties of heavily Mn-doped GaMnAs. Appl Phys Lett 90:112503

    Article  ADS  Google Scholar 

  35. Chiba D, Nishitani Y, Matsukur F, Ohno H (2007) Properties of Ga1−x Mn x As with high Mn composition. Appl Phys Lett 90:122503

    Article  ADS  Google Scholar 

  36. Mack S, Myers RC, Heron JT, Gossard AC, Awschalom DD (2008) Stoichiometric growth of high Curie temperature heavily alloyed GaMnAs. Appl Phys Lett 92:192502

    Article  ADS  Google Scholar 

  37. Chiba D, Yu KM, Walukiewicz W, Nishitani Y, Matsukura F, Ohno H (2008) Properties of Ga1−x Mn x As with high x (>0.1). J Appl Phys 103:07D136

    Google Scholar 

  38. Ohno K, Ohya S, Tanaka M (2007) Properties of heavily Mn-doped GaMnAs with Curie temperature of 172.5 K. J Supercond Nov Magn 20:417–420

    Article  Google Scholar 

  39. Eid KF, Sheu BL, Maksimov O, Stone MB, Schiffer P, Samarth N (2005) Nanoengineered Curie temperature in laterally patterned ferromagnetic semiconductor heterostructures. Appl Phys Lett 86:152505

    Article  ADS  Google Scholar 

  40. Sheu BL, Eid KF, Maksimov O, Samarth N, Schiffer P (2006) Width dependence of annealing effects in (Ga,Mn)As nanowires. J Appl Phys 99:08D501

    Article  Google Scholar 

  41. Khazen KH, von Bardeleben HJ, Cantin JL, Mauger A, Chen L, Zhao JH (2010) Intrinsically limited critical temperature of highly doped Ga1−x Mn x As thin films. Phys Rev B 81:235201

    Article  ADS  Google Scholar 

  42. Khazen KH, von Bardeleben HJ, Cubukcu M, Cantin JL, Novak V, Olejnik K, Cukr M, Thevenard L, Lemaître A (2008) Anisotropic magnetization relaxation in ferromagnetic Ga1−x Mn x As thin film. Phys Rev B 78:195210

    Article  ADS  Google Scholar 

  43. Liu X, Furdyna JK (2006) Ferromagnetic resonance in Ga1−x Mn x As dilute magnetic semiconductors. J Phys Condens Matter 18:R245–R279

    Article  Google Scholar 

  44. Stanciu V, Wilhelmsson O, Bexell U, Adell M, Sadowski J, Kanski J, Warnicke P, Svedlindh P (2005) Influence of annealing parameters on the ferromagnetic properties of optimally passivated (Ga, Mn)As epilayers. Phys Rev B 72:125324

    Article  ADS  Google Scholar 

  45. Xu JL, van Schilfgaarde M (2005) Role of disorder in Mn:GaAs, Cr:GaAs, and Cr:GaN. Phys Rev Lett 94:097201

    Article  ADS  Google Scholar 

  46. Raebiger H, Ayuela A, von Boehm J (2005) Electronic and magnetic properties of substitutional Mn clusters in (Ga, Mn)As. Phys Rev B 72:014465

    Article  ADS  Google Scholar 

  47. Hynninen T, Ganchenkova M, Raebiger H, von Boehm J (2006) Ferromagnetism and its evolution during long-term annealing in (Ga, Mn)As. Phys Rev B 74:195337

    Article  ADS  Google Scholar 

  48. Raebiger H, Ganchenkova M, von Boehm J (2006) Diffusion and clustering of substitutional Mn in (Ga, Mn)As. Appl Phys Lett 89:012505

    Article  ADS  Google Scholar 

  49. MacDonald AH, Schiffer P, Samarth N (2006) Ferromagnetic semiconductors: moving beyond (Ga, Mn)As. Nat Mater 4:195–202

    Article  ADS  Google Scholar 

  50. NováK N, Olejník K, Wunderlich J, Cukr M, Výborný K, Rushforth AW, Edmonds KW, Campion RP, Gallagher BL, Sinova J, Jungwirth T (2008) Curie point singularity in the temperature derivative of resistivity in (Ga, Mn)As. Phys Rev Lett 101:077201

    Article  ADS  Google Scholar 

  51. Fisher ME, Langer JS (1968) Resistive anomalies at magnetic critical points. Phys Rev Lett 20:665–668

    Article  ADS  Google Scholar 

  52. Arrott A (1957) Criterion for ferromagnetism from observations of magnetic isotherms. Phys Rev 108:1394–1396

    Article  ADS  Google Scholar 

  53. Neumaier D, Schlapps M, Wurstbauer U, Sadowski J, Reinwald M, Wegscheider W, Weiss D (2008) Electron–electron interaction in one- and two-dimensional ferromagnetic (Ga,Mn)As. Phys Rev B 77:041306(R)

    Article  ADS  Google Scholar 

  54. Neumaier D, Turek M, Wurstbauer U, Vogl A, Utz M, Wegscheider W, Weiss D (2009) All-electrical measurement of the density of states in (Ga, Mn)As. Phys Rev Lett 103:087203

    Article  ADS  Google Scholar 

  55. Wenisch J, Gould C, Ebel L, Storz J, Pappert K, Schmidt MJ, Kumpf C, Schmidt G, Brunner K, Molenkamp LW (2007) Control of magnetic anisotropy in (Ga, Mn)As by lithography-induced strain relaxation. Phys Rev Lett 99:077201

    Article  ADS  Google Scholar 

  56. King CS, Zemen J, Olejník K, HoráK L, Haigh JA, Novák V, Irvine A, Kučera J, Holý V, Campion RP, Gallager BL, Jungwirth T (2011) Strain control of magnetic anisotropy in (Ga, Mn)As microbars. Phys Rev B 83:115312

    Article  ADS  Google Scholar 

  57. Inoue J, Ohno H (2005) Taking the Hall effect for a spin. Science 309:2004

    Article  Google Scholar 

  58. Jungwirth T, Niu Q, MacDonald AH (2002) Anomalous Hall effect in ferromagnetic semiconductors. Phys Rev Lett 88:207208

    Article  ADS  Google Scholar 

  59. Chun SH, Kim YS, Choi HK, Jeong IT, Lee WO, Suh KS, Oh YS, Kim KH, Khim ZG, Woo JC, Park YD (2007) Interplay between carrier and impurity concentrations in annealed Ga1−x Mn x As: intrinsic anomalous Hall effect. Phys Rev Lett 98:026601

    Article  ADS  Google Scholar 

  60. Pu Y, Chiba D, Matsukura F, Ohno H, Shi J (2008) Mott relation for anomalous Hall and Nernst effects in Ga1−x Mn x As ferromagnetic semiconductors. Phys Rev Lett 101:117208

    Article  ADS  Google Scholar 

  61. Matsukura F, Ohno H, Shen A, Sugawara Y (1998) Transport properties and origin of ferromagnetism in (Ga, Mn)As. Phys Rev B 57:R2037–R2040

    Article  ADS  Google Scholar 

  62. Sheu BL, Myers RC, Tang JM, Samarth N, Awschalom DD, Schiffer P, Flatté ME (2007) Onset of ferromagnetism in low-doped Ga1−x Mn x As. Phys Rev Lett 99:227205

    Article  ADS  Google Scholar 

  63. Van Esch A, Van Bockstal L, De Boeck J, Verbanck G, van Steenbergen AS, Wellmann PJ, Grietens B, Bogaerts R, Herlach F, Borghs G (1997) Interplay between the magnetic and transport properties in the III-V diluted magnetic semiconductor Ga1−x Mn x As. Phys Rev B 56:13103–13112

    Article  ADS  Google Scholar 

  64. He HT, Yang CL, Ge WK, Wang JN, Dai X, Wang YQ (2005) Resistivity minima and Kondo effect in ferromagnetic GaMnAs films. Appl Phys Lett 87:165205

    Google Scholar 

  65. Honolka J, Masmanidis S, Tang HX, Awschalom DD, Roukes ML (2007) Magnetotransport properties of strained Ga0.95Mn0.05As epilayers close to the metal-insulator transition: description using Aronov-Altshuler three-dimensional scaling theory. Phys Rev B 75:245310

    Article  ADS  Google Scholar 

  66. Mitra P, Kumar N, Samarth N (2010) Localization and anomalous Hall effect in a dirty metallic ferromagnetic. Phys Rev B 82:035205

    Article  ADS  Google Scholar 

  67. Moca CP, Sheu BL, Samarth N, Schiffer P, Janko B, Zarand G (2009) Scaling theory of magnetoresistance and carrier localization in Ga1−x Mn x As. Phys Rev Lett 102:137203

    Article  ADS  Google Scholar 

  68. Thevenard L, Largeau L, Mauguin O, Lemaître A, Theys B (2005) Tuning the ferromagnetic properties of hydrogenated GaMnAs. Appl Phys Lett 87:182506

    Article  ADS  Google Scholar 

  69. Blinowski J, Kacman P (2003) Spin interactions of interstitial Mn ion in ferromagnetic GaMnAs. Phys Rev B 67:121204(R)

    Article  ADS  Google Scholar 

  70. Mannari I (1959) Electrical resistance of ferromagnetic metal. Prog Theor Phys 22:335

    Article  ADS  Google Scholar 

  71. Lee PA, Ramakrishnan TV (1985) Disordered electronic system. Rev Mod Phys 57:287–337

    Article  ADS  Google Scholar 

  72. Matsukura F, Sawicki M, Dietl T, Chiba D, Ohno H (2004) Magnetotransport properties of metallic (Ga, Mn)As films with compressive and tensile strain. Physica E 21:1032–1036

    Article  ADS  Google Scholar 

  73. Omiya T, Matsukura F, Dietl T, Ohno Y, Sakon T, Motokawa M, Ohno H (2000) Magnetotransport properties of (Ga, Mn)As investigated at low temperature and high magnetic field. Physica E 7:976–980

    Article  ADS  Google Scholar 

  74. Richardella A, Roushan P, Mack S, Zhou B, Huse DA, Awschalom DD, Yazdani A (2010) Visualizing critical correlations near the metal-insulator transition in Ga1−x Mn x As. Science 327:665–669

    Article  ADS  Google Scholar 

  75. Chiba D, Matsukura F, Ohno H (2004) Tunneling magnetoresistance in (Ga, Mn)As-based heterostructures with a GaAs barrier. Physica E 21:966–969

    Article  ADS  Google Scholar 

  76. Mattana R, George JM, Jaffrès H, Nguyen Van Dau F, Fert A, Lépine B, Guivarc’h A, Jézéquel G (2003) Electrical detection of spin accumulation in a p-type GaAs quantum well. Phys Rev Lett 90:166601

    Article  ADS  Google Scholar 

  77. Ohya S, Hai PM, Tanaka M (2005) Tunneling magnetoresistance in GaMnAs/AlAs/InGaAs/AlAs/GaMnAs double-barrier magnetic tunnel junctions. Appl Phys Lett 87:012105

    Article  ADS  Google Scholar 

  78. Saito H, Yuasa S, Ando K (2005) Origin of the tunnel anisotropic magnetoresistance in Ga1−x Mn x As/ZnSe/Ga1−x Mn x As magnetic tunnel junctions of II-VI/III-V heterostructures. Phys Rev Lett 95:086604

    Article  ADS  Google Scholar 

  79. Ohya S, Muneta I, Hai PM, Tanaka M (2009) GaMnAs-based magnetic tunnel junctions with an AlMnAs barrier. Appl Phys Lett 95:242503

    Article  ADS  Google Scholar 

  80. Chun SH, Potashnik SJ, Ku KC, Schiffer P, Samarth N (2002) Spin-polarized tunneling in hybrid metal–semiconductor magnetic tunnel junctions. Phys Rev B 66:100408(R)

    Article  ADS  Google Scholar 

  81. Saito H, Yuasa S, Ando K, Hamada Y, Suzuki Y (2006) Spin-polarized tunneling in metal-insulator-semiconductor Fe/ZnSe/Ga1−x Mn x As magnetic tunnel diodes. Appl Phys Lett 89:232502

    Article  ADS  Google Scholar 

  82. Du GX, Han XF, Deng JJ, Wang WZ, Zhao JH (2008) Tunneling magnetoresistance in CoFeB/GaAs/(Ga,Mn)As hybrid magnetic tunnel junctions. J Appl Phys 103:07D105

    Google Scholar 

  83. Du GX, Ramesh Babu M, Han XF, Deng JJ, Wang WZ, Zhao JH, Wang WD, Tang J (2009) Tunneling magnetoresistance in (Ga,Mn)As/Al-O/CoFeB hybrid structures. J Appl Phys 105:07C707

    Google Scholar 

  84. Saito H, Yamamoto A, Yuasa S, Ando K (2008) High tunneling magnetoresistance in Fe/GaO x /Ga1−x Mn x As with metal/insulator/semiconductor structure. Appl Phys Lett 93:172515

    Article  ADS  Google Scholar 

  85. Potashnik SJ, Ku KC, Wang RF, Stone MB, Samarth N, Schiffer P, Chun SH (2003) Coercive field and magnetization deficit in Ga1−x Mn x As epilayers. J Appl Phys 93:6784–6786

    Article  ADS  Google Scholar 

  86. Yuan L, Liou SH, Wang D (2006) Temperature dependence of magnetoresistance in magnetic tunnel junctions with different free layer structures. Phys Rev B 73:134403

    Article  ADS  Google Scholar 

  87. Piano S, Grein R, Mellor CJ, Výborný K, Campion R, Wang M, Eschrig M, Gallagher BL (2011) Spin polarization of (Ga,Mn)As measured by Andreev spectroscopy: the role of spin-active scattering. Phys Rev B 83:081305(R)

    Article  ADS  Google Scholar 

  88. Braden JG, Parker JS, Xiong P, Chun SH, Samarth N (2003) Direct measurement of the spin polarization of the magnetic semiconductor (Ga, Mn)As. Phys Rev Lett 91:056602

    Article  ADS  Google Scholar 

  89. Rudolph A, Soda M, Kiessling M, Wojtowicz T, Schuh D, Wegscheider W, Zweck J, Back C, Reiger E (2009) Ferromagnetic GaAs/GaMnAs core-shell nanowires grown by molecular beam epitaxy. Nano Lett 9:3860

    Article  Google Scholar 

  90. Butschkow C, Reiger E, Rudolph A, Geißler S, Neumaier D, Soda M, Schuh D, Woltersdorf G, Wegscheider W, Weiss D (2013) Origin of negative magnetoresistance of GaAs/(Ga, Mn)As core-shell nanowires. Phys Rev B 87:245303

    Article  ADS  Google Scholar 

  91. Yu XZ, Wang HL, Pan D, Zhao JH, Misuraca J, von Molnár S, Xiong P (2013) All zinc-blende GaAs/(Ga, Mn)As core-shell nanowires with ferromagnetic ordering. Nano Lett 13:1572–1577

    Google Scholar 

  92. Mark S, Gould C, Pappert K, Wenisch J, Brunner K, Schmidt G, Molenkamp LW (2009) Independent magnetization behavior of a ferromagnetic metal–semiconductor hybrid system. Phys Rev Lett 103:017204

    Article  ADS  Google Scholar 

  93. Zhu M, Wilson MJ, Sheu BL, Mitra P, Schiffer P, Samarth N (2007) Spin valve effect in self-exchange biased ferromagnetic metal/semiconductor bilayers. Appl Phys Lett 91:192503

    Article  ADS  Google Scholar 

  94. Maccherozzi F, Sperl M, Panaccione G, Minar J, Polesya S, Ebert H, Wurstbauer U, Hochstrasser M, Rossi G, Woltersdorf G, Wegscheider W, Back CH (2008) Evidence for a magnetic proximity effect up to room temperature at Fe/(Ga, Mn)As interfaces. Phys Rev Lett 101:267201

    Article  ADS  Google Scholar 

  95. Sperl M, Maccherozzi F, Borgatti F, Verna A, Rossi G, Soda M, Schuh D, Bayreuther G, Wegscheider W, Cezar JC, Yakhou F, Brookes NB, Back CH, Panaccione G (2010) Identifying the character of ferromagnetic Mn in epitaxial Fe/(Ga, Mn)As heterostructures. Phys Rev B 81:035211

    Article  ADS  Google Scholar 

  96. Olejnik K, Wadley P, Haigh JA, Edmonds KW, Campion RP, Rushforth AW, Gallagher BL, Foxon CT, Jungwirth T, Wunderlich J, Dhesi SS, Cavill SA, van der Laan G, Arenholz E (2010) Exchange bias in a ferromagnetic semiconductor induced by a ferromagnetic metal: Fe/(Ga, Mn)As bilayer films studied by XMCD measurements and SQUID magnetometry. Phys Rev B 81:104402

    Article  ADS  Google Scholar 

  97. Song C, Sperl M, Utz M, Ciorga M, Woltersdorf G, Schuh D, Bougeard D, Back CH, Weiss D (2011) Proximity induced enhancement of the Curie temperature in hybrid spin injection devices. Phys Rev Lett 107:056601

    Article  ADS  Google Scholar 

  98. Nie SH, Chin YY, Liu WQ, Tung CJ, Lu J, Lin HJ, Guo GY, Meng KK, Chen L, Zhu LJ, Pan D, Chen CT, Xu YB, Yan WS, Zhao JH (2013) Ferromagnetic interfacial interaction and the proximity effect in a Co2FeAl/(Ga, Mn)As bilayer. Phys Rev Lett 111:027203

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We would like to thank Profs. F. H. Yang, P. Xiong, S. von Molnár, X. F. Han, and H. J. von Bardeleben and their group members for collaboration. This work is supported partly by MOST of China (Grant No. 2013CB922303) and NSFC (Grant Nos. 11127406, 11204293).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Chen, L., Zhao, J. (2016). Magneto-Transport Behaviors of (Ga,Mn)As Based Nano-structures and Devices. In: Xu, Y., Awschalom, D., Nitta, J. (eds) Handbook of Spintronics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6892-5_24

Download citation

Publish with us

Policies and ethics