Skip to main content

Magnetic Oxide Semiconductors

  • Reference work entry

Abstract

In 2000, it was theoretically predicted that ferromagnetism (FM) at high temperature could be obtained in many semiconductors such as ZnO, GaAs, GaN, etc., if we dope Mn plus a certain concentration of holes into these systems. The magnetic ordering in those compounds was suggested to originate from the Ruderman–Kittel–Kasuya–Yoshida interaction of localized moments of dopants via 2p holes or 4s electrons. Inspired by this idea, many experimentalists have tried to dope transition metals (TM) into many oxides such as ZnO, TiO2, SnO2, In2O3, etc., with the hope to obtain room temperature FM in semiconductors, in order to be able to exploit both charge and spin in the same devices. Actually, room temperature FM was observed; however, the phenomenon is not exactly as what theorists have proposed. The finding of FM in undoped HfO2 thin films in 2004 has first given some alert to the magnetism community to rejudge the real role that a dopant indeed plays. More recently, experimental observations of FM for various oxides such as TiO2, HfO2, In2O3, ZnO, CeO2, Al2O3, and MgO in low-dimensional structures have confirmed that FM is certainly possible for undoped oxide semiconductors. It was suggested that FM might stem from oxygen vacancies and/or defects that were formed at the surface and interfaces.

Research on very thin films and nanoparticles of Diluted Magnetic Oxide semiconductors (DMSO) has pointed out that downscaling magnetic oxide semiconductors to nanometer scale should be an important step, in order to make them ferromagnetic. It opens a door to exploit the bright side of nano-world in this field of spintronics.

The domain of DMSO research still requires a lot of efforts of the world wide research groups toward higher levels with the hope to bring it closer to a realization of spintronic devices based on DMSO materials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CTF:

Charge transfer ferromagnetism

DMS:

Diluted magnetic semiconductors

DMSO:

Diluted magnetic semiconducting oxides

DOS:

Density of states

EF :

Fermi level

FM:

Ferromagnetism

LAO:

LaAlO3

M(H):

Magnetization versus magnetic field

M(T):

Magnetization versus temperature

MFM:

Magnetic force microscopy

Ms :

Saturated magnetization

RBS:

Rutherford backscattering spectroscopy

RKKY:

Ruderman–Kittel–Kasuya–Yoshida

STO:

SrTiO3

Tc:

Curie temperature

TM:

Transition metal

W:

Bandwidth

XAS:

X-ray absorption spectroscopy

XMCD:

X-ray magnetic circular dichroism

XRD:

X-ray diffraction

References

  1. Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D (2000) Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors. Science 287:1019

    Article  ADS  Google Scholar 

  2. Sato K, Katayama-Yoshida H (2000) Material design for transparent ferromagnets with ZnO-based magnetic semiconductors. Jpn J Appl Phys Part 2 39:L555

    Article  Google Scholar 

  3. Matsumoto Y, Murakami M, Shono T, Hasegawa T, Fukumura T, Kawasaki M, Ahmet P, Chikyow T, Koshihara S, Koinuma H (2001) Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science 291:854

    Article  ADS  Google Scholar 

  4. Prellier W, Fouchet A, Mercey B (2003) Oxide-diluted magnetic semiconductors: a review of the experimental status. J Phys Condens Matter 15:R 1583

    Article  ADS  Google Scholar 

  5. Ranish R, Gopal P, Spaldin NA (2005) Transition metal-doped TiO2 and ZnO – present status of the field. J Phys Condens Matter 17:R657

    Article  Google Scholar 

  6. Venkatesan M, Fitzgerald CB, Coey JMD (2004) Thin films: Unexpected magnetism in a dielectric oxide. Nature 430:630

    Article  ADS  Google Scholar 

  7. Schwartz DA, Gamelin DR (2004) Reversible 300K Ferromagnetic Ordering in a Diluted Magnetic Semiconductor. Adv Mater 16:2115

    Article  Google Scholar 

  8. Hong NH, Sakai J, Huong NT, Poirot N, Ruyter A (2005) Role of defects in tuning ferromagnetism in diluted magnetic oxide thin films. Phys Rev B 72:45336

    Article  ADS  Google Scholar 

  9. Hong NH, Sakai J, Poirot N, Brizé V (2006) Room-temperature ferromagnetism observed in undoped semiconducting and insulating oxide thin films. Phys Rev B 73:132404

    Article  ADS  Google Scholar 

  10. Hong NH, Sakai J, Huong NT, Ruyter A, Brizé V (2006) Magnetism in transition-metal-doped In2O3 thin films. J Phys Condens Matter 18:6897

    Article  ADS  Google Scholar 

  11. Hong NH, Poirot N, Sakai J (2008) Ferromagnetism observed in pristine SnO2 thin films. Phys Rev B 77:33205; Chang GS, Forrest J, Kurmaev EZ, Morozovska AN, Glinchuk MD, McLeod JA, Moewes A, Surkova TP, Hong NH (2012) Oxygen-vacancy-induced ferromagnetism in undoped SnO2 thin films. Phys Rev B 85:165319

    Google Scholar 

  12. Sundaresan A, Bhagravi B, Rangarajan N, Siddesh U, Rao CNR (2006) Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides. Phys Rev B 74:161306 (R)

    Google Scholar 

  13. Martínez-Boubeta C, Beltrán JI, Balcells L, Konstantinović Z, Valencia S, Schmitz D, Arbiol J, Estrade S, Cornil J, Martínez B (2010) Ferromagnetism in transparent thin films of MgO. Phys Rev B 82:024405

    Article  ADS  Google Scholar 

  14. Sato K et al (2007) Computational materials design of ZnO-based semiconductor spintronics. In: Hong NH (ed) Magnetism in semiconducting oxides. Transworld Research Network, Trivandrum

    Google Scholar 

  15. Sato K, Dederichs PH, Katayama-Yoshida H, Kudrnovsky J (2004) Exchange interactions in diluted magnetic semiconductors. J Phys Condens Matter 16:S5491

    Article  ADS  Google Scholar 

  16. Sato K, Dederichs PH, Katayama-Yoshida H (2003) Curie temperatures of III–V diluted magnetic semiconductors calculated from first principles. Europhys Lett 61:403

    Article  ADS  Google Scholar 

  17. Zunger A, in Solid State Physics, edited by H. Ehren- reich and D. Turnbull (Academic, New York, 1986) 39:276

    Google Scholar 

  18. Hong NH, Sakai J, Prellier W, Hassini A, Ruyter A, Gervais F (2004) Ferromagnetism in transition-metal-doped TiO2 thin films. Phys Rev B 70:195204

    Article  ADS  Google Scholar 

  19. Kimura H, Fukumura T, Kawasaki M, Inaba K, Hasegawa T, Koinuma H (2002) Rutile-type oxide-diluted magnetic semiconductor: Mn-doped SnO2. Appl Phys Lett 80:94

    Article  ADS  Google Scholar 

  20. Ogale SB, Choudhary RJ, Buban JP, Lofland SE, Shinde SR, Kale SN, Kulkarni VN, Higgins J, Lanci C, Simpson JR, Browning ND, Das SS, Drew HD, Greene RL, Venkatesan T (2003) High temperature ferromagnetism with a giant magnetic moment in transparent Co-doped SnO2-δ. Phys Rev Lett 91:77205

    Article  ADS  Google Scholar 

  21. Coey JMD, Douvalis AP, Fitzgerald CB, Venkatesan M (2004) Ferromagnetism in Fe-doped SnO2 thin films. Appl Phys Lett 84:1332

    Article  ADS  Google Scholar 

  22. Hong NH, Sakai J, Prellier W, Hassini A (2005) Transparent Cr-doped SnO2 thin films: ferromagnetism beyond room temperature with a giant magnetic moment. J Phys Condens Matter 17:1697

    Article  ADS  Google Scholar 

  23. Hong NH, Ruyter A, Prellier W, Sakai J, Huong NT (2005) Magnetism in Ni-doped SnO2 thin films. J Phys: Condens Matter 17:6533

    ADS  Google Scholar 

  24. Hong NH, Sakai J (2005) Ferromagnetic V-doped SnO2 thin films. Physica B 358:265

    Article  ADS  Google Scholar 

  25. Kittel C (1996) Introduction to solid state physics, 7th edn. Wiley, New York

    Google Scholar 

  26. Hong NH, Sakai J, Huong NT, Ruyter A, Brizé V (2006) Magnetism in transition-metal-doped In2O3 thin films. J Phys: Condens Matter 18:6897

    ADS  Google Scholar 

  27. Hong NH, Sakai J, Hassini A (2005) Magnetism in V-doped ZnO thin films. J Phys: Condens Matter 17:199

    ADS  Google Scholar 

  28. Wang Q, Sun Q, Rao BK, Sena P (2004) Magnetism and energetics of Mn-Doped ZnO (1010) thin films. Phys Rev B 69:233310

    Article  ADS  Google Scholar 

  29. Spaldin NA (2004) Search for ferromagnetism in transition-metal-doped piezoelectric ZnO. Phys Rev B 69:125201

    Article  ADS  Google Scholar 

  30. Hong NH, Brizé V, Sakai J (2005) Mn-doped ZnO and .Mn, Cu.-doped ZnO thin films: Does the Cu doping indeed play a key role in tuning the ferromagnetism?. Appl Phys Lett 86:82505

    Article  Google Scholar 

  31. Pemmaraju CD, Sanvito S (2005) Ferromagnetism Driven by Intrinsic Point Defects in HfO2. Phys Rev Lett 94:217205

    Article  ADS  Google Scholar 

  32. Hong NH, Barla A, Sakai J, Huong NQ (2007) Can undoped semiconducting oxides be ferromagnetic?. Phys Status Solid (c) 4:4461

    Article  ADS  Google Scholar 

  33. Barla A, Schmerber G, Beaurepaire E, Dinia A, Bieber H, Colis S, Scheurer F, Kappler J-P, Imperia P, Nolting F, Wilhelm F, Rogalev A, Muller D, Grob J-J (2007) Paramagnetism of the Co sublattice in ferromagnetic Zn1–xCoxO films. Phys Rev B 76:125201

    Article  ADS  Google Scholar 

  34. Coey JMD, Venkatesan M, Stamenov P, Fitzgerald CB, Dorneles LS (2005) Magnetism in hafnium dioxide. Phys Rev B 72:24450

    Article  ADS  Google Scholar 

  35. Bouzerar G, Ziman T (2006) Model for Vacancy-Induced d0 Ferromagnetism in Oxide Compounds. Phys Rev Lett 96:207602

    Article  ADS  Google Scholar 

  36. Yoon SD, Chen Y, Yang A, Goodrich TL, Zuo X, Arena DA, Ziemer K, Vittoria C, Harris VG (2006) Oxygen-defect-induced magnetism to 880 K in semiconducting anatase TiO2–δ films. J Phys Condens Matter 18:L355–L361

    Article  ADS  Google Scholar 

  37. Hassini A, Sakai J, Lopez JS, Hong NH (2008) Magnetism in spin-coated pristine TiO2 thin films. Phys Lett A 372:3299

    Article  ADS  Google Scholar 

  38. Hartnagel HL, Dawar AL, Jain AK, Jagadish C (1995) Semiconducting transparent thin films. IOP Publishing, Bristol/Philadelphia

    Google Scholar 

  39. Hays J, Punnoose A, Baldner R, Engelhard MH, Peloquin J, Reddy KM (2005) Relationship between the structural and magnetic properties of Co-doped SnO2 nanoparticles. Phys Rev B 72:075203

    Article  ADS  Google Scholar 

  40. Hong NH, Song J-H, Raghavender AT, Asaeda T, Kurisu M (2011) Ferromagnetism in C-doped SnO2 thin films. Appl Phys Lett 99:052505

    Article  ADS  Google Scholar 

  41. Barla A, Hong NH et al (2007–2012) Unpublished XMCD results on TiO2 system

    Google Scholar 

  42. Huong NQ (2007) Magnetism due to oxygen vacancies in undoped oxide thin films. In: Hong NH (ed) Magnetism in semiconducting oxides. Transworld Research Network, Kerala

    Google Scholar 

  43. Hong NH, Park C-K, Raghavender AT, Ruyter A, Chikoidze E, Dumont Y (2012) High temperatureferromagnetism in cubic Mn-doped ZrO2 thin films. J Mag Mag Mater 324:3013

    Article  ADS  Google Scholar 

  44. Coey JMD, Venkatesan M, Fitzgerald CB (2005) Donor impurity band exchange in dilute ferromagnetic oxides. Nat Mater 4:173–179

    Article  ADS  Google Scholar 

  45. Elfimov IS, Yunoki S, Sawatzky GA (2002) Possible Path to a New Class of Ferromagnetic and Half-Metallic Ferromagnetic Materials. Phys Rev Lett 89:216403

    Article  ADS  Google Scholar 

  46. Coey JMD, Magnetism and Magnetic Materials. Cambridge Univ. Press, 2010

    Book  Google Scholar 

Download references

Acknowledgments

The author would like to thank J. Sakai, A. Hassini, A. Ruyter, N. Poirot, V. Brize, N. Q. Huong, A. Barla, C-K. Park, and J-H. Song for their co-work and then contributions in experiments that lead to our results in the DMSO field. The work on ZrO2 and writing of this Chapter were supported by project 3348–20100041 of the National Research Foundation of Korea. The work on C-doped SnO2 was supported by project 3348–20100016 of SNU R&D Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Hoa Hong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Hoa Hong, N. (2016). Magnetic Oxide Semiconductors. In: Xu, Y., Awschalom, D., Nitta, J. (eds) Handbook of Spintronics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6892-5_22

Download citation

Publish with us

Policies and ethics