Skip to main content

III–V Based Magnetic Semiconductors

  • Reference work entry
  • 7175 Accesses

Abstract

(Ga,Mn)As and related (III,Mn)V compounds are at the forefront of spintronics research exploring the synergy of ferromagnetism with the physics and the technology of semiconductors. Over the past 20 years, the research of (Ga,Mn)As has led to a deeper understanding of previously known spintronics phenomena, to discoveries of new effects, and to demonstrations of unprecedented functionalities of experimental spintronics devices with general applicability to a wide range of magnetic materials. In this chapter we review some of the basic structural, magnetic, electronic, and optical properties of the ferromagnetic (III,Mn)V semiconductors, as well as the devices fabricated from these model spintronics materials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AMR:

Anisotropic magnetoresistance

CB:

Coulomb blockade

DOS:

Density of states

DW:

Domain wall

FMR:

Ferromagnetic resonance

GGA:

Generalized gradient approximations

GMR:

Giant magnetoresistance

LSMR:

Linear spin-Hall magnetoresistance

LT-MBE:

Low-temperature molecular-beam epitaxy

MRAM:

Magnetic random access memory

OSOT:

Optical spin–orbit torque

OSTT:

Optical spin–transfer torque

SET:

Single-electron transistor

SHE:

Spin-Hall effect

SOT:

Spin–orbit torque

SQUID:

Superconducting quantum interference device

STM:

Scanning tunneling microscopy

STT:

Spin–transfer torque

TAMR:

Tunneling anisotropic magnetoresistance

TBA:

Tight-binding approximation

TMR:

Tunneling magnetoresistance

WB:

Walker breakdown

References

  1. Ohno H, Munekata H, Penney T, von Molnár S, Chang LL (1992) Magnetotransport properties of p-type (In, Mn)As diluted magnetic III-V semiconductors. Phys Rev Lett 68:2664

    Article  ADS  Google Scholar 

  2. Munekata H, Zaslavsky A, Fumagalli P, Gambino RJ (1993) Preparation of (In, Mn)As/(Ga, Al)Sb magnetic semiconductor heterostructures and their ferromagnetic characteristics. Appl Phys Lett 63:2929

    Article  ADS  Google Scholar 

  3. Ohno H, Shen A, Matsukura F, Oiwa A, Endo A, Katsumoto S, Iye Y (1996) (Ga,Mn)As: a new diluted magnetic semiconductor based on GaAs. Appl Phys Lett 69:363

    Article  ADS  Google Scholar 

  4. Hayashi T, Tanaka M, Seto K, Nishinaga T, Ando K (1997) III-V based magnetic(GaMnAs)/nonmagnetic(AlAs) semiconductor superlattices. Appl Phys Lett 71:1825

    Article  ADS  Google Scholar 

  5. Van Esch A, Van Bockstal L, De Boeck J, Verbanck G, Van Steenbergen AS, Wellmann PJ, Grietens B, Herlach RBF, Borghs G (1997) Interplay between the magnetic and transport properties in the III-V diluted magnetic semiconductor Ga1−x Mn x As. Phys Rev B 56:13103

    Article  ADS  Google Scholar 

  6. Ohno H (1998) Making nonmagnetic semiconductors magnetic. Science 281:951

    Article  ADS  Google Scholar 

  7. Ohno H, Chiba D, Matsukura F, Omiya T, Abe E, Dietl T, Ohno Y, Ohtani K (2000) Electric-field control of ferromagnetism. Nature 408:944

    Article  ADS  Google Scholar 

  8. Chiba D, Yamanouchi M, Matsukura F, Ohno H (2003) Electrical manipulation of magnetization reversal in a ferromagnetic semiconductor. Science 301:943

    Article  ADS  Google Scholar 

  9. Chiba D, Matsukura F, Ohno H (2006) Electric-field control of ferromagnetism in (ga, mn)as. Appl Phys Lett 89:162505

    Article  ADS  Google Scholar 

  10. Wunderlich J, Jungwirth T, Irvine AC, Kaestner B, Shick AB, Campion RP, Williams DA, Gallagher BL (2007) Coulomb blockade anisotropic magnetoresistance and voltage controlled magnetic switching in a ferromagnetic GaMnAs single electron transistor. J Magn Magn Mater 310:1883

    Article  ADS  Google Scholar 

  11. Chiba D, Sawicki M, Nishitani Y, Nakatani Y, Matsukura F, Ohno H (2008) Magnetization vector manipulation by electric fields. Nature 455:515

    Article  ADS  Google Scholar 

  12. Olejník K, Owen MHS, Novák V, Mašek J, Irvine AC, Wunderlich J, Jungwirth T (2008) Enhanced annealing, high Curie temperature and low-voltage gating in (Ga,Mn)As: a surface oxide control study. Phys Rev B 78:054403. arXiv:0802.2080

    Article  ADS  Google Scholar 

  13. Owen MHS, Wunderlich J, Novák V, Olejník K, Zemen J, Výabornaý K, Ogawa S, Irvine AC, Ferguson AJ, Sirringhaus H, Jungwirth T (2009) Low voltage control of ferromagnetism in a semiconductor p-n junction. New J Phys 11:023008. arXiv:0807.0906

    Article  Google Scholar 

  14. Stolichnov I, Riester SWE, Trodahl HJ, Setter N, Rushforth AW, Edmonds KW, Campion RP, Foxon CT, Gallagher BL, Jungwirth T (2008) Nonvolatile ferroelectric control of ferromagnetism in (Ga,Mn)As. Nat Mater 7:464. arXiv:0802.2074

    Article  ADS  Google Scholar 

  15. Riester SWE, Stolichnov I, Trodahl HJ, Setter N, Rushforth AW, Edmonds KW, Campion RP, Foxon CT, Gallagher BL, Jungwirth T (2009) Toward a low-voltage multiferroic transistor: magnetic (ga, mn)as under ferroelectric control. Appl Phys Lett 94:063504

    Article  ADS  Google Scholar 

  16. Sawicki M, Chiba D, Korbecka A, Nishitani Y, Majewski JA, Matsukura F, Dietl T, Ohno H (2010) Experimental probing of the interplay between ferromagnetism and localisation in (ga,mn)as. Nat Phys 6:22. arXiv:0909.3694

    Article  Google Scholar 

  17. Munekata H, Abe T, Koshihara S, Oiwa A, Hirasawa M, Katsumoto S, Iye Y, Urano C, Takagi H (1997) Light-induced ferromagnetism in III-V-based diluted magnetic semiconductor heterostructures. Appl Phys Lett 81:4862

    Google Scholar 

  18. Koshihara S, Oiwa A, Hirasawa M, Katsumoto S, Iye Y, Urano C, Takagi H, Munekata H (1997) Ferromagnetic order induced by photogenerated carriers in magnetic III-V semiconductor heterostructures of (In, Mn)As/GaSb. Phys Rev Lett 78:4617

    Article  ADS  Google Scholar 

  19. Ohno Y, Young DK, Beschoten B, Matsukura F, Ohno H, Awschalom DD (1999) Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature 402:790

    Article  ADS  Google Scholar 

  20. Tanaka M, Higo Y (2001) Large tunneling magnetoresistance in GaMnAs/AlAs/GaMnAs ferromagnetic semiconductor tunnel junctions. Phys Rev Lett 87:026602

    Article  ADS  Google Scholar 

  21. Chiba D, Matsukura F, Ohno H (2004) Tunneling magnetoresistance in (Ga, Mn)As-based heterostructures with a GaAs barrier. Physica E 21:966

    Article  ADS  Google Scholar 

  22. Saito H, Yuasa S, Ando K (2005) Origin of the tunnel anisotropic magnetoresistance in Ga1−x Mn x As/ZnSe/Ga1−x Mn x As magnetic tunnel junctions of II-VI/III-V heterostructures. Phys Rev Lett 95:086604

    Article  ADS  Google Scholar 

  23. Mattana R, Elsen M, George JM, Jaffrès H, Dau FNV, Fert A, Wyczisk MF, Olivier J, Galtier P, Lépine B, Guivarc’h A, Jézéquel G (2005) Chemical profile and magnetoresistance of Ga1−x Mn x As/GaAs/AlAs/GaAs/Ga1−x Mn x As tunnel junctions. Phys Rev B 71:075206

    Article  ADS  Google Scholar 

  24. Chiba D, Sato Y, Kita T, Matsukura F, Ohno H (2004) Current-driven magnetization reversal in a ferromagnetic semiconductor (ga,mn)as/gaas/(ga,mn)as tunnel junction. Phys Rev Lett 93:216602. arXiv:cond-mat/0403500

    Article  ADS  Google Scholar 

  25. Yamanouchi M, Chiba D, Matsukura F, Ohno H (2004) Current-induced domain-wall switching in a ferromagnetic semiconductor structure. Nature 428:539

    Article  ADS  Google Scholar 

  26. Yamanouchi M, Chiba D, Matsukura F, Dietl T, Ohno H (2006) Velocity of domain-wall motion induced by electrical current in a ferromagnetic semiconductor (Ga,Mn)As. Phys Rev Lett 96:096601. arXiv:cond-mat/0601515

    Article  ADS  Google Scholar 

  27. Wunderlich J, Irvine AC, Zemen J, Holý V, Rushforth AW, Ranieri ED, Rana U, Výborný K, Sinova J, Foxon CT, Campion RP, Williams DA, Gallagher BL, Jungwirth T (2007) Local control of magnetocrystalline anisotropy in (Ga,Mn)As microdevices: demonstration in current-induced switching. Phys Rev B 76:054424. arXiv:0707.3329

    Article  ADS  Google Scholar 

  28. Adam J, Vernier N, Ferre J, Thiaville A, Jeudy V, Lemaitre A, Thevenard L, Faini G (2009) Nonadiabatic spin-transfer torque in (Ga, Mn)As with perpendicular anisotropy. Phys Rev B 80:193204

    Article  ADS  Google Scholar 

  29. Wang KY, Edmonds KW, Irvine AC, Tatara G, Ranieri ED, Wunderlich J, Olejnik K, Rushforth AW, Campion RP, Williams DA, Foxon CT, Gallagher BL (2010) Current-driven domain wall motion across a wide temperature range in a (Ga, Mn)(As, P) device. Appl Phys Lett 97:262102

    Article  ADS  Google Scholar 

  30. Curiale J, Lemaitre A, Ulysse C, Faini G, Jeudy V (2012) Spin drift velocity, polarization, and current-driven domain-wall motion in (Ga, Mn)(As, P). Phys Rev Lett 108:076604

    Article  ADS  Google Scholar 

  31. De Ranieri E, Roy PE, Fang D, Vehsthedt EK, Irvine AC, Heiss D, Casiraghi A, Campion RP, Gallagher BL, Jungwirth T, Wunderlich J (2013) Piezo-electric control of the mobility of a domain wall driven by adiabatic and non-adiabatic torques. Nat Mater 12:808

    Article  ADS  Google Scholar 

  32. Sinova J, Jungwirth T, Liu X, Sasaki Y, Furdyna JK, Atkinson WA, MacDonald AH (2004) Magnetization relaxation in (Ga,Mn)As ferromagnetic semiconductors. Phys Rev B 69:085209. arXiv:cond-mat/0308386

    Article  ADS  Google Scholar 

  33. Garate I, Gilmore K, Stiles MD, MacDonald AH (2009) Non-adiabatic spin transfer torque in real materials. Phys Rev B 79:104416. arXiv:0812.2570

    Article  ADS  Google Scholar 

  34. Hals KMD, Nguyen AK, Brataas A (2009) Intrinsic coupling between current and domain wall motion in (ga,mn)as. Phys Rev Lett 102:256601. arXiv:0811.2235

    Article  ADS  Google Scholar 

  35. Wenisch J, Gould C, Ebel L, Storz J, Pappert K, Schmidt MJ, Kumpf C, Schmidt G, Brunner K, Molenkamp LW (2007) Control of magnetic anisotropy in (Ga,Mn)As by lithography-induced strain relaxation. Phys Rev Lett 99:077201. arXiv:cond-mat/0701479

    Article  ADS  Google Scholar 

  36. Rushforth AW, Ranieri ED, Zemen J, Wunderlich J, Edmonds KW, King CS, Ahmad E, Campion RP, Foxon CT, Gallagher BL, Výborný K, Kučera J, Jungwirth T (2008) Voltage control of magnetocrystalline anisotropy in ferromagnetic - semiconductor/piezoelectric hybrid structures. Phys Rev B 78:085314. arXiv:0801.0886

    Article  ADS  Google Scholar 

  37. Overby M, Chernyshov A, Rokhinson LP, Liu X, Furdyna JK (2008) GaMnAs-based hybrid multiferroic memory device. Appl Phys Lett 92:192501. arXiv:0801.4191

    Article  ADS  Google Scholar 

  38. Goennenwein STB, Althammer M, Bihler C, Brandlmaier A, Geprägs S, Opel M, Schoch W, Limmer W, Gross R, Brandt MS (2008) Piezo-voltage control of magnetization orientation in a ferromagnetic semiconductor. Phys Status Solidi (RRL) 2:96

    Article  ADS  Google Scholar 

  39. Gould C, Rüster C, Jungwirth T, Girgis E, Schott GM, Giraud R, Brunner K, Schmidt G, Molenkamp LW (2004) Tunneling anisotropic magnetoresistance: a spin-valve like tunnel magnetoresistance using a single magnetic layer. Phys Rev Lett 93:117203. arXiv:cond-mat/0407735

    Article  ADS  Google Scholar 

  40. Moser J, Matos-Abiague A, Schuh D, Wegscheider W, Fabian J, Weiss D (2007) Tunneling anisotropic magnetoresistance and spin-orbit coupling in fe/gaas/au tunnel junctions. Phys Rev Lett 99:056601. arXiv:cond-mat/0611406

    Article  ADS  Google Scholar 

  41. Park BG, Wunderlich J, Marti X, Holy V, Kurosaki Y, Yamada M, Yamamoto H, Nishide A, Hayakawa J, Takahashi H, Shick AB, Jung-wirth T (2011) A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction. Nat Mater 10:347. arXiv:1011.3188

    Article  ADS  Google Scholar 

  42. Wunderlich J, Jungwirth T, Kaestner B, Irvine AC, Wang KY, Stone N, Rana U, Giddings AD, Shick AB, Foxon CT, Campion RP, Williams DA, Gallagher BL (2006) Coulomb blockade anisotropic magnetoresistance effect in a (Ga,Mn)As single-electron transistor. Phys Rev Lett 97:077201. arXiv:cond-mat/0602608

    Article  ADS  Google Scholar 

  43. Bernand-Mantel A, Seneor P, Bouzehouane K, Fusil S, Deranlot C, Petroff F, Fert A (2009) Anisotropic magneto-coulomb effects and magnetic single-electron-transistor action in a single nanoparticle. Nat Phys 5:920

    Article  Google Scholar 

  44. Ciccarelli C, Zarbo LP, Irvine AC, Campion RP, Gallagher BL, Wunderlich J, Jungwirth T, Ferguson AJ (2012) Spin gating electrical current. Appl Phys Lett 101:122411. arXiv:1203.2439

    Article  ADS  Google Scholar 

  45. Chernyshov A, Overby M, Liu X, Furdyna JK, Lyanda-Geller Y, Rokhinson LP (2009) Evidence for reversible control of magnetization in a ferromagnetic material by means of spin-orbit magnetic field. Nat Phys 5:656. arXiv:0812.3160

    Article  Google Scholar 

  46. Fang D, Kurebayashi H, Wunderlich J, Vyborny K, Zarbo LP, Campion RP, Casiraghi A, Gallagher BL, Jungwirth T, Ferguson AJ (2011) Spin-orbit driven ferromagnetic resonance: a nanoscale magnetic characterisation technique. Nat Nanotechnol 6:413. arXiv:1012.2397

    Article  ADS  Google Scholar 

  47. Nemec P, Rozkotova E, Tesarova N, Trojanek F, Ranieri ED, Olejnik K, Zemen J, Novak V, Cukr M, Maly P, Jungwirth T (2012) Experimental observation of the optical spin transfer torque. Nat Phys 8:411. arXiv:1201.1436

    Article  Google Scholar 

  48. Tesarova N, Nemec P, Rozkotova E, Zemen J, Trojanek F, Olejnik K, Novak V, Maly P, Jungwirth T (2013) Experimental observation of the optical spin-orbit torque. Nat Photonics 7:492. arXiv:1207.0307

    Article  ADS  Google Scholar 

  49. Matsukura F, Ohno H, Dietl T (2002) In: Buschow KHJ (ed) Handbook of magnetic materials, vol 14. Elsevier, Amsterdam, p 1. From Ohno Lab Homepage

    Google Scholar 

  50. Dietl T (2003) In: Kramer B (ed) Advances in solid state physics. Springer, Berlin, p 413. arXiv:cond-mat/0306479

    Chapter  Google Scholar 

  51. Jungwirth T, Sinova J, Mašek J, Kučera J, MacDonald AH (2006) Theory of ferromagnetic (III,Mn)V semiconductors. Rev Mod Phys 78:809. arXiv:cond-mat/0603380

    Article  ADS  Google Scholar 

  52. Sato K, Bergqvist L, Kudrnovský J, Dederichs PH, Eriksson O, Turek I, Sanyal B, Bouzerar G, Katayama-Yoshida H, Dinh VA, Fukushima T, Kizaki H, Zeller R (2010) First-principles theory of dilute magnetic semiconductors. Rev Mod Phys 82:1633

    Article  ADS  Google Scholar 

  53. Dietl T, Ohno H (2014) Dilute ferromagnetic semiconductors: physics and spintronic structures. Rev Mod Phys 86:187. arXiv:1307.3429

    Article  ADS  Google Scholar 

  54. Jungwirth T, Wunderlich J, Novak V, Olejnik K, Gallagher BL, Campion RP, Edmonds KW, Rushforth AW, Ferguson AJ, Nemec P (2014) Spin-dependent phenomena and device concepts explored in (Ga,Mn)As. Rev Mod Phys 86:855. arXiv:1310.1944

    Article  ADS  Google Scholar 

  55. Chapman RA, Hutchinson WG (1967) Photoexcitation and photoionization of neutral manganese acceptors in gallium arsenide. Phys Rev Lett 18:443

    Article  ADS  Google Scholar 

  56. Blakemore JS, Brown WJ, Stass ML, Woodbury DA (1973) Thermal activation energy of manganese acceptors in gallium arsenide as a function of impurity spacing. J Appl Phys 44:3352

    Article  ADS  Google Scholar 

  57. Bhattacharjee AK, à la Guillaume CB (2000) Model for the mn acceptor in gaas. Solid State Commun 113:17

    Article  ADS  Google Scholar 

  58. Yakunin AM, Silov AY, Koenraad PM, Wolter JH, Van Roy W, De Boeck J, Tang JM, Flatté ME (2004) Spatial structure of an individual mn acceptor in gaas. Phys Rev Lett 92:216806. arXiv:cond-mat/0402019

    Article  ADS  Google Scholar 

  59. Madelung O, Rössler U, Schulz M (2003) Impurities and, defects in group IV elements, IV-IV and III-V compounds. Part b: group IV-IV and III-V compounds. Landolt-Börnstein – group III condensed matter, vol 41A2b. Springer, Berlin/Heidelberg

    Google Scholar 

  60. Ohno H (1999) Properties of ferromagnetic iii-v semiconductors. J Magn Magn Mater 200:110

    Article  ADS  Google Scholar 

  61. Campion RP, Edmonds KW, Zhao LX, Wang KY, Foxon CT, Gallagher BL, Staddon CR (2003) The growth of gamnas films by molecular beam epitaxy using arsenic dimers. J Cryst Growth 251:311

    Article  ADS  Google Scholar 

  62. Potashnik SJ, Ku KC, Mahendiran R, Chun SH, Wang RF, Samarth N, Schiffer P (2002) Saturated ferromagnetism and magnetization deficit in optimally annealed (Ga,Mn)As epilayers. Phys Rev B 66:012408. arXiv:cond-mat/0204250

    Article  ADS  Google Scholar 

  63. Jungwirth T, Sinova J, MacDonald AH, Gallagher BL, Novák V, Edmonds KW, Rushforth AW, Campion RP, Foxon CT, Eaves L, Olejník K, Mašek J, Yang SRE, Wunderlich J, Gould C, Molenkamp LW, Dietl T, Ohno H (2007) Character of states near the fermi level in (Ga,Mn)As: impurity to valence band crossover. Phys Rev B 76:125206. arXiv:0707.0665

    Article  ADS  Google Scholar 

  64. Ruzmetov D, Scherschligt J, Baxter DV, Wojtowicz T, Liu X, Sasaki Y, Furdyna JK, Yu KM, Walukiewicz W (2004) High-temperature hall effect in Ga1−x Mn x As. Phys Rev B 69:155207

    Article  ADS  Google Scholar 

  65. MacDonald AH, Schiffer P, Samarth N (2005) Ferromagnetic semiconductors: moving beyond (Ga,Mn)As. Nat Mater 4:195. arXiv:cond-mat/0503185

    Article  ADS  Google Scholar 

  66. Jungwirth T, Wang KY, Mašek J, Edmonds KW, König J, Sinova J, Polini M, Goncharuk NA, MacDonald AH, Sawicki M, Campion RP, Zhao LX, Foxon CT, Gallagher BL (2005) Prospects for high temperature ferromagnetism in (Ga,Mn)As semiconductors. Phys Rev B 72:165204. arXiv:cond-mat/0505215

    Article  ADS  Google Scholar 

  67. Shklovskii BI, Efros AL (1984) Electronic properties of doped semiconductors. Springer, New York

    Book  Google Scholar 

  68. Lee PA, Ramakrishnan TV (1985) Disordered electronic systems. Rev Mod Phys 57:287

    Article  ADS  Google Scholar 

  69. Paalanen MA, Bhatt RN (1991) Transport and thermodynamic properties across the metal-insulator transition. Physica B 169:223

    Article  ADS  Google Scholar 

  70. Dietl T (2007) Origin of ferromagnetic response in diluted magnetic semiconductors and oxides. J Phys Condens Matter 19:165204. arXiv:0711.0340

    Article  ADS  Google Scholar 

  71. Dietl T (2008) Interplay between carrier localization and magnetism in diluted magnetic and ferromagnetic semiconductors. J Phys Soc Jpn 77:031005. arXiv:0712.1293

    Article  ADS  Google Scholar 

  72. Ohya S, Takata K, Tanaka M (2011) Nearly nonmagnetic valence band of the ferromagnetic semiconductor GaMnAs. Nat Phys 7:342

    Article  Google Scholar 

  73. Gray AX, Minár J, Ueda S, Stone PR, Yamashita Y, Fujii J, Braun J, Plucinski L, Schneider CM, Panaccione G, Ebert H, Dubon OD, Kobayashi K, Fadley CS (2012) Bulk electronic structure of the dilute magnetic semiconductor GaMnAs through hard x-ray angle-resolved photoemission. Nat Mater 11:957

    Article  ADS  Google Scholar 

  74. Di Marco I, Thunstrom P, Katsnelson MI, Sadowski J, Karlsson K, Lebegue S, Kanski J, Eriksson O (2013) Electron correlations in MnxGa1xAs as seen by resonant electron spectroscopy and dynamical mean field theory. Nat Commun 4:2645

    Article  Google Scholar 

  75. Mašek J, Máca F, Kudrnovský J, Makarovsky O, Eaves L, Campion RP, Edmonds KW, Rushforth AW, Foxon CT, Gallagher BL, Novak V, Sinova J, Jungwirth T (2010) Microscopic analysis of the valence band and impurity band theories of (Ga,Mn)As. Phys Rev Lett 105:227202. arXiv:1007.4704

    Article  ADS  Google Scholar 

  76. Wang M, Edmonds KW, Gallagher BL, Rushforth AW, Makarovsky O, Patane A, Campion RP, Foxon CT, Novak V, Jungwirth T (2013) High curie temperatures at low compensation in the ferromagnetic semiconductor (ga,mn)as. Phys Rev B 87, 121301(R). arXiv:1211.3860

    Article  ADS  Google Scholar 

  77. Dobrowolska M, Tivakornsasithorn K, Liu X, Furdyna JK, Berciu M, Yu KM, Walukiewicz W (2012) Controlling the Curie temperature in (Ga, Mn)As through location of the fermi level within the impurity band. Nat Mater 11:444

    Article  ADS  Google Scholar 

  78. Dobrowolska M, Liu X, Furdyna JK, Berciu M, Yu KM, Walukiewicz W (2012) Response to the comment of K. W. Edmonds et al. http://arxiv.org/abs/1211.4051

  79. Nemec P, Novak V, Tesarova N, Rozkotova E, Reichlova H, Butkovicova D, Trojanek F, Olejnik K, Maly P, Campion RP, Gallagher BL, Sinova J, Jungwirth T (2013) The essential role of carefully optimized synthesis for elucidating intrinsic material properties of (Ga,Mn)As. Nat Commun 4:1422. arXiv:1207.0310

    Article  ADS  Google Scholar 

  80. Gao H, Cernov C, Jungwirth T, Sinova J (2015) Disorder and localization effects on the local spectroscopic and infrared-optical properties of GaMnAs. Phys Rev B 91:245201. arXiv:1502.05705v1

    Google Scholar 

  81. Richardella A, Roushan P, Mack S, Zhou B, Huse DA, Awschalom DD, Yazdani A (2010) Visualizing critical correlations near the metal-insulator transition in Ga1−x Mn x As. Science 327:665

    Google Scholar 

  82. Yokoyama M, Yamaguchi H, Ogawa T, Tanaka M (2005) Zinc-blende-type mnas nanoclusters embedded in gaas. J Appl Phys 97, 10D317

    Article  Google Scholar 

  83. Kovacs A, Sadowski J, Kasama T, Domagala J, Mathieu R, Dietl T, Dunin-Borkowski RE (2011) Voids and mn-rich inclusions in a (ga, mn)as ferromagnetic semiconductor investigated by transmission electron microscopy. J Appl Phys 109:083546

    Article  ADS  Google Scholar 

  84. Novák V, Olejník K, Wunderlich J, Cukr M, Výborný K, Rushforth AW, Edmonds KW, Campion RP, Gallagher BL, Sinova J, Jungwirth T (2008) Curie point singularity in the temperature derivative of resistivity in (Ga,Mn)As. Phys Rev Lett 101:077201. arXiv:0804.1578

    Article  ADS  Google Scholar 

  85. Fisher ME, Langer JS (1968) Resistive anomalies at magnetic critical points. Phys Rev Lett 20:665

    Article  ADS  Google Scholar 

  86. López-Sancho MP, Brey L (2003) Temperature dependence of the dielectric constant and resistivity of diluted magnetic semiconductors. Phys Rev B 68:113201. arXiv:cond-mat/0302237

    Article  ADS  Google Scholar 

  87. Moca CP, Sheu BL, Samarth N, Schiffer P, Janko B, Zarand G (2009) Scaling theory of magnetoresistance and carrier localization in GaMnAs. Phys Rev Lett 102:137203

    Article  ADS  Google Scholar 

  88. Jungwirth T, Mašek J, Wang KY, Edmonds KW, Sawicki M, Polini M, Sinova J, MacDonald AH, Campion RP, Zhao LX, Farley NRS, Johal TK, van der Laan G, Foxon CT, Gallagher BL (2006) Low-temperature magnetization of (Ga,Mn)As semiconductors. Phys Rev B 73:165205. arXiv:cond-mat/0508255

    Article  ADS  Google Scholar 

  89. Máca F, Mašek J (2002) Electronic states in Ga1−x Mn x As: substitutional versus interstitial position of mn. Phys Rev B 65:235209

    Article  ADS  Google Scholar 

  90. Yu KM, Walukiewicz W, Wojtowicz T, Kuryliszyn I, Liu X, Sasaki Y, Furdyna JK (2002) Effect of the location of Mn sites in ferromagnetic Ga1−x Mn x As on its curie temperature. Phys Rev B 65:201303

    Article  ADS  Google Scholar 

  91. Edmonds KW, Wang KY, Campion RP, Neumann AC, Farley NRS, Gallagher BL, Foxon CT (2002) High Curie temperature GaM-nAs obtained by resistance-monitored annealing. Appl Phys Lett 81:4991. arXiv:cond-mat/0209554

    Article  ADS  Google Scholar 

  92. Dietl T, Ohno H, Matsukura F (2001) Hole-mediated ferromagnetism in tetrahedrally coordinated semiconductors. Phys Rev B 63:195205. arXiv:cond-mat/0007190

    Article  ADS  Google Scholar 

  93. Abolfath M, Jungwirth T, Brum J, MacDonald AH (2001) Theory of magnetic anisotropy in III1−x Mn x V ferromagnets. Phys Rev B 63:054418. arXiv:cond-mat/0006093

    Article  ADS  Google Scholar 

  94. Zemen J, Kucera J, Olejnik K, Jungwirth T (2009) Magneto crystalline anisotropies in (Ga,Mn)As: a systematic theoretical study and comparison with experiment. Phys Rev B 80:155203. arXiv:0904.0993

    Article  ADS  Google Scholar 

  95. König J, Jungwirth T, MacDonald AH (2001) Theory of magnetic properties and spin-wave dispersion for ferromagnetic (Ga,Mn)As. Phys Rev B 64:184423. arXiv:cond-mat/0103116

    Article  ADS  Google Scholar 

  96. Brey L, Gómez-Santos G (2003) Magnetic properties of GaMnAs from an effective Heisenberg Hamiltonian. Phys Rev B 68:115206. arXiv:cond-mat/0306125

    Article  ADS  Google Scholar 

  97. Bouzerar G (2007) Magnetic spin excitations in diluted ferromagnetic systems: the case of Ga1−x Mn x As. Europhys Lett 79:57007. arXiv:cond-mat/0610465

    Article  ADS  Google Scholar 

  98. Werpachowska A, Dietl T (2010) Theory of spin waves in ferromagnetic (Ga, Mn)As. Phys Rev B 82:085204

    Article  ADS  Google Scholar 

  99. Baibich MN, Broto JM, Fert A, Nguyen Van Dau F, Petroff F, Etienne P, Creuzet G, Friederich A, Chazelas J (1988) Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices. Phys Rev Lett 61:2472–2475

    Article  ADS  Google Scholar 

  100. McGuire T, Potter R (1975) Anisotropic magnetoresistance in ferromagnetic 3d alloys. IEEE Trans Magn 11:1018–1038

    Article  ADS  Google Scholar 

  101. Baxter DV, Ruzmetov D, Scherschligt J, Sasaki Y, Liu X, Furdyna JK, Mielke CH (2002) Anisotropic magnetoresistance in Ga1−x Mn x As. Phys Rev B 65:212407

    Article  ADS  Google Scholar 

  102. Jungwirth T, Sinova J, Wang KY, Edmonds KW, Campion RP, Gallagher BL, Foxon CT, Niu Q, MacDonald AH (2003) Dc-transport properties of ferromagnetic (ga,mn)as semiconductors. Appl Phys Lett 83:320. arXiv:cond-mat/0302060

    Article  ADS  Google Scholar 

  103. Tang HX, Kawakami RK, Awschalom DD, Roukes ML (2003) Giant planar hall effect in epitaxial (ga,mn)as devices. Phys Rev Lett 90:107201. arXiv:cond-mat/0210118

    Article  ADS  Google Scholar 

  104. Matsukura F, Sawicki M, Dietl T, Chiba D, Ohno H (2004) Magnetotransport properties of metallic (ga, mn)as films with compressive and tensile strain. Physica E 21:1032

    Article  ADS  Google Scholar 

  105. Goennenwein STB, Russo S, Morpurgo AF, Klapwijk TM, Van Roy W, De Boeck J (2005) Quantitative study of magnetotransport through a (ga,mn)as single ferromagnetic domain. Phys Rev B 71:193306. arXiv:cond-mat/0412290

    Article  ADS  Google Scholar 

  106. Wang KY, Edmonds KW, Campion RP, Zhao LX, Foxon CT, Gallagher BL (2005) Anisotropic magnetoresistance and magnetic anisotropy in high-quality(ga,mn)as films. Phys Rev B 72:085201. arXiv:cond-mat/0506250

    Article  ADS  Google Scholar 

  107. Limmer W, Glunk M, Daeubler J, Hummel T, Schoch W, Sauer R, Bihler C, Huebl H, Brandt MS, Goennenwein STB (2006) Angle-dependent magnetotransport in cubic and tetragonal ferromagnets: application to (001)-and (113)a-oriented (ga,mn)as. Phys Rev B 74:205205. arXiv:cond-mat/0607679

    Article  ADS  Google Scholar 

  108. Rushforth AW, Výborný K, King CS, Edmonds KW, Campion RP, Foxon CT, Wunderlich J, Irvine AC, Vašek P, Novák V, Olejník K, Sinova J, Jungwirth T, Gallagher BL (2007) Anisotropic magnetoresistance components in (ga,mn)as. Phys Rev Lett 99:147207. arXiv:cond-mat/0702357

    Article  ADS  Google Scholar 

  109. Thomson W (1856) On the electro-dynamic qualities of metals: effects of magnetization on the electric conductivity of nickel and of iron. Proc R Soc Lond 8:546

    Article  ADS  Google Scholar 

  110. Daughton J (1992) Magnetoresistive memory technology. Thin Solid Films 216:162

    Article  ADS  Google Scholar 

  111. Jungwirth T, Abolfath M, Sinova J, Kučera J, MacDonald AH (2002) Boltzmann theory of engineered anisotropic magnetoresistance in (ga,mn)as. Appl Phys Lett 81:4029. arXiv:cond-mat/0206416

    Article  ADS  Google Scholar 

  112. Döring W (1938) Die Abhängigkeit des widerstandes von nickelkristallen von der richtung der spontanen magnetisierung. Ann Phys (Leipzig) 424:259

    Article  ADS  Google Scholar 

  113. Jungwirth T, Niu Q, MacDonald AH (2002) Anomalous Hall effect in ferromagnetic semiconductors. Phys Rev Lett 88:207208. arXiv:cond-mat/0110484

    Article  ADS  Google Scholar 

  114. Sawicki M, Wang K-Y, Edmonds KW, Campion RP, Staddon CR, Farley NRS, Foxon CT, Papis E, Kaminska E, Piotrowska A, Dietl T, Gallagher BL (2005) In-plane uniaxial anisotropy rotations in (ga,mn)as thin films. Phys Rev B 71:121302. arXiv:cond-mat/0410544

    Article  ADS  Google Scholar 

  115. Rushforth AW, Giddings AD, Edmonds KW, Campion RP, Foxon CT, Gallagher BL (2006) Amr and magnetometry studies of ultra thin gamnas films. Phys Status Solidi C 3:4078. arXiv:cond-mat/0610692

    Article  ADS  Google Scholar 

  116. Binasch G, Grünberg P, Saurenbach F, Zinn W (1989) Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys Rev B 39:4828

    Article  ADS  Google Scholar 

  117. Julliere M (1975) Tunneling between ferromagnetic films. Phys Lett A 54:225

    Article  ADS  Google Scholar 

  118. Moodera JS, Kinder LR, Wong TM, Meservey R (1995) Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys Rev Lett 74:3273

    Article  ADS  Google Scholar 

  119. Miyazaki T, Tezuka N (1995) Giant magnetic tunneling effect in fe/al2o3/fe junction. J Magn Magn Mater 139:L231

    Article  ADS  Google Scholar 

  120. Chappert C, Fert A, Dau FNV (2007) The emergence of spin electronics in data storage. Nat Mater 6:813

    Article  ADS  Google Scholar 

  121. Brey L, Tejedor C, Fernández-Rossier J (2004) Tunnel magneto-resistance in gamnas: going beyond Jullière formula. Appl Phys Lett 85:1996. arXiv:cond-mat/0405473

    Article  ADS  Google Scholar 

  122. Sankowski P, Kacman P, Majewski JA, Dietl T (2007) Spin-dependent tunneling in modulated structures of (ga,mn)as. Phys Rev B 75:045306. arXiv:cond-mat/0607206

    Article  ADS  Google Scholar 

  123. Saffarzadeh A, Shokri AA (2006) Quantum theory of tunneling magnetoresistance in gamnas/gaas/gamnas heterostructures. J Magn Magn Mater 305:141. arXiv:cond-mat/0608006

    Article  ADS  Google Scholar 

  124. Ohya S, Hai PN, Mizuno Y, Tanaka M (2007) Quantum-size effect and tunneling magnetoresistance in ferromagnetic-semiconductor quantum heterostructures. Phys Rev B 75:155328. arXiv:cond-mat/0608357

    Article  ADS  Google Scholar 

  125. Elsen M, Jaffrès H, Mattana R, Thevenard L, Lemaître A, George JM (2007) Spin-polarized tunneling as a probe of the electronic properties of Ga1−x Mn x As heterostructures. Phys Rev B 76:144415. arXiv:0706.0109

    Article  ADS  Google Scholar 

  126. Rüster C, Gould C, Jungwirth T, Sinova J, Schott GM, Giraud R, Brunner K, Schmidt G, Molenkamp LW (2005) Very large tunneling anisotropic magnetoresistance of a (ga,mn)as/gaas/(ga,mn)as stack. Phys Rev Lett 94:027203. arXiv:cond-mat/0408532

    Article  ADS  Google Scholar 

  127. Giraud R, Gryglas M, Thevenard L, Lemaître A, Faini G (2005) Voltage-controlled tunneling anisotropic magneto-resistance of a ferromagnetic p++ (ga,mn)as/n+ gaas zener-esaki diode. Appl Phys Lett 87:242505. arXiv:cond-mat/0509065

    Article  ADS  Google Scholar 

  128. Ciorga M, Einwanger A, Sadowski J, Wegscheider W, Weiss D (2007) Tunneling anisotropic magnetoresistance effect in a p+−(ga, mn)as/n+−gaas esaki diode. Phys Status Solidi A 204:186

    Article  ADS  Google Scholar 

  129. Rüster C, Gould C, Jungwirth T, Girgis E, Schott GM, Giraud R, Brunner K, Schmidt G, Molenkamp LW (2005) Tunneling anisotropic magnetoresistance: creating a spin-valve-like signal using a single ferromagnetic semiconductor layer. J Appl Phys 97, 10C506

    Article  Google Scholar 

  130. Pappert K, Schmidt MJ, Hümpfner S, Rüster C, Schott GM, Brunner K, Gould C, Schmidt G, Molenkamp LW (2006) Magnetization-switched metal-insulator transition in a (ga,mn)as tunnel device. Phys Rev Lett 97:186402. arXiv:cond-mat/0608683

    Article  ADS  Google Scholar 

  131. Giddings AD, Khalid MN, Jungwirth T, Wunderlich J, Yasin S, Campion RP, Edmonds KW, Sinova J, Ito K, Wang KY, Williams D, Gallagher BL, Foxon CT (2005) Large tunneling anisotropic magnetoresistance in (ga,mn)as nanoconstrictions. Phys Rev Lett 94:127202. arXiv:cond-mat/0409209

    Article  ADS  Google Scholar 

  132. Rüster C, Borzenko T, Gould C, Schmidt G, Molenkamp LW, Liu X, Wojtowicz TJ, Furdyna JK, Yu ZG, Flatté ME (2003) Very large magnetoresistance in lateral ferromagnetic (ga,mn)as wires with nanoconstrictions. Phys Rev Lett 91:216602. arXiv:cond-mat/0308385

    Article  ADS  Google Scholar 

  133. Schlapps M, Doeppe M, Wagner K, Reinwald M, Wegscheider W, Weiss D (2006) Transport through (ga, mn)as nanoconstrictions. Phys Status Solidi A 203:3597

    Article  ADS  Google Scholar 

  134. Wunderlich J, Jungwirth T, Novák V, Irvine AC, Kaestner B, Shick AB, Foxon CT, Campion RP, Williams DA, Gallagher BL (2007) Ordinary and extraordinary coulomb blockade magnetoresistance in (ga, mn)as single electron transistor. Solid State Commun 144:536

    Article  ADS  Google Scholar 

  135. Schlapps M, Lermer T, Geissler S, Neumaier D, Sadowski J, Schuh D, Wegscheider W, Weiss D (2009) Transport through (ga,mn)as nanoislands: coulomb blockade and temperature dependence of the conductance. Phys Rev B 80:125330. arXiv:0904.3225

    Article  ADS  Google Scholar 

  136. Hampton J, Eisenstein J, Pfeiffer L, West K (1995) Capacitance of two-dimensional electron systems subject to an in-plane magnetic field. Solid State Commun 94:559–562

    Article  ADS  Google Scholar 

  137. Jungwirth T, Smrčka L (1995) Capacitance of gated GaAs/Al x Ga1−x As heterostructures subject to in-plane magnetic field. Phys Rev B 51:10181–10184

    Article  ADS  Google Scholar 

  138. McCarthy KT, Hebard AF, Arnason SB (2003) Magnetocapacitance: probe of spin-dependent potentials. Phys Rev Lett 90:117201

    Article  ADS  Google Scholar 

  139. Kaiju H, Fujita S, Morozumi T, Shiiki K (2002) Magnetocapacitance effect of spin tunneling junctions. J Appl Phys 91:7430–7432

    Article  ADS  Google Scholar 

  140. Padhan P, LeClair P, Gupta A, Tsunekawa K, Djayaprawira DD (2007) Frequency-dependent magnetoresistance and magnetocapacitance properties of magnetic tunnel junctions with MgO tunnel barrier. Appl Phys Lett 90:142105

    Article  ADS  Google Scholar 

  141. Chang Y-M, Li K-S, Huang H, Tung M-J, Tong S-Y, Lin M-T (2010) Extraction of the tunnel magneto-capacitance with two-terminal measurements. J Appl Phys 107:093904

    Article  ADS  Google Scholar 

  142. Haigh JA, Ciccarelli C, Betz AC, Irvine A, Novák V, Jungwirth T, Wunderlich J (2015) Anisotropic magnetocapacitance in ferromagnetic-plate capacitors. Phys Rev B 91, 140409(R). doi:10.1103/PhysRevB.91.140409

    Article  ADS  Google Scholar 

  143. Kopp T, Mannhart J (2009) Calculation of the capacitances of conductors: perspectives for the optimization of electronic devices. J Appl Phys 106:064504

    Article  ADS  Google Scholar 

  144. Neumaier D, Turek M, Wurstbauer U, Vogl A, Utz M, Wegscheider W, Weiss D (2009) All-electrical measurement of the density of states in (ga, mn)as. Phys Rev Lett 103:087203

    Article  ADS  Google Scholar 

  145. Ono K, Shimada H, Ootuka Y (1997) Enhanced magnetic valve effect and magneto-coulomb oscillations in ferromagnetic single electron transistor. J Physical Soc Japan 66:1261–1264

    Article  ADS  Google Scholar 

  146. Ono K, Shimada H, Ootuka Y (1998) Ferromagnetic single electron transistor. Solid State Electron 42:1407–1411

    Article  ADS  Google Scholar 

  147. Ono K, Shimada H, Ootuka Y (1997) Enhanced magnetic valve effect and magneto-coulomb oscillations in ferromagnetic single electron transistor. J Phys Soc Jpn 66:1261

    Article  ADS  Google Scholar 

  148. Chappert C, Fert A, Van Dau FN (2007) The emergence of spin electronics in data storage. Nat Mater 6:813–823. http://www.ncbi.nlm.nih.gov/pubmed/17972936

    Google Scholar 

  149. Olejník K, Novák V, Wunderlich J, Jungwirth T (2015) Electrical detection of magnetization reversal without auxiliary magnets. Phys Rev B 91:18. doi:10.1103/PhysRevB.91.180402

    Article  Google Scholar 

  150. Avci CO, Garello K, Ghosh A, Gabureac M, Alvarado SF, Gambardella P. Unidirectional spin Hall magnetoresistance in ferromagnet/normal metal bilayers. arXiv:1502.06898v1

    Google Scholar 

  151. Chen L, Matsukura F, Ohno H (2013) Direct-current voltages in (Ga,Mn)As structures induced by ferromagnetic resonance. Nat Commun 4:2055. http://www.ncbi.nlm.nih.gov/pubmed/23784479

  152. Skinner TD, Olejnik K, Cunningham LK, Kurebayashi H, Campion RP, Gallagher BL, Jungwirth T, Ferguson AJ (2015) Complementary spin-Hall and inverse spin-galvanic effect torques in a ferromagnet/semiconductor bilayer. Nat Commun 6:6730

    Article  ADS  Google Scholar 

  153. Nakayama H, Althammer M, Chen Y-T, Uchida K, Kajiwara Y, Kikuchi D, Ohtani T, Geprägs S, Opel M, Takahashi S, Gross R, Bauer GEW, Goennenwein STB, Saitoh E (2013) Spin hall magnetoresistance induced by a nonequilibrium proximity effect. Phys Rev Lett 110:206601. doi:10.1103/PhysRevLett.110.206601

    Article  ADS  Google Scholar 

  154. Ralph D, Stiles M, Bader S (eds) (2008) Current perspectives: spin transfer torques. J Magn Magn Mater 320:1189

    Google Scholar 

  155. Zhang S, Li Z (2004) Roles of nonequilibrium conduction electrons on the magnetization dynamics of ferromagnets. Phys Rev Lett 93:127204

    Article  ADS  Google Scholar 

  156. Vanhaverbeke A, Viret M (2007) Simple model of current-induced spin torque in domain walls. Phys Rev B 75:024411

    Article  ADS  Google Scholar 

  157. Fernández-Rossier J, Núñez AS, Abolfath M, MacDonald AH (2003) Optical spin transfer in ferromagnetic semiconductors. arXiv:cond-mat/0304492

    Google Scholar 

  158. Slonczewski JC (1996) Current-driven excitation of magnetic multilayers. J Magn Magn Mater 159:L1

    Article  ADS  Google Scholar 

  159. Berger L (1996) Emission of spin waves by a magnetic multilayer traversed by a current. Phys Rev B 54:9353

    Article  ADS  Google Scholar 

  160. Metaxas PJ, Jamet JP, Mougin A, Cormier M, Ferre J, Baltz V, Rodmacq B, Dieny B, Stamps RL (2007) Creep and flow regimes of magnetic domain-wall motion in ultrathin pt/co/pt films with perpendicular anisotropy. Phys Rev Lett 99:217208

    Article  ADS  Google Scholar 

  161. Mougin A, Cormier M, Adam JP, Metaxas PJ, Ferre J (2007) Domain wall mobility, stability and walker breakdown in magnetic nanowires. EPL 78:57007

    Article  ADS  Google Scholar 

  162. Bernevig BA, Vafek O (2005) Piezo-magnetoelectric effects in p-doped semiconductors. Phys Rev B 72:033203

    Article  ADS  Google Scholar 

  163. Manchon A, Zhang S (2009) Theory of spin torque due to spin-orbit coupling. Phys Rev B 79:094422

    Article  ADS  Google Scholar 

  164. Garate I, MacDonald AH (2009) Influence of a transport current on magnetic anisotropy in gyrotropic ferromagnets. Phys Rev B 80:134403. arXiv:0905.3856

    Article  ADS  Google Scholar 

  165. Miron IM, Gaudin G, Auffret S, Rodmacq B, Schuhl A, Pizzini S, Vogel J, Gambardella P (2010) Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nat Mater 9:230

    ADS  Google Scholar 

  166. Gambardella P, Miron IM (2011) Current-induced spin-orbit torques. Phil Trans R Soc A 369:3175

    Article  ADS  Google Scholar 

  167. Manchon A, Zhang S (2008) Theory of nonequilibrium intrinsic spin torque in a single nanomagnet. Phys Rev B 78:212405

    Article  ADS  Google Scholar 

  168. Miron IM, Moore T, Szambolics H, Bud Prejbeanu LD, Auffret S, Rodmacq B, Pizzini S, Vogel J, Bonfim M, Schuhl A, Gaudin G (2011) Fast current-induced domain-wall motion controlled by the Rashba effect. Nat Mater 10:419

    Article  ADS  Google Scholar 

  169. Ohno H, Dietl T (2008) Spin-transfer physics and the model of ferromagnetism in (ga,mn)as. J Magn Magn Mater 320:1293. arXiv:0712.3247

    Article  ADS  Google Scholar 

  170. Chiba D, Yamanouchi M, Matsukura F, Dietl T, Ohno H (2006) Domain-wall resistance in ferromagnetic (ga,mn)as. Phys Rev Lett 96:096602. arXiv:cond-mat/0601464

    Article  ADS  Google Scholar 

  171. Thiaville A, Nakatani Y, Miltat J, Suzuki Y (2005) Micromagnetic understanding of current-driven domain wall motion in patterned nanowires. Europhys Lett 69:990

    Article  ADS  Google Scholar 

  172. Roy PE, Wunderlich J (2011) In-plane magnetic anisotropy dependence of critical current density, walker field and domain-wall velocity in a stripe with perpendicular anisotropy. Appl Phys Lett 99:122504

    Article  ADS  Google Scholar 

  173. Kurebayashi H, Sinova J, Fang D, Irvine AC, Skinner TD, Wunderlich J, Novak V, Campion RP, Gallagher BL, Vehstedt EK, Zarbo LP, Vyborny K, Ferguson AJ, Jungwirth T (2014) An anti-damping spinorbit torque originating from the berry curvature. Nat Nanotechnol 9:211. arXiv:1306.1893

    Article  ADS  Google Scholar 

  174. Mizukami S, Ando Y, Miyazaki T (2001) The study on ferromagnetic resonance linewidth for nm/80nife/nm (nm=cu, ta, pd and pt) films. Jpn J Appl Phys 40:580

    Article  ADS  Google Scholar 

  175. Tserkovnyak Y, Brataas A, Bauer GEW, Halperin BI (2005) Nonlocal magnetization dynamics in ferromagnetic heterostructures. Rev Mod Phys 77:1375. arXiv:cond-mat/0409242

    Article  ADS  Google Scholar 

  176. Hals KMD, Brataas A, Tserkovnyak Y (2010) Scattering theory of charge-current-induced magnetization dynamics. Euro Phys Lett 90:47002. arXiv:0905.4170

    Article  ADS  Google Scholar 

  177. Tatara G, Nakabayashi N, Lee KJ (2013) Spin motive force induced by Rashba interaction in the strong sd coupling regime. Phys Rev B 87:054403

    Article  ADS  Google Scholar 

  178. Ciccarelli C, Hals KMD, Irvine A, Novak V, Tserkovnyak Y, Kurebayashi H, Brataas A, Ferguson A (2014) Magnonic charge pumping via spin orbit coupling. Nat Nanotechnol 10:50–54, 10.1038/nnano.2014.252

    Article  ADS  Google Scholar 

  179. Núñez AS, Fernández-Rossier J, Abolfath M, MacDonald AH (2004) Optical control of the magnetization damping in ferromagnetic semiconductors. J Magn Magn Mater 272–276:1913

    Article  Google Scholar 

  180. Oiwa A, Takechi H, Munekata H (2005) Photoinduced magnetization rotation and precessional motion of magnetization in ferromagnetic (Ga, Mn)As. J Supercond Nov Magn 18:9

    Article  ADS  Google Scholar 

  181. Wang DM, Ren YH, Liu X, Furdyna JK, Grimsditch M, Merlin R (2007) Light-induced magnetic precession in (Ga,Mn)As slabs: hybrid standing-wave damoneshbach modes. Phys Rev B 75:233308. arXiv:cond-mat/0609646

    Article  ADS  Google Scholar 

  182. Takechi H, Oiwa A, Nomura K, Kondo T, Munekata H (2007) Light-induced precession of ferromagnetically coupled Mn spins in ferromagnetic (Ga, Mn)As. Phys Status Solidi C 3:4267

    Article  ADS  Google Scholar 

  183. Qi J, Xu Y, Tolk NH, Liu X, Furdyna JK, Perakis IE (2007) Coherent magnetization precession in GaM-nAs induced by ultrafast optical excitation. Appl Phys Lett 91:112506

    Article  ADS  Google Scholar 

  184. Qi J, Xu Y, Steigerwald A, Liu X, Furdyna JK, Perakis IE, Tolk NH (2009) Ultrafast laser-induced coherent spin dynamics in ferromagnetic Ga1−x Mn x As/GaAs structures. Phys Rev B 79:085304

    Article  ADS  Google Scholar 

  185. Rozkotova E, Nemec P, Horodyska P, Sprinzl D, Trojanek F, Maly P, Novak V, Olejnik K, Cukr M, Jungwirth T (2008) Light-induced magnetization precession in GaMnAs. Appl Phys Lett 92:122507. arXiv:0802.2043

    Article  ADS  Google Scholar 

  186. Rozkotová E, Němec P, Tesařová N, Malý P, Novák V, Olejník K, Cukr M, Jungwirth T (2008) Coherent control of magnetization precession in ferromagnetic semiconductor (Ga,Mn)As. Appl Phys Lett 93:232505. arXiv:0808.3738

    Article  ADS  Google Scholar 

  187. Hashimoto Y, Munekata H (2008) Coherent manipulation of magnetization precession in ferromagnetic semiconductor (Ga,Mn)As with successive optical pumping. Appl Phys Lett 93:202506. arXiv:0810.3728

    Article  ADS  Google Scholar 

  188. Hashimoto Y, Kobayashi S, Munekata H (2008) Photoinduced precession of magnetization in ferromagnetic (Ga, Mn)As. Phys Rev Lett 100:067202

    Article  ADS  Google Scholar 

  189. Kobayashi S, Suda K, Aoyama J, Nakahara D, Munekata H (2010) Photo-induced precession of magnetization in metal/(Ga, Mn)As systems. IEEE Trans Magn 46:2470

    Article  ADS  Google Scholar 

  190. Ramsay AJ, Roy PE, Haigh JA, Otxoa RM, Irvine AC, Janda T, Campion RP, Gallagher BL, Wunderlich J (2015) Optical Spin-Transfer-Torque-Driven Domain-Wall Motion in a Ferromagnetic Semiconductor. Phys Rev Lett 114:067202

    Article  ADS  Google Scholar 

  191. Wang J, Sun C, Hashimoto Y, Kono J, Khodaparast GA, Cywinski L, Sham LJ, Sanders GD, Stanton CJ, Munekata H (2006) Ultrafast magneto-optics in ferromagnetic III-V semiconductors. J Phys Condens Matter 18:R501

    Article  ADS  Google Scholar 

  192. Kirilyuk A, Kimel AV, Rasing T (2010) Ultrafast optical manipulation of magnetic order. Rev Mod Phys 82:2731

    Article  ADS  Google Scholar 

  193. Lingos PC, Wang J, Perakis IE (2015) Manipulating femtosecond spin−orbit torques with laser pulse sequences to control magnetic memory states and ringing. Phys Rev B 91:195203. http://arxiv.org/abs/1411.6662.1411.6662

Download references

Acknowledgments

This review is based on numerous helpful discussions with our colleagues. In particular we acknowledge discussions with Richard Campion, Tomasz Dietl, Kevin Edmonds, Andrew Ferguson,Tom Foxon, Bryan Gallagher, Allan MacDonald, Jan Mašek, Petr Němec, Vít Novák, Hideo Ohno, Kamil Olejník, Andrev Rushforth, Jairo Sinova, Karel Výborný, Dieter Weiss, Jorg Wunderlich, and Jan Zemen. We also acknowledge support from the ERC Advanced Grant No. 268066, from the Ministry of Education of the Czech Republic Grant No. LM2011026, and from the Czech Science Foundation Grant No. 14-37427G

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Jungwirth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Jungwirth, T. (2016). III–V Based Magnetic Semiconductors. In: Xu, Y., Awschalom, D., Nitta, J. (eds) Handbook of Spintronics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6892-5_20

Download citation

Publish with us

Policies and ethics