Skip to main content

Magnetic/III-V Semiconductor Based Hybrid Structures

  • Reference work entry
  • 7169 Accesses

Abstract

The first generation spintronics based on the giant magneto-resistance effect in the magnetic multilayers has already generated huge impact to the mass data storage industries. The second generation spintronics based on magnetic-semiconductor hybrid structures aims to develop new spin based devices such as spin transistors and spin logic, which will not just improve the existing capabilities of electronic transistors, but will have new functionalities. These spin devices have the potential to integrate both data storage and processing, enabling future computers to run faster and at the same time consume less power. One of the major challenges for the development of the second generation spintronics is the integration of the magnetic and semiconductor materials. In this chapter, we will present the growth, interface magnetism and magneto-transport of several important magnetic/semiconductor hybrid spintronic structures, in particular, with III-V semiconductors such as GaAs and InAs. The magnetic materials include both ferromagnetic metals, Fe, Co and Ni and half metallic magnetic oxides, where a large spin polarisation at the Fermi is expected. The chapter will also review the modified magnetic properties in the patterned single crystal dots due to either dipole interaction or intrinsic structure changes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AFM:

Atomic force microscopy

APB:

Antiphase boundary

BCC:

Body centered cubic

CMOS:

Complementary metal-oxide-semiconductor

DFT:

Density function theory

DMS:

Diluted magnetic semiconductor

DOS:

Density of state

EDX:

Energy dispersive X-ray

EM:

Electron microscope

FCC:

Face centered cubic

FET:

Field effect transistor

FM:

Ferro- or ferri-magnetic material

GMR:

Giant magnetoresistance

HCP:

Hexagonal close packing

HM:

Half metals

HMS:

Hybrid magnetic semiconductor

IT:

Information technology

LED:

Light emission diode

LEED:

Low energy electron diffraction

MBE:

Molecular beam epitaxy

ML:

Mono-layer

MOCVD:

Metal-organic chemical vapor deposition

MOKE:

Magneto-optical Kerr effect

MOSFET:

Metal oxide semiconductor FET

MR:

Magnetoresistance

MRAM:

Magnetic random access memory

MTJ:

Magnetic tunnel junction

PLD:

Pulsed laser deposition

QHE:

Quantum Hall effect

QSHE:

Quantum spin Hall effect

QW:

Quantum well

RAM:

Magnetic random access memory

RHEED:

Reflection high energy electron diffraction

RKKY:

Ruderman-Kittel-Kasuya-Yosida

RT:

Room temperature

SC:

Semiconductor

SE:

Secondary electron

SEM:

Scanning electron microscope

SHE:

Spin Hall effect

SQUID-VSM:

Superconducting quantum interference devices–vibrating sample magnetometer

STM:

Scanning tunneling microscopy

SV:

Spin-valve

TEM:

Transmission electron microscopy

TEY:

Total electron yield

TFY:

Total florescence yield

TI:

Topological insulator

TRS:

Time reversal symmetry

TSP:

Titanium sublimation pump

UHV:

Ultrahigh vacuum

UMA:

Uniaxial magnetic anisotropy

XMCD:

X-ray magnetic circular dichroism

XPS:

X-ray photoelectron spectroscopy

References

  1. Baibich MN et al (1988) Giant magnetoresistance of (001) Fe/ (001) Cr magnetic superlattices. Phys Rev Lett 61:2472

    Article  ADS  Google Scholar 

  2. Prinz GA (1998) Magnetoelectronics. Science 282:1660

    Article  Google Scholar 

  3. Kikkawa JM, Awschalom DD (1999) Lateral drag of spin coherence in gallium arsenide. Nature 397:139

    Article  ADS  Google Scholar 

  4. Ohno H et al (1996) A new diluted magnetic semiconductor based on GaAs. Appl Phys Lett 69:363

    Article  ADS  Google Scholar 

  5. Edmonds KW et al (2002) High-Curie-temperature Ga1-xMnxAsobtained by resistance-monitored annealing. Appl Phys Lett 81:4991

    Article  ADS  Google Scholar 

  6. Chiba D et al (2003) Effect of low-temperature annealing on (Ga,Mn) As trilayer structures. Appl Phys Lett 82:3020

    Google Scholar 

  7. Chambers SA, Farrow RFC (2003) New possibilities for ferromagnetic semiconductors. MRS Bull 28:729

    Article  Google Scholar 

  8. Prinz GA et al (1982) Ferromagnetic resonance studies of very thin epitaxial single crystals of iron. J Appl Phys 53:2087

    Article  ADS  Google Scholar 

  9. Krebs JJ et al (1987) Properties of Fe single crystal films grown on (100)GaAs by molecular beam epitaxy. J Appl Phys 61:2596

    Article  ADS  Google Scholar 

  10. Florczak JM, Dahlberg ED (1991) Magnetization reversal in (100) Fe thin films. Phys Rev B 44:9338

    Article  ADS  Google Scholar 

  11. Filipe A, Schuhl A, Galtier P (1997) Structure and magnetism of the Fe/GaAs interface. Appl Phys Lett 70:129

    Article  ADS  Google Scholar 

  12. Kneeler EM, Jonker BT, Thibado PM, Wagner RJ, Shanabrook BV, Whitman LJ (1997) Influence of substrate surface reconstruction on the growth and magnetic properties of Fe on GaAs(001). Phys Rev B 56:8163

    Article  ADS  Google Scholar 

  13. Xu YB, Kernohan ETM, Freeland DJ, Ercole A, Tselepi M, Bland JAC (1998) Evolution of the ferromagnetic phase of ultrathin Fe films grown on GaAs (100)-4×6. Phys Rev B 58:890

    Article  ADS  Google Scholar 

  14. Brockmann M et al (1999) In-plane volume and interface magnetic anisotropies in epitaxial Fe films on GaAs(0 0 1). J Magn Magn Mater 198:384

    Article  ADS  Google Scholar 

  15. Palstrom C (2003) Epitaxial heusler alloys: new materials for semiconductor spintronics. MRS Bull 28:725

    Article  Google Scholar 

  16. Wei M et al (2005) Room temperature ferromagnetism in bulk Mn-Doped Cu2O. Appl Phys Lett 86:072514

    Article  ADS  Google Scholar 

  17. Lu YX et al (2004) Epitaxial growth and magnetic properties of half-metallic Fe3O4 on GaAs(100). Phys Rev B 70:233304

    Article  ADS  Google Scholar 

  18. Watts SM, Nakajima K, van Dijken S, Coey JMD (2004) Transport characteristics of magnetite thin films grown onto GaAs substrates. J Appl Phys 95(11):7465

    Article  ADS  Google Scholar 

  19. Rhoderick EH, Williams RH (1988) Metal semiconductor contacts. Oxford University Press, Oxford

    Google Scholar 

  20. Xu YB, Kernohan ETM, Tselepi M, Bland JAC, Holmes S (1998) Single crystal Fe films grown on InAs(100) by molecular beam epitaxy. Appl Phys Lett 73:399

    Article  ADS  Google Scholar 

  21. Claydon JS, Xu YB, Tselepi M, Bland JAC, van der Laan G (2004) Direct observation of a bulklike spin moment at the Fe/GaAs(100)-4x6 interface. Phys Rev Lett 93(3)

    Google Scholar 

  22. Xu YB et al (2002) Interface magnetic properties of epitaxial Fe-InAs heterostructures. IEEE Trans Magn 38:2652

    Google Scholar 

  23. Qikun X (1995) Structures of the Ga-Rich 4×2 and 4×6 Reconstructions of the GaAs(001) Surface. Phys Rev Lett 74:3177

    Article  Google Scholar 

  24. Kendrick C, LeLay G, Kahm A (1996) Bias-dependent imaging of the In-terminated InAs(001) (4×2)c(8×2) surface by STM: reconstruction and transitional defect. A Phys Rev B 54:17877

    Article  ADS  Google Scholar 

  25. Qin XR, Lagally MG (1997) Adatom pairing structures for Ge on Si(100): the initial stage of island formation. Science 278:1444

    Article  ADS  Google Scholar 

  26. Xu YB et al (2000) Anisotropic lattice relaxation and uniaxial magnetic anisotropy in Fe/InAs(100)−4×2. Phys Rev B62:1167

    Article  ADS  Google Scholar 

  27. Bean CP, Livingston JD (1959) Superparamagnetism. J Appl Phys 30:120

    Article  ADS  Google Scholar 

  28. Shi J, Gider S, Babcock K, Awschalom DD (1996) Magnetic clusters in molecular beams, metals, and semiconductors. Science 271:937

    Article  ADS  Google Scholar 

  29. Pokrovskii V (1979) Influence of vacuum polarization by a magnetic field on the propagation of electromagnetic waves in a plasma. Adv Phys 28:595

    Article  ADS  Google Scholar 

  30. Thibado PM et al (1996) Nucleation and growth of Fe on GaAs(001)-(2×4) studied by scanning tunneling microscopy. Phys Rev B53, R10481

    Article  ADS  Google Scholar 

  31. Xu YB et al (2000) Uniaxial magnetic anisotropy of epitaxial Fe films on InAs(100)-4 x 2 and GaAs(100)-4 x 2. J Appl Phys 87:6110

    Article  ADS  Google Scholar 

  32. Brockmann M, Zölfl M, Miethaner S, Bayreuther G (1999) In-plane volume and interface magnetic anisotropies in epitaxial Fe films on GaAs(0 0 1). 198:384

    Google Scholar 

  33. Dumm M et al (2000) Magnetism of ultrathin FeCo (001) films on GaAs(001). J Appl Phys 87:5457

    Article  ADS  Google Scholar 

  34. Tivakornsasithorn K, Liu X, Li X, Dobrowolska M, Furdyna JK (2014) Magnetic anisotropy in ultrathin Fe films on GaAs, ZnSe, and Ge (001) substrates. J Appl Phys 116:043915

    Article  ADS  Google Scholar 

  35. Morley NA et al (2006) Comparison between the in-plane anisotropies and magnetostriction constants of thin epitaxial Fe films grown on GaAs and Ga0.8In0.2As substrates with Cr overlayers. J Appl Phys 99:08N508

    Article  Google Scholar 

  36. Ahmad E et al (2004) Hysteretic properties of epitaxial Fe/GaAs(100) ultrathin films under external uniaxial strain. J Appl Phys 95:6555

    Article  ADS  Google Scholar 

  37. Morley NA, Tang SL, Gibbs MRJ, Ahmad E, Will IG, Xu YB (2005) Magnetocrystalline anisotropies and magnetostriction of ultrathin Fe films on GaAs with Cr overlayers. J Appl Phys 10:10H501, Part 3 May 15

    Google Scholar 

  38. Claydon JS, Niu DX, Xu YB, Telling ND, Kirkman IW, van der Laan G (2005) XPS and XMCD study of Fe3O4/GaAs interface. IEEE Trans Magn 41(10):3325–3327

    Article  ADS  Google Scholar 

  39. Choi JW et al (2014) Uniaxial magnetic anisotropy in epitaxial Fe/MgO films on GaAs(001). J Magn Magn Mater 360:109–112

    Article  ADS  Google Scholar 

  40. Prinz GA (1985) Stabilization of bcc Co via epitaxial growth on GaAs. Phys Rev Lett 54:1051

    Article  ADS  Google Scholar 

  41. Blundell SJ, Gester M, Bland JAC, Daboo C, Gu E, Baird MJ, Ives AJR (1993) Structure induced magnetic anisotropy behavior in Co/GaAs(001) films. J Appl Phys 73:5948

    Article  ADS  Google Scholar 

  42. Gu E, Gester M, Hickens RJ, Daboo C, Tselepi M, Gray SJ, Bland JAC, Brown LM (1995) Fourfold anisotropy and structural behavior of epitaxial hcp Co/GaAs(001) thin films. Phy Rev B 2(20):14704

    Article  ADS  Google Scholar 

  43. Subramaniam S, Lie X, Stamps RL, Sooryakumr R, Prinz GA (1995) Magnetic anisotropies in body-centered-cubic cobalt films. Phys Rev B 52:10194

    Article  ADS  Google Scholar 

  44. Liu X, Stampps RL, Sooryakumar R et al (1996) Magnetic anisotropies in thick body centered cubic Co. J Appl Phys 79:5387

    Article  ADS  Google Scholar 

  45. Wu YZ, Ding HF, Jing C et al (1998) In-plane magnetic anisotropy of bcc Co on GaAs(001). Phy Rev B 57:11935

    Article  ADS  Google Scholar 

  46. Madani M, Tacchi S, Gubbiotti G, Ambrose T, Prinz GA (1999) Appl Phys Lett 75(3):346

    Article  ADS  Google Scholar 

  47. Xu F, Joyee JJ, Ruckman MW, Chen HW, Boscherini F, Hill DM, Chambers SA, Weaver JW (1987) Epitaxy, overlayer growth, and surface segregation for Co/GaAs(110) and Co/GaAs(100)-c(82). Phys Rev B 35:2375

    Article  ADS  Google Scholar 

  48. Inzerda YU, Elam WT, Jonker BT, Prinz GA (1989) Structure determination of metastable cobalt films. Phys Rev Lett 62:2480

    Article  ADS  Google Scholar 

  49. Izquierdo M, Dabila ME, Avila J, Ascolani H, Teodorescu CM, Martin MG, Franco N, Chrost J, Arranz A, Asenio MC (2005) Epitaxy and magnetic properties of surfactant-mediated growth of bcc cobalt. Phys Rev Lett 94, 187601–1

    Article  ADS  Google Scholar 

  50. Liu AY, Singh AJ (1993) Elastic instability of bcc cobalt. Phys Rev B 47:8515

    Article  ADS  Google Scholar 

  51. Mangan MA, Spanos G, Ambrose T, Prinz GA (1999) Transmission electron microscopy investigation of Co thin films on GaAs(001). Appl Phys Lett 75(3):346

    Article  ADS  Google Scholar 

  52. Wieldraaijer H et al (2003) Growth of epitaxial bcc Co(001) electrodes for magnetoresistive devices. Phys Rev B 67:224430

    Article  ADS  Google Scholar 

  53. Inzerda YU et al (1990) Structure determination of metastable cobalt films deposited on GaAs. J Vac Sci Technol A8:1572

    Article  ADS  Google Scholar 

  54. Teodorescu CM et al (1998) Growth of epitaxial Co layers on Sb-passivated GaAs(110) substrates. Surf Rev Lett 5:279

    Google Scholar 

  55. Nath KG et al (2002) Passivation-mediated growth of Co on Se, S and O rich GaAs surfaces: a potential approach to control interface crystallinity and magnetic continuity. J Appl Phys 91:3943

    Article  ADS  Google Scholar 

  56. Zhang FP et al (1999) Studies of interface formation between Co with GaAs(100) and S-passivated GaAs(100), J Electron Spectros Relat Phenom, 10–103:485

    Google Scholar 

  57. Izquierdo M et al (2004) Influence of the substrate surface termination on the properties of bcc-cobalt films: GaAs(110) versus Sb/GaAs(110). Appl Surf Sci 234:468

    Article  ADS  Google Scholar 

  58. Andeson GW, Hanf MC, Norton PR (1995) Growth and magnetic properties of epitaxial Fe(100) on S-passivated GaAs(100). Phys Rev Lett 74:2764

    Article  ADS  Google Scholar 

  59. Nath KG, Maeda F, Suzuki S, Watanabi Y (2000) Epitaxy, modification of electronic structures, overlayer-substrate reaction and segregation in ferromagnetic Co films on Se-treated GaAs(001) surface. J Vac Sci Technol B 19:384

    Article  Google Scholar 

  60. Morley NA et al (2006) Anisotropies and magnetostriction constants of epitaxial Co films on GaAs(100) substrates. J Phys Condens Matter 18:8781

    Article  ADS  Google Scholar 

  61. Walmsley R, Thompson J, Friedman D, White R, Geballe T (1983) Band structure of bcc cobalt. IEEE Trans Magn 19:1992

    Article  ADS  Google Scholar 

  62. Bland JAC, Bateson RD, Riedi PC, Graham RG, Lauter HJ, Penfold J, Shackelton C (1991) Magnetic properties of bcc Co films. J Appl Phys 69:4989

    Article  ADS  Google Scholar 

  63. Marcus PM, Moruzzi VL (1985) Equilibrium properties of the cubic phases of cobalt. Solid State Commun 55:9971

    Article  Google Scholar 

  64. Soderlind P, Erikson O, Johansson B, Albers RC, Boring AM (1992) Spin and orbital magnetism in Fe-Co and Co-Ni alloys. Phys Rev B 45(99):12911

    Google Scholar 

  65. Singh D (1992) Arsenic poisoning of magnetism in bcc cobalt. J Appl Phys 71:3431

    Article  ADS  Google Scholar 

  66. Gutierrez CJ, Prinz GA, Krebs JJ, Filipkowski ME, Harris VG, Elam WT (1993) Magnetic and structural studies of epitaxial (001) Fe and (001) FexCo1-x alloy film structures. J Magn Magn Mater 126:232

    Article  ADS  Google Scholar 

  67. Tian CS, Qian D, Wu D, He RH, Wu YZ, Tang WX, Yin LF, Shi YS, Dong GS, Jin XF, Jiang XM, Liu FQ, Qian HJ, Sun K, Wang LM, Rossi G, Qiu ZQ, Shi J (2005) Body-centered-cubic Ni and its magnetic properties. Phys Rev Lett 94:137210

    Article  ADS  Google Scholar 

  68. Tang WX, Qian D, Wu D, Wu YZ, Dong GS, Jin XF, Chen SM, Jiang XM, Zhang XX, Zhang Z (2002) Growth and magnetism of Ni films on GaAs(001). J Magn Magn Mater 240:404

    Article  ADS  Google Scholar 

  69. Scheck C, Evans P, Zangari G, Schad R (2003) Sharp ferromagnet/semiconductor interfaces by electrodeposition of Ni thin films onto n-GaAs(001) substrates. Appl Phys Lett 82:2853

    Article  ADS  Google Scholar 

  70. Scheck C et al (2002) Structure and magnetic properties of electrodeposited Ni films on n-GaAs(001). J Phys Condens Matter 14:12329

    Article  MathSciNet  ADS  Google Scholar 

  71. Scheck C, Liu Y-K, Evans P, Schad R, Zangari G (2004) Evolution of interface properties of electrodeposited Ni/GaAs(001) contacts upon annealing. J Appl Phys 95:6549

    Article  ADS  Google Scholar 

  72. Sreenivasulu V et al (2014) Transport properties of electrodeposited epitaxial Ni(111) films on GaAs(110) with low defect density. Thin Solid Films 564:412

    Article  Google Scholar 

  73. Kubaschewski O, Hopkins BE (1967) Oxidation of metals and alloys, 2nd edn. Butterworths, London

    Google Scholar 

  74. Lam NQ (1988) Ion bombardment effects on the near-surface composition during sputter profiling. Surf Interface Anal 12:65

    Article  Google Scholar 

  75. Sigmund P (1987) Mechanisms and theory of physical sputtering by particle impact. Nucl Instrum Methods B 27:1

    Article  ADS  Google Scholar 

  76. Lee J-M et al (2012) Characterization of Fe3O4/GaAs(100) ultrathin films prepared by oxidizing kinetically-stabilized Fe layers. Thin Solid Films 526:47

    Article  ADS  Google Scholar 

  77. Coeyand JMD, Venkatesan M (2002) Half-metallic ferromagnetism: example of CrO2. J Appl Phys 91:8345

    Article  ADS  Google Scholar 

  78. Watts SM, Catherine B, van Dijken S, Coey JMD (2005) Magnetite Schottky barriers on GaAs substrates. Appl Phys Lett 86:212108

    Article  ADS  Google Scholar 

  79. Hassan SSA, Xu YB, Ahmad E, Lu YX (2007) Transport and magneto-transport characteristics of Fe3O4/GaAs hybrid structure. IEEE Trans Magn 43(6):2875–2877

    Article  ADS  Google Scholar 

  80. McLean AB, Williams RH (1988) Schottky contacts to cleaved GaAs (110) surfaces. I. Electrical properties and microscopic theories. J Phys C: Solid State Phys 21(4):783–806

    Article  ADS  Google Scholar 

  81. Akin S et al (2014) Improvement in electrical performance of half-metallic Fe3O4/GaAs structures using pyrolyzed polymer film as buffer layer. Philos Mag 94:2678–2691

    Article  ADS  Google Scholar 

  82. Zhang W, Zhang JZ, Wong PKJ, Huang ZC, Sun L, Liao JL, Zhai Y, Xu YB, van der Laan G (2011) Inplane uniaxial magnetic anisotropy in epitaxial Fe3O4-based hybrid structures on GaAs(100). Phys Rev B 84(10), 104451

    Google Scholar 

  83. Yan L, Wei H, Swartz AG, Pi K, Wong JJI, Mack S, Awschalom DD, Kawakami RK (2010) Oscillatory spin polarization and magneto-optical Kerr effect in Fe3O4 thin films on GaAs(001). Phys Rev Lett 105:167203

    Article  ADS  Google Scholar 

  84. Liu WQ, Xu YB, Wong PKJ, Maltby NJ, Li SP, Wang XF, Du J, You B, Wu J, Bencok P, Zhang R (2014) Spin and orbital moments of nanoscale Fe3O4 epitaxial thin film on MgO/GaAs(100). Appl Phys Lett 104:142407

    Article  ADS  Google Scholar 

  85. Leszcynski M, Teisseyre H, Suski T, Grzegory I, Bockowski M, Jun J, Porowski S, Pakula K, Baranowski JM, Foxon CT, Cheng TS (1996) Lattice parameters of gallium nitride. Appl Phys Lett 69:73

    Article  ADS  Google Scholar 

  86. Wong PKJ, Zhang W, Cui XG, Xu YB, Wu J, Tao ZK, Li X, Xie ZL, Zhang R, van der Laan G (2010) Ultrathin Fe3O4 epitaxial films on wide bandgap GaN(0001). Phys Rev B 81(3):035419

    Article  ADS  Google Scholar 

  87. Smith LL, King SW, Nemanich RJ, Davis RF (1996) Microstructure, electrical properties, and thermal stability of Al ohmic contacts to n-GaN. J Electron Mater 25:805

    Article  ADS  Google Scholar 

  88. Shiratsuchi Y, Endo Y, Yamamoto M, Bader SD (2005) Effect of substrate inclination on the magnetic anisotropy of ultrathin Fe films grown on Al2O3(0001). J Appl Phys 97:10J106

    Google Scholar 

  89. Rao CN, Raveau B (1995) Transitional metal oxides. VCH, New York

    Google Scholar 

  90. Xu YB, Hassan SSA, Wong PKJ, Claydon JS, Damsgaard CD, Hansen JB, Jacobsen CS, Zhai Y, Wu J, van der Laan G, Feidenhans R, Holmes SN (2008) Hybrid spintronic structures with magnetic oxides and heusler alloys. IEEE Trans Magn 44(11):2959–2965, Part 2

    Google Scholar 

  91. Ruby C, Humbert B, Fusy J (2000) Surface and interface properties of epitaxial iron oxide thin films deposited on MgO(001) studied by XPS and Raman spectroscopy. Surf Interface Anal 29:377

    Article  Google Scholar 

  92. Fuiji T, de Groot FMF, Sawatzky GA, Voogt FC, Hibma T, Okada K (1999) In situ XPS analysis of various iron oxide films grown by NO2-assisted molecular-beam epitaxy. Phys Rev B 59:3195

    Article  ADS  Google Scholar 

  93. Gota S, Guiot E, Henriot M, Gautier-Soyer M (1999) Atomic-oxygen-assisted MBE growth of α−Fe2O3 on α−Al2O3 (0001): metastable FeO(111)-like phase at subnanometer thicknesses. Phys Rev B 60:14387

    Article  ADS  Google Scholar 

  94. Morrall P, Schedin F, Case GS, Thomas MF, Dudzik E, van der Laan G, Thornton G (2003) Stoichiometry of Fe3−δO4(111) ultrathin films on Pt(111). Phys Rev B 67:214408

    Article  ADS  Google Scholar 

  95. Huang DJ, Chang CF, Jeng H-T, Guo GY, Lin H-J, Wu WB, Ku HC, Fujimori A, Takahashi Y, Chen CT (2004) Spin and orbital magnetic moments of Fe3O4. Phys Rev Lett 93:077204

    Article  ADS  Google Scholar 

  96. Signorini L, Pasquini L, Boscherini F, Bonetti E, Letard I, Brice-Profeta S, Sanctavit P (2006) Ultrathin Fe3O4 epitaxial films on wide bandgap GaN(0001). Phys Rev B 74:014426

    Google Scholar 

  97. Pellegrin E, Hagelstein M, Doyle S, Moser HO, Fuchs J, Vollath D, Schuppler S, James MA, Saxena SS, Niesen L, Rogojanu O, Sawatzky GA, Ferrero C, Borowski M, Tjernberg O, Brookes NB (1999) Perpendicular magnetic anisotropy and the reorientation transition of the magnetization in CeH2/Fe multilayers probed by x-ray magnetic circular dichroism. Phys Stat Solid (b) 215:797

    Article  ADS  Google Scholar 

  98. Margulies DT, Parker FT, Spada FE, Goldman RS, Li J, Sinclair R, Berkowitz AE (1996) Anomalous moment and anisotropy behavior in Fe3O4 films. Phys Rev B 53:9175

    Article  ADS  Google Scholar 

  99. Ziese M, Blythe HJ (2000) Magnetoresistance of magnetite. J Phys Condens Matter 12:13

    Article  ADS  Google Scholar 

  100. Eerenstein W, Palstra TTM, Hibma T, Celotto S (2002) Origin of the increased resistivity in epitaxial Fe3O4 films. Phys Rev B 66:201101

    Article  ADS  Google Scholar 

  101. Moussy JB, Gota S, Bataille A, Guittet MJ, Gautier-Soyer M, Delille F, Dieny B, Ott F, Doan TD, Warin P, Bayle-Guillemaud P, Gatel C, Snoeck E (2004) Thickness dependence of anomalous magnetic behavior in epitaxial Fe3O4(111)thin films: effect of density of antiphase boundaries. Phys Rev B 70:174448

    Article  ADS  Google Scholar 

  102. Okamoto S, Kohn K (1986) Magnetic ceramics. Gihodo, Japan, p 84

    Google Scholar 

  103. Jedema FJ, Heersche HB, Filip AT, Baselmans JJA, van Wees BJ (2002) Electrical detection of spin precession in a metallic mesoscopic spin valve. Nature 416:713–717

    Article  ADS  Google Scholar 

  104. Valenzuela SO, Tinkham M (2006) Direct electronic measurement of the spin Hall effect. Nature 442:176–179

    Article  ADS  Google Scholar 

  105. Appelbaum I, Huang B, Monsma DJ (2007) Electronic measurement and control of spin transport in silicon. Nature 447:295–298

    Article  ADS  Google Scholar 

  106. Zutić I, Fabian J, Erwin SC (2006) Spin injection and detection in silicon. Phys Rev Lett 97:026602 (4 pages)

    Article  ADS  Google Scholar 

  107. Boothman C, Sánchez AM, van Dijken S (2007) Structural, magnetic, and transport properties of Fe3O4/Si(111) and Fe3O4/Si(001). J Appl Phys 101:123903 (7 pages)

    Article  ADS  Google Scholar 

  108. Jain S, Adeyeyea AO, Boothroyd CB (2005) Electronic properties of half metallic Fe3O4 films. J Appl Phys 97:093713

    Article  ADS  Google Scholar 

  109. Hassan SSA, Xu YB, Wu J, Thompson SM (2009) Epitaxial growth and magnetic properties of half-metallic Fe3O4 on Si(100) using MgO buffer layer. IEEE Trans Magn 45(10):4357–4359

    Article  ADS  Google Scholar 

  110. Allenspach R, Bischif A (1992) Magnetization direction switching in Fe/Cu (100) epitaxial films: temperature and thickness dependence. Phys Rev Lett 69:3385

    Article  ADS  Google Scholar 

  111. Berger A, Hopster H (1996) Nonequilibrium magnetization near the reorientation phase transition of Fe/Ag (100) films. Phys Rev Lett 76:519

    Article  ADS  Google Scholar 

  112. Soeckmann M, Oepen HP, Ibach H (1995) Morphology and magnetism of thin Co films on textured Au surfaces. Phys Rev Lett 75:2035

    Article  ADS  Google Scholar 

  113. Ozimek EJ, Paul DI (1984) Magnetization dynamics of micron size thin permalloy films. J Appl Phys 55:2232

    Article  ADS  Google Scholar 

  114. Herman DA Jr, Argyle BE, Petek B (1987) Bloch lines, cross ties, and taffy in permalloy. J Appl Phys 61:4200

    Article  ADS  Google Scholar 

  115. McVitie S, Chapman JN (1988) Magnetic structure determination in small regularly shaped particle using transmission electron microscopy. IEEE Trans Magn 24:1778

    Article  ADS  Google Scholar 

  116. Adeyeye AO, Bland JAC, Dadoo C, Lee J, Ebels U, Ahmed H (1996) Size dependence of the magnetoresistance in submicron FeNi wires. J Appl Phys 79:6120

    Article  ADS  Google Scholar 

  117. Takahashi S, Yamakawa K, Honda N, Ouchi K (1995) J Magn Magn Mater 148:88

    Article  ADS  Google Scholar 

  118. Adeyeye AO, Lauhoff G, Bland JAC, Daboo C, Hasko DJ, Ahmed H (1997) Magnetoresistance behavior of submicron Ni80Fe20 wires. Appl Phys Lett 70:1046

    Article  ADS  Google Scholar 

  119. Gu E, Ahmad E, Bland JAC, Brown LM, Ruhrig M, McGibbon AJ, Chapman JN (1998) Micromagnetic structures and microscopic magnetization-reversal processes in epitaxial Fe/GaAs(001) elements. Phys Rev B 57(13):78143

    Article  Google Scholar 

  120. Ahmad E, Bland JAC, Gu E (1998) Size dependence of the magnetization vector reversal processes in epitaxial Fe (001) microstripes. IEEE Trans Magn 34(4):1099

    Article  ADS  Google Scholar 

  121. Ahmad E, Lopez-Diaz L, Gu E, Bland JAC (2000) J Appl Phys 88(1):354

    Article  ADS  Google Scholar 

  122. Gu E et al (1997) Micromagnetism of epitaxial Fe(001) elements on the mesoscale. Phys Rev Lett 78:1158

    Article  ADS  Google Scholar 

  123. Hillebrands B et al (1997) Brillouin light scattering investigations of structured permalloy films. J Appl Phys 81:4993

    Article  ADS  Google Scholar 

  124. Jorzick J et al (1999) Spin-wave quantization and dynamic coupling in micron- size circular magnetic dots. Appl Phys Lett 75:3859

    Article  ADS  Google Scholar 

  125. Grimsditch M et al (1998) Magnetic anisotropies in dot arrays: shape anisotropy versus coupling. Phys Rev B 58:11539

    Article  ADS  Google Scholar 

  126. Wirth S et al (1999) Magnetism of nanometer-scale iron particles arrays. J Appl Phys 85:5249

    Article  ADS  Google Scholar 

  127. Xu YB, Hirohata A, Gardiner SM, Tselepi T, Bland JAC, Cambril E, Rousseaux F, Launois H (2001) Effects of interdot dipole coupling in mesoscopic epitaxial Fe (100) dot arrays. IEEE Trans Magn 37:2055–2057

    Article  ADS  Google Scholar 

  128. Xu YB et al (2006) Mesoscovic magnetic/semiconductor heterostructures. IEEE Trans Nanotech 5:455

    Article  ADS  Google Scholar 

  129. Fruchart O et al (1999) Enhanced coercivity in submicrometer-sized ultrathin epitaxial dots with in-plane magnetization. Phys Rev Lett 82:1305

    Article  ADS  Google Scholar 

  130. Niu DX, Zou X, Zhai Y, Huang Z, Will I, Wong PKJ, Wu J, Xu YB (2009) Reduction of in-plane uniaxial magnetic anisotropy in patterned single-crystal Fe dot arrays. IEEE Trans Magn 45(10):3507–3510

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongbing Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Xu, Y. et al. (2016). Magnetic/III-V Semiconductor Based Hybrid Structures. In: Xu, Y., Awschalom, D., Nitta, J. (eds) Handbook of Spintronics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6892-5_14

Download citation

Publish with us

Policies and ethics