Skip to main content

Mode of Action and Toxicity of Major Cyanobacterial Toxins and Corresponding Chemical Variants

  • Living reference work entry
  • First Online:
Microbial Toxins

Part of the book series: Toxinology ((TOXI))

  • 224 Accesses

Abstract

Toxic cyanobacterial blooms are often found in aquatic ecosystems, spanning from fresh to brackish waters and marine waters, and may reflect the increased eutrophication of these environments and alterations in climate. Cyanobacterial toxins (cyanotoxins) are secondary metabolites, with very different chemical structures, and highly reactive to various biological molecules. Scientists and public health and environmental agencies have recognized that contamination by cyanobacterial toxins is a global and serious environmental and health threat. Notwithstanding, it is notorious the efforts done so far from the scientific community that resulted in the isolation, purification, identification, structure elucidation of several of these groups of toxins from many ecosystems worldwide as well as the identification of respective molecular targets and biological activities. The chemical variability of cyanotoxins is a critical determinant of the biological activity leading to a need to classify the different groups but also to distinguish the several chemical variants within each group. Cyanotoxins are thus currently classified on the basis of their chemical composition and toxic activity. This chapter aims to review and summarize key information concerning this class of natural compounds produced by cyanobacteria, as perceived by the authors being critical for understanding the impact of these compounds in the environment, and thus necessary for carrying out and validating risk assessment studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aimi N, Odaka H, Sakai S. Lyngbyatoxins B and C, two new irritants from Lyngbya majuscula. J Nat Prod. 1990;53(6):1593–6.

    Article  CAS  PubMed  Google Scholar 

  • Al-Sammak MA. Occurrence and effect of algal neurotoxins in Nebraska freshwater ecosystems. Ph.D. Dissertation. University of Nebraska-Lincoln; 2012.

    Google Scholar 

  • Bagu JR, Sykes BD, Craig MM, Holmes CF. A molecular basis for different interactions of marine toxins with protein phosphatase-1. Molecular models for bound motuporin, microcystins, okadaic acid, and calyculin A. J Biol Chem. 1997;272(8):5087–97.

    Article  CAS  PubMed  Google Scholar 

  • Banack SA, Johnson HE, Cheng R, Cox PA. Production of the neurotoxin BMAA by a marine cyanobacterium. Mar Drugs. 2007;5(4):180–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banack SA, Caller TA, Stommel EW. The cyanobacteria derived toxin beta-N-methylamino-l-alanine and amyotrophic lateral sclerosis. Toxins. 2010;2(12):2837–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banker R, Teltsch B, Sukenik A, Carmeli S. 7-epicylindrospermopsin, a toxic minor metabolite of the cyanobacterium Aphanizomenon ovalisporum from lake kinneret. Isr J Nat Prod. 2000;63(3):387–9.

    Article  CAS  Google Scholar 

  • Banker R, Carmeli S, Werman M, Teltsch B, Porat R, Sukenik A. Uracil moiety is required for toxicity of the cyanobacterial hepatotoxin cylindrospermopsin. J Toxicol Environ Health A. 2001;62(4):281–8.

    Article  CAS  PubMed  Google Scholar 

  • Barik J, Wonnacott S. Indirect modulation by alpha 7 nicotinic acetylcholine receptors of noradrenaline release in rat hippocampal slices: interaction with glutamate and GABA systems and effect of nicotine withdrawal. Mol Pharmacol. 2006;69(2):618–28.

    Article  CAS  PubMed  Google Scholar 

  • Bernardová K, Babica P, Marsalek B, Bláha L. Isolation and endotoxin activities of lipopolysachharides from cyanobacterial cultures and complex water blooms and comparison with effects of heterotrophic bacteria and green algae. J Appl Toxicol. 2008;28(1):72–7.

    Article  PubMed  Google Scholar 

  • Biré R, Trotereau S, Lemée R, Oregioni D, Delpont C, Krys S, Guérin T. Hunt for palytoxins in a wide variety of marine organisms harvested in 2010 on the French Mediterranean Coast. Mar Drugs. 2015;13(8):5425–46.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cardellina JH, Marner FJ, Moore RE. Seaweed dermatitis – structure of lyngbyatoxin A. Science. 1979;204(4389):193–5.

    Article  CAS  PubMed  Google Scholar 

  • Cembella AD, Shumway SE, Larocque R. Sequestering and putative biotransformation of paralytic shellfish toxins by the sea scallop Placopecten magellanicus – seasonal and spatial scales in natural populations. J Exp Mar Biol Ecol. 1994;180(1):1–22.

    Article  CAS  Google Scholar 

  • Choi BW, Namikoshi M, Sun F, Rinehart KL, Carmichael WW, Kaup AM, Evans WR, Beasley VR. Isolation of linear peptides related to the hepatotoxins nodularin and microcystins. Tetrahedron Lett. 1993;34(49):7881–4.

    Article  CAS  Google Scholar 

  • Chorus I, Bartram J. Toxic cyanobacteria in water. A guide to their public health consequences, monitoring and management. London: E & FN Spon on behalf of the World Health Organization; 1999.

    Book  Google Scholar 

  • Ciminiello P, Dell’Aversano C, Dello I, Fattorusso E, Forino M, Tartaglione L, Battocchi C, Crinelli R, Carloni E, Magnani M, Penna A. Unique toxin profile of a mediterranean ostreopsis cf. ovata Strain: HR LC-MSn characterization of ovatoxin-f, a new palytoxin congener. Chem Res Toxicol. 2010;25(6):1243–52.

    Article  Google Scholar 

  • Ciminiello P, Dell’Aversano C, Fattorusso E, Forino M, Grauso L, Tartaglione L. A 4-decade-long (and still ongoing) hunt for palytoxins chemical architecture. Toxicon. 2011;57(3):362–7.

    Article  CAS  PubMed  Google Scholar 

  • Cook WO, Beasley VR, Dahlem AM, Dellinger JA, Harlin KS, Carmichael WW. Comparison of effects of anatoxin-a(s) and paraoxon, physostigmine and pyridostigmine on mouse brain cholinesterase activity. Toxicon. 1988;26(8):750–3.

    Article  CAS  PubMed  Google Scholar 

  • Cox PA, Banack SA, Murch SJ, Rasmussen U, Tien G, Bidigare RR, Metcalf JS, Morrison LF, Codd GA, Bergman B. Diverse taxa of cyanobacteria produce beta-N-methylamino-alanine, a neurotoxic amino acid. Proc Natl Acad Sci U S A. 2005;102(14):5074–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dawson RM. The toxicology of microcystins. Toxicon. 1998;36(7):953–62.

    Article  CAS  PubMed  Google Scholar 

  • de Silva ED, Williams DE, Andersen RJ, Klix H, Holmes CFB, Allen TM. Motuporin, a potent protein phosphatase inhibitor isolated from the Papua New Guinea sponge Theonella swinhoei Gray. Tetrahedron Lett. 1992;33(12):1561–4.

    Article  Google Scholar 

  • Devlin JP, Edwards OE, Gorham PR, Hunter NR, Pike RK, Stavric B. Anatoxin-a, a toxic alkaloid from Anabaena flos-aquae NRC-44h. Can J Chem. 1977;55(8):1367–71.

    Article  CAS  Google Scholar 

  • Dunlop RA, Cox PA, Banack SA, Rodgers KJ. The non-protein amino acid BMAA is misincorporated into human proteins in place of l-serine causing protein misfolding and aggregation. Plos One. 2013;8(9):e75376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durai P, Batool M, Choi S. Structure and effects of cyanobacterial lipopolysaccharides. Mar Drugs. 2015;13(7):4217–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards DJ, Marquez BL, Nogle LM, McPhail K, Goeger DE, Roberts MA, Gerwick WH. Structure and biosynthesis of the jamaicamides, new mixed polyketide-peptide neurotoxins from the marine cyanobacterium Lyngbya majuscule. Chem Biol. 2004;11(6):817–33.

    Article  CAS  PubMed  Google Scholar 

  • Engene N, Rottacker EC, Kaštovský J, Byrum T, Choi H, Ellisman MH, Komárek J, Gerwick WH. Moorea producens gen. nov., sp. nov. and Moorea bouillonii comb. nov., tropical marine cyanobacteria rich in bioactive secondary metabolites. Int J Syst Evol Microbiol. 2012;62(pt 5):1171–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Eriksson JE, Meriluoto JA, Kujari HP, Osterlund K, Fagerlund K, Hallbom L. Preliminary characterization of a toxin isolated from the cyanobacterium Nodularia spumigena. Toxicon. 1988;26(2):161–6.

    Article  CAS  PubMed  Google Scholar 

  • Fischer WL, Altheimer S, Cattori V, Meier PJ, Dietrich DR, Hagenbuch B. Organic anion transporting polypeptides expressed in liver and brain mediate uptake of microcystin. Toxicol Appl Pharmacol. 2005;203(3):257–63.

    Article  CAS  PubMed  Google Scholar 

  • Fischer A, Hoeger SJ, Stemmer K, Feurstein DJ, Knobeloch D, Nussler A, Dietrich DR. The role of organic anion transporting polypeptides (OATPs/SLCOs) in the toxicity of different microcystin congeners in vitro: a comparison of primary human hepatocytes and OATP-transfected HEK293 cells. Toxicol Appl Pharmacol. 2010;245(1):9–20.

    Article  CAS  PubMed  Google Scholar 

  • Froscio SM, Humpage AR, Burcham PC, Falconer IR. Cylindrospermopsin-induced protein synthesis inhibition and its dissociation from acute toxicity in mouse hepatocytes. Environ Toxicol. 2003;18(4):243–51.

    Article  CAS  PubMed  Google Scholar 

  • Funari E, Testai E. Human health risk assessment related to cyanotoxins exposure. Crit Rev Toxicol. 2008;38(2):97–125.

    Article  CAS  PubMed  Google Scholar 

  • Hall S, Strichartz G, Moczydlowski E, Ravindran A, Reichardt PB. The saxitoxins: sources, chemistry and pharmacology. In: Hall S, Reichardt PB, editors. Marine toxins. Origin structure and pharmacology. Washington, DC: American Chemical Society; 1990.

    Chapter  Google Scholar 

  • Halstead BW, Schantz EJ. Paralytic shellfish poisoning, WHO offset publication. Geneva: World Health Organization; 1994. p. 1–59.

    Google Scholar 

  • Harada K, Ogawa K, Matsuura K, Murata H, Suzuki M, Watanabe MF, Itezono Y, Nakayama N. Structural determination of geometrical isomers of microcystins LR and RR from cyanobacteria by two-dimensional NMR spectroscopic techniques. Chem Res Toxicol. 1990;3(5):473–81.

    Article  CAS  PubMed  Google Scholar 

  • Hilgemann DW. From a pump to a pore: how palytoxin opens the gates. Proc Natl Acad Sci U S A. 2003;100(2):386–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humpage AR, Fenech M, Thomas P, Falconer IR. Micronucleus induction and chromosome loss in transformed human white cells indicate clastogenic and aneugenic action of the cyanobacterial toxin cylindrospemopsin. Mutat Res. 2000;472(1–2):155–61.

    Article  CAS  PubMed  Google Scholar 

  • Hyde EG, Carmichael WW. Anatoxin-a(s), a naturally occurring organophosphate, is an irreversible active site-directed inhibitor of acetylcholinesterase (EC 3.1.1.7). J Biochem Toxicol. 1991;6(3):195–201.

    Article  CAS  PubMed  Google Scholar 

  • IARC Ingested Nitrate and Nitrite, and Cyanobacterial Peptide Toxins, IARC Monographs on the evaluation of carcinogenic risks to humans, ingested nitrate and nitrite and cyanobacterial peptide toxins, 94, Lyon, France. 2010, pp. 327–412. ISSN 1014711X. Available in: http://monographs.iarc.fr/ENG/Monographs/suppl7/suppl7.pdf.

  • Inuzuka T, Uemura D, Arimoto H. The conformational features of palytoxin in aqueous solution. Tetrahedron. 2008;64(33):7718–23.

    Article  CAS  Google Scholar 

  • Ito E, Satake M, Yasumoto T. Pathological effects of lyngbyatoxin A upon mice. Toxicon. 2002;40(5):551–6.

    Article  CAS  PubMed  Google Scholar 

  • Jeffrey AM, Liskamp RM. Computer-assisted molecular modeling of tumor promoters: rationale for the activity of phorbol esters, teleocidin B, and aplysiatoxin. Proc Natl Acad Sci U S A. 1986;83(2):241–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jonasson S, Eriksson J, Berntzon L, Spácil Z, Ilag LL, Ronnevi LO, Rasmussen U, Bergman B. Transfer of a cyanobacterial neurotoxin within a temperate aquatic ecosystem suggests pathways for human exposure. Proc Natl Acad Sci U S A. 2010;107(12):9252–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keleti G, Sykora J. Production and properties of cyanobacterial endotoxins. Appl Environ Microbiol. 1982;43(1):104–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kerbrat AS, Amzil Z, Pawlowiez R, Golubic S, Sibat M, Darius HT, Chinain M, Laurent D. First evidence of palytoxin and 42-hydroxy-palytoxin in the marine cyanobacterium Trichodesmium. Mar Drugs. 2011;9(4):543–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li WI, Berman FW, Okino T, Yokokawa F, Shioiri T, Gerwick WH, Murray TF. Antillatoxin is a marine cyanobacterial toxin that potently activates voltage-gated sodium channels. Proc Natl Acad Sci U S A. 2001;98(13):7599–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Looper RE, Runnegar MTC, Williams RM. Synthesis of the putative structure of 7-deoxycylindrospermopsin: C7 oxygenation is not required for the inhibition of protein synthesis. Angew Chem Int Ed. 2005;44(25):3879–81.

    Article  CAS  Google Scholar 

  • MacKintosh C, Beattie KA, Klumpp S, Cohen P, Codd GA. Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Lett. 1990;264(2):187–92.

    Article  CAS  PubMed  Google Scholar 

  • Mamood NA, Carmichael WW. The pharmacology of anatoxin-a(s), a neurotoxin produced by the freshwater cyanobacterium Anabaena flos-aquae NRC 525–17. Toxicon. 1986;24(5):425–34.

    Article  Google Scholar 

  • Mann S, Cohen M, Chapuis-Hugon F, Pichon V, Mazmouz R, Méjean A, Ploux O. Synthesis, configuration assignment, and simultaneous quantification by liquid chromatography coupled to tandem mass spectrometry, of dihydroanatoxin-a and dihydrohomoanatoxin-a together with the parent toxins, in axenic cyanobacterial strains and in environmental samples. Toxicon. 2012;60(8):1404–14.

    Article  CAS  PubMed  Google Scholar 

  • Matsunaga S, Moore RE, Niemczura WP, Carmichael WW. Anatoxin-a(S), a potent anticholinesterase from Anabaena-flos-aquae. J Am Chem Soc. 1989;111(20):8021–3.

    Article  CAS  Google Scholar 

  • Mazur-Marzec H, Meriluoto J, Plin’ski M, Szafranek J. Characterization of nodularin variants in Nodularia spumigena from the Baltic Sea using liquid chromatography/mass spectrometry/mass spectrometry. Rapid Commun Mass Spectrom. 2006;20(13):2023–32.

    Article  CAS  PubMed  Google Scholar 

  • Molica RJR, Oliveira EJA, Carvalho PVVC, Costa ANSF, Cunha MCC, Melo GL, Azevedo SMFO. Occurrence of saxitoxins and an anatoxin-a(s)-like anticholinesterase in a Brazilian drinking water supply. Harmful Algae. 2005;4(4):743–53.

    Article  CAS  Google Scholar 

  • Murch SJ, Cox PA, Banack SA, Steele JC, Sacks OW. Occurrence of β-methylamino-lalanine (BMAA) in ALS/PDC patients from Guam. Acta Neurol Scand. 2004;110(4):267–9.

    Article  CAS  PubMed  Google Scholar 

  • Myers TG, Nelson SD. Neuroactive carbamate adducts of β-N- methylamino-l-alanine and ethylenediamine. J Biol Chem. 1990;265(18):10193–5.

    CAS  PubMed  Google Scholar 

  • Namikoshi M, Choi BW, Sakai R, Sun F, Rinehart KL, Carmichael WW, Evans WR, Cruz P, Munro MHG, Blunt JW. New nodularins: a general method for structure assignment. J Org Chem. 1994;59(9):2349–57.

    Article  CAS  Google Scholar 

  • Nicholson BC, Shaw GR, Morrall J, Senogles PJ, Woods TA, Papageorgiou J, Kapralos C, Wickramasinghe W, Davis BC, Eaglesham GK, Moore MR. Chlorination for degrading saxitoxins (paralytic shellfish poisons) in water. Environ Technol. 2003;24(11):1341–8.

    Article  CAS  PubMed  Google Scholar 

  • Nogle LM, Okino T, Gerwick WH. Antillatoxin B, a neurotoxic lipopeptide from the marine cyanobacterium Lyngbya majuscule. J Nat Prod. 2001;64(7):983–5.

    Article  CAS  PubMed  Google Scholar 

  • Norris RL, Eaglesham GK, Pierens G, Shaw GR, Smith MJ, Chiswell RK, Seawright AA, Moore MR. Deoxycylindrospermopsin, an analog of cylindrospermopsin from Cylindrospermopsis raciborskii. Environ Toxicol. 1999;14(1):163–5.

    Article  CAS  Google Scholar 

  • O’Neal RM, Chen CH, Reynolds CS, Meghal SK, Koeppe RE. The ‘neurotoxicity’ of l-2,4-diaminobutyric acid. Biochem J. 1968;106(3):699–706.

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Neil JM, Davis TW, Burford MA, Gobler CJ. The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae. 2012;14:313–34.

    Article  Google Scholar 

  • Ohta T, Sueoka E, Iida N, Komori A, Suganuma M, Nishiwaki R, Tatematsu M, Kim SJ, Carmichael WW, Fujiki H. Nodularin, a potent inhibitor of protein phosphatases 1 and 2A, is a new environmental carcinogen in male F344 rat liver. Cancer Res. 1994;54(24):6402–6.

    CAS  PubMed  Google Scholar 

  • Orjala J, Nagle DG, Hsu V, Gerwick WH. Antillatoxin: an exceptionally ichthyotoxic cyclic lipopeptide from the tropical cyanobacterium Lyngbya majuscula. J Am Chem Soc. 1995;117(31):8281–2.

    Article  CAS  Google Scholar 

  • Osborne NJT, Webb PM, Shaw GR. The toxins of Lyngbya majuscula and their human and ecological health effects. Environ Int. 2001;27(5):381–92.

    Article  CAS  PubMed  Google Scholar 

  • Osswald J, Rellán S, Gago A, Vasconcelos V. Toxicology and detection methods of the alkaloid neurotoxin produced by cyanobacteria, anatoxin-a. Environ Int. 2007;33(8):1070–89.

    Article  CAS  PubMed  Google Scholar 

  • Poniedziałek B, Rzymski P, Wiktorowicz K. Toxicity of cylindrospermopsin in human lymphocytes: proliferation, viability and cell cycle studies. Toxicol In Vitro. 2014a;28(5):968–74.

    Article  PubMed  Google Scholar 

  • Poniedziałek B, Rzymski P, Karczewski J. Cylindrospermopsin decreases the oxidative burst capacity of human neutrophils. Toxicon. 2014b;87:113–9.

    Article  PubMed  Google Scholar 

  • Puddick J, Prinsep MR, Wood SA, Kaufononga SA, Cary SC, Hamilton DP. High levels of structural diversity observed in microcystins from microcystis CAWBG11 and characterization of six new microcystin congeners. Mar Drugs. 2014;12(11):5372–95.

    Article  PubMed  PubMed Central  Google Scholar 

  • Qi Y, Rosso L, Sedan D, Giannuzzi L, Andrinolo D, Volmer DA. Seven new microcystin variants discovered from a native Microcystis aeruginosa strain – unambiguous assignment of product ions by tandem mass spectrometry. Rapid Commun Mass Spectrom. 2015;29(2):220–4.

    Article  CAS  PubMed  Google Scholar 

  • Ramos V, Vasconcelos V. Palytoxin and analogs: biological and ecological effects. Mar Drugs. 2010;8(7):2021–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rastogi RP, Sinha RP. Biotechnological and industrial significance of cyanobacterial secondary metabolites. Biotechnol Adv. 2009;27(4):521–39.

    Article  CAS  PubMed  Google Scholar 

  • Rietschel ET, Brade L, Schade FU, Seydes U, Zahringer U, Mamat U, Schmidt G, Ulmer AJ, Loppnow H, Flad HD, Dipadova F, Schreier MH, Brade H. Bacterial endotoxins-relations between chemical constitution and biological effects. Immun Infekt. 1993;21(2):26–35.

    CAS  PubMed  Google Scholar 

  • Rinehart KL, Harada K, Namikoshi M, Chen C, Harvis CA, Munro MHG, Blunt JW, Mulligan PE, Beasley VR, Dahlem AM, Carmicheal WW. Nodularin, microcystin, and the configuration of Adda. J Am Chem Soc. 1988;110(25):8557–8.

    Article  CAS  Google Scholar 

  • Rinehart KL, Namikoshi M, Choi BW. Structure and biosynthesis of toxins from blue-green algae (cyanobacteria). J Appl Phycol. 1994;6(2):159–76.

    Article  CAS  Google Scholar 

  • Rosen J, Hellenäs KE. Determination of the neurotoxin BMAA (β-N-methylamino-l-alanine) in cycad seed and cyanobacteria by LC-MS/MS (liquid chromatography tandem mass spectrometry). Analyst. 2008;133(12):1785–9.

    Article  CAS  PubMed  Google Scholar 

  • Rossini JP, Bigiani A. Palytoxin action on the Na+, K+ −ATPase and the disruption of ion equilibria in biological systems. Toxicon. 2011;57(3):429–39.

    Article  CAS  PubMed  Google Scholar 

  • Rossini GP, Hess P. Phycotoxins: chemistry, mechanisms of action and shellfish poisoning. EXS. 2010;100:65–122.

    CAS  PubMed  Google Scholar 

  • Runnegar MT, Kong SM, Zhong YZ, Lu SC. Inhibition of reduced glutathione synthesis by cyanobacterial alkaloid cylindrospermopsin in cultured rat hepatocytes. Biochem Pharmacol. 1995;49(2):219–25.

    Article  CAS  PubMed  Google Scholar 

  • Runnegar MT, Xie C, Snider BB, Wallace GA, Weinreb SM, Kuhlenkamp J. In vitro hepatotoxicity of the cyanobacterial alkaloid cylindrospermopsin and related synthetic analogues. Toxicol Sci. 2002;67(1):81–7.

    Article  CAS  PubMed  Google Scholar 

  • Rzymsk P, Poniedziałek B. In search of environmental role of cylindrospermopsin: a review on global distribution and ecology of its producers. Water Res. 2014;66:320–37.

    Article  Google Scholar 

  • Saito K, Konno A, Ishii H, Saito H, Nishida F, Abe T, Chen CY. Nodularin-Har: a new nodularin from Nodularia. J Nat Prod. 2001;64(1):139–41.

    Article  CAS  PubMed  Google Scholar 

  • Shimizu Y. Toxigenesis and biosynthesis of saxitoxin analogues. Pure Appl Chem. 1986;58(2):257–962.

    Article  CAS  Google Scholar 

  • Shimizu Y. Microalgal metabolites: a new perspective. Annu Rev Microbiol. 1996;50:431–65.

    Article  CAS  PubMed  Google Scholar 

  • Shimizu Y, Hsu CP, Genenah A. Structure of saxitoxin in solutions and stereochemistry of dihydrosaxitoxins. J Am Chem Soc. 1981;103(3):605–9.

    Article  CAS  Google Scholar 

  • Snyder DS, Brahamsha B, Azadi P, Palenik B. Structure of compositionally simple lipopolysaccharide from marine synechococcus. J Bacteriol. 2009;191(17):5499–509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevens DK, Krieger RI. Stability studies on the cyanobacterial nicotinic alkaloid anatoxin-a. Toxicon. 1991;29(2):167–79.

    Article  CAS  PubMed  Google Scholar 

  • Stewart I, Schluter P, Shaw G. Cyanobacterial lipopolysaccharides and human health – a review. Environ Health. 2006;5:7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Strichartz G. Structural determinants of the affinity of saxitoxin for neuronal sodium channels. J Gen Physiol. 1984;84(2):281–305.

    Article  CAS  PubMed  Google Scholar 

  • Su Z, Sheets M, Ishida H, Li F, Barry WH. Saxitoxin blocks L-type ICa. J Pharmacol Exp Ther. 2004;308(1):324–9.

    Article  CAS  PubMed  Google Scholar 

  • Taylor MS, Stahl-Timmins W, Clare H, Redshaw CH, Osborne NJT. Toxic alkaloids in Lyngbya majuscula and related tropical marine cyanobacteria. Harmful Algae. 2014;31:1–8.

    Article  CAS  Google Scholar 

  • Tubaro A, Del Favero G, Beltramo D, Ardizzone M, Forino M, De Bortoli M, Pelin M, Poli M, Bignami G, Ciminiello P, Sosa S. Acute oral toxicity in mice of a new palytoxin analog: 42-hydroxy-palytoxin. Toxicon. 2011;57(5):755–63.

    Article  CAS  PubMed  Google Scholar 

  • Viaggiu E, Melchiorre S, Volpi F, Di Corcia A, Mancini R, Garibaldi L, Crichigno G, Bruno M. Anatoxin-a toxin in the cyanobacterium Planktothrix rubescens from a fishing pond in northern Italy. Environ Toxicol. 2004;19(3):191–7.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe MF, Oishi S, Harda K, Matsuura K, Kawai H, Suzuki M. Toxins contained in Microcystis species of cyanobacteria (blue-green algae). Toxicon. 1988;26(11):1017–25.

    Article  CAS  PubMed  Google Scholar 

  • Wiegand C, Pflugmacher S. Ecotoxicological effects of selected cyanobacterial secondary metabolites a short review. Toxicol Appl Pharmacol. 2005;203(3):201–18.

    Article  CAS  PubMed  Google Scholar 

  • Wimmer KM, Strangman WK, Wright JLC. 7-Deoxy-desulfo-cylindrospermopsin and 7-deoxy-desulfo-12-acetylcylindrospermopsin: Two new cylindrospermopsin analogs isolated from a Thai strain of Cylindrospermopsis raciborskii. Harmful Algae. 2014;37:203–6.

    Article  CAS  Google Scholar 

  • Wolf HU, Frank C. Toxicity assessment of cyanobacterial toxin mixtures. Environ Toxicol. 2002;17(4):395–9.

    Article  CAS  PubMed  Google Scholar 

  • Wonnacott S, Gallagher T. The chemistry and pharmacology of anatoxin-a and related homotropanes with respect to nicotinic acetylcholine receptors. Mar Drugs. 2006;4(3):228–54.

    Article  CAS  PubMed Central  Google Scholar 

  • Wonnacott S, Swanson KL, Albuquerque EX, Huby NJ, Thompson P, Gallagher T. Homoanatoxin: a potent analogue of anatoxin-A. Biochem Pharmacol. 1992;43(3):419–23.

    Article  CAS  PubMed  Google Scholar 

  • Yoshizawa S, Matsushima R, Watanabe MF, Harada K, Ichihara A, Carmichael WW, Fujiki H. Inhibition of protein phosphatases by microcystins and nodularin associated with hepatotoxicity. J Cancer Res Clin Oncol. 1990;116(6):609–14.

    Article  CAS  PubMed  Google Scholar 

  • Zanchet G, Oliveira-Filho EC. Cyanobacteria and cyanotoxins: from impacts on aquatic ecosystems and human health to anticarcinogenic effects. Toxins. 2013;5(10):1896–917.

    Article  Google Scholar 

  • Zegura B, Straser A, Filipič M. Genotoxicity and potential carcinogenicity of cyanobacterial toxins – a review. Mutat Res. 2011;727(1–2):16–41.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was partially supported by the European Regional Development Fund (ERDF) through the COMPETE-Operational Competitiveness Programme and national funds through FCT – Foundation for Science and Technology under the project UID/Multi/04423/2013. This research was also supported by the project NOVELMAR (reference NORTE-01-0145-FEDER-000035), co-financed by the North Portugal Regional Operational Programme (Norte 2020) under the National Strategic Reference Framework (NSRF), through the ERDF. A. Campos work is supported by a post-doctoral grant (SFRH/BPD/103683/2014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joana Machado , Joana Azevedo , Vitor Vasconcelos or Alexandre Campos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Machado, J., Azevedo, J., Vasconcelos, V., Campos, A. (2016). Mode of Action and Toxicity of Major Cyanobacterial Toxins and Corresponding Chemical Variants. In: Gopalakrishnakone, P., Stiles, B., Alape-Girón, A., Dubreuil, J., Mandal, M. (eds) Microbial Toxins. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6725-6_30-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6725-6_30-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6725-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics