Skip to main content

RTX Toxins: A Review

  • Living reference work entry
  • First Online:

Part of the book series: Toxinology ((TOXI))

Abstract

Repeats-in-toxin (RTX) exoproteins of Gram-negative bacteria form a steadily growing family of proteins with diverse biological functions. All the diverse RTX toxins share two common features: (i) they are secreted by a single-step export mechanism via the type I secretion system that employs a “channel–tunnel” conduit spanning across the entire Gram-negative bacterial envelope, thus connecting bacterial cytoplasm to extracellular environment; (ii) RTX toxins possess the characteristic glycine- and aspartate-rich repeats that bind numerous calcium ions, typically in the carboxy-terminal portions of the molecule, with the large multifunctional autoprocessing RTX (MARTX) toxins bearing similar repeats also as N-terminal segments. RTX toxins further require physiologically high (>1 mM) Ca2+ concentration for proper folding and biological activity on host epithelial or phagocytic cells. Members of the RTX family of toxins act as effective “contact weapons” and have been shown to play a major role in virulence of a broad range of Gram-negative pathogens.

The classical RTX toxins, originally classified as leukotoxins and hemolysins, were shown to penetrate and permeabilize host cell membranes. Research over the past decade, however, revealed that RTX toxins can exert numerous additional activities contributing to cytotoxic action in pathogenesis and virulence of bacterial infections. Some of the RTX toxins affect host cell signaling via uncontrolled conversion of ATP to a key signaling molecule, cAMP (CyaA, MARTXVc), or via interaction with small GTPases (MARTXVc, MARTXVv) and thus effectively subvert host cell physiology. Other RTX toxins induce cytoskeletal rearrangements via covalent cross-linking of actin molecules (MARTXVc, MARTXVv), or inflict an apoptotic/lytic program on target phagocytic or epithelial cells (HlyA, CyaA, MARTXVv), thereby promoting disease pathogenesis.

This is a preview of subscription content, log in via an institution.

References

  • Aberg CH, Kelk P, Johansson A. Aggregatibacter actinomycetemcomitans: virulence of its leukotoxin and association with aggressive periodontitis. Virulence. 2015;6:188–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Adkins I, Holubova J, Kosova M, et al. Bacteria and their toxins tamed for immunotherapy. Curr Pharm Biotechnol. 2012;13:1446–73.

    Article  CAS  PubMed  Google Scholar 

  • Aldick T, Bielaszewska M, Zhang W, et al. Hemolysin from Shiga toxin-negative Escherichia coli O26 strains injures microvascular endothelium. Microbes Infect. 2007;9:282–90.

    Article  CAS  PubMed  Google Scholar 

  • Aldick T, Bielaszewska M, Uhlin BE, et al. Vesicular stabilization and activity augmentation of enterohaemorrhagic Escherichia coli haemolysin. Mol Microbiol. 2009;71:1496–508.

    Article  CAS  PubMed  Google Scholar 

  • Ambagala TC, Ambagala AP, Srikumaran S. The leukotoxin of Pasteurella haemolytica binds to beta(2) integrins on bovine leukocytes. FEMS Microbiol Lett. 1999;179:161–7.

    CAS  PubMed  Google Scholar 

  • Andersen C, Hughes C, Koronakis V. Protein export and drug efflux through bacterial channel-tunnels. Curr Opin Cell Biol. 2001;13:412–6.

    Article  CAS  PubMed  Google Scholar 

  • Angelos JA, Hess JF, George LW. An RTX operon in hemolytic Moraxella bovis is absent from nonhemolytic strains. Vet Microbiol. 2003;92:363–77.

    Article  CAS  PubMed  Google Scholar 

  • Antic I, Biancucci M, Zhu Y, et al. Site-specific processing of Ras and Rap1 Switch I by a MARTX toxin effector domain. Nat Commun. 2015;6:7396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakas L, Ostolaza H, Vaz WL, et al. Reversible adsorption and nonreversible insertion of Escherichia coli alpha-hemolysin into lipid bilayers. Biophys J. 1996;71:1869–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balashova NV, Shah C, Patel JK, et al. Aggregatibacter actinomycetemcomitans LtxC is required for leukotoxin activity and initial interaction between toxin and host cells. Gene. 2009;443:42–7.

    Article  CAS  PubMed  Google Scholar 

  • Barry EM, Weiss AA, Ehrmann IE, et al. Bordetella pertussis adenylate cyclase toxin and hemolytic activities require a second gene, cyaC, for activation. J Bacteriol. 1991;173:720–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Basar T, Havlicek V, Bezouskova S, et al. Acylation of lysine 983 is sufficient for toxin activity of Bordetella pertussis adenylate cyclase. Substitutions of alanine 140 modulate acylation site selectivity of the toxin acyltransferase CyaC. J Biol Chem. 2001;276:348–54.

    Article  CAS  PubMed  Google Scholar 

  • Basler M, Knapp O, Masin J, et al. Segments crucial for membrane translocation and pore-forming activity of Bordetella adenylate cyclase toxin. J Biol Chem. 2007;282:12419–29.

    Article  CAS  PubMed  Google Scholar 

  • Bauche C, Chenal A, Knapp O, et al. Structural and functional characterization of an essential RTX subdomain of Bordetella pertussis adenylate cyclase toxin. J Biol Chem. 2006;281:16914–26.

    Article  CAS  PubMed  Google Scholar 

  • Bauer ME, Welch RA. Association of RTX toxins with erythrocytes. Infect Immun. 1996a;64:4665–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer ME, Welch RA. Characterization of an RTX toxin from enterohemorrhagic Escherichia coli O157:H7. Infect Immun. 1996b;64:167–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baumann U. Crystal structure of the 50 kDa metallo protease from Serratia marcescens. J Mol Biol. 1994;242:244–51.

    Article  CAS  PubMed  Google Scholar 

  • Baumann U, Wu S, Flaherty KM, et al. Three-dimensional structure of the alkaline protease of Pseudomonas aeruginosa: a two-domain protein with a calcium binding parallel beta roll motif. EMBO J. 1993;12:3357–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beard MK, Moore LJ. Reproduction of bovine keratoconjunctivitis with a purified haemolytic and cytotoxic fraction of Moraxella bovis. Vet Microbiol. 1994;42:15–33.

    Article  CAS  PubMed  Google Scholar 

  • Bejerano M, Nisan I, Ludwig A, et al. Characterization of the C-terminal domain essential for toxic activity of adenylate cyclase toxin. Mol Microbiol. 1999;31:381–92.

    Article  CAS  PubMed  Google Scholar 

  • Bellalou J, Sakamoto H, Ladant D, et al. Deletions affecting hemolytic and toxin activities of Bordetella pertussis adenylate cyclase. Infect Immun. 1990;58:3242–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Benz R, Schmid A, Wagner W, et al. Pore formation by the Escherichia coli hemolysin: evidence for an association-dissociation equilibrium of the pore-forming aggregates. Infect Immun. 1989;57:887–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Benz R, Hardie KR, Hughes C. Pore formation in artificial membranes by the secreted hemolysins of Proteus vulgaris and Morganella morganii. Eur J Biochem. 1994;220:339–47.

    Article  CAS  PubMed  Google Scholar 

  • Benz R, Maier E, Bauer S, et al. The deletion of several amino acid stretches of Escherichia coli alpha-hemolysin (HlyA) suggests that the channel-forming domain contains beta-strands. PLoS One. 2014;9:e112248.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Berthoud H, Frey J, Kuhnert P. Characterization of Aqx and its operon: the hemolytic RTX determinant of Actinobacillus equuli. Vet Microbiol. 2002;87:159–74.

    Article  CAS  PubMed  Google Scholar 

  • Bhakdi S, Martin E. Superoxide generation by human neutrophils induced by low doses of Escherichia coli hemolysin. Infect Immun. 1991;59:2955–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhakdi S, Mackman N, Nicaud JM, et al. Escherichia coli hemolysin may damage target cell membranes by generating transmembrane pores. Infect Immun. 1986;52:63–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhakdi S, Greulich S, Muhly M, et al. Potent leukocidal action of Escherichia coli hemolysin mediated by permeabilization of target cell membranes. J Exp Med. 1989;169:737–54.

    Article  CAS  PubMed  Google Scholar 

  • Bhakdi S, Muhly M, Korom S, et al. Effects of Escherichia coli hemolysin on human monocytes. Cytocidal action and stimulation of interleukin 1 release. J Clin Invest. 1990;85:1746–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bielaszewska M, Ruter C, Kunsmann L, et al. Enterohemorrhagic Escherichia coli hemolysin employs outer membrane vesicles to target mitochondria and cause endothelial and epithelial apoptosis. PLoS Pathog. 2013;9:e1003797.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boardman BK, Satchell KJ. Vibrio cholerae strains with mutations in an atypical type I secretion system accumulate RTX toxin intracellularly. J Bacteriol. 2004;186:8137–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boardman BK, Meehan BM, Fullner Satchell KJ. Growth phase regulation of Vibrio cholerae RTX toxin export. J Bacteriol. 2007;189:1827–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown MH, Brightman AH, Fenwick BW, et al. Infectious bovine keratoconjunctivitis: a review. J Vet Intern Med. 1998;12:259–66.

    Article  CAS  PubMed  Google Scholar 

  • Bumba L, Masin J, Fiser R, et al. Bordetella adenylate cyclase toxin mobilizes its beta2 integrin receptor into lipid rafts to accomplish translocation across target cell membrane in two steps. PLoS Pathog. 2010;6:e1000901.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bumba L, Masin J, Macek P, Wald T, Motlova L, Bibova I, Klimova N, Bednarova L, Veverka V, Kachala M, Svergun DI, Barinka C, Sebo P. Calcium-Driven folding of RTX domain β-rolls ratchets translocation of RTX proteins through Type I secretion ducts. Mol Cell. 2016;62(1):47–62.

    Article  CAS  PubMed  Google Scholar 

  • Cavalieri SJ, Snyder IS. Effect of Escherichia coli alpha-hemolysin on human peripheral leukocyte function in vitro. Infect Immun. 1982;37:966–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cerny O, Kamanova J, Masin J, et al. Bordetella pertussis adenylate cyclase toxin blocks induction of bactericidal nitric oxide in macrophages through cAMP-dependent activation of the SHP-1 phosphatase. J Immunol. 2015;194:4901–13.

    Article  CAS  PubMed  Google Scholar 

  • Chang YF, Young R, Struck DK. Cloning and characterization of a hemolysin gene from Actinobacillus (Haemophilus) pleuropneumoniae. DNA. 1989;8:635–47.

    Article  CAS  PubMed  Google Scholar 

  • Chenal A, Guijarro JI, Raynal B, et al. RTX calcium binding motifs are intrinsically disordered in the absence of calcium: implication for protein secretion. J Biol Chem. 2009;284:1781–9.

    Article  CAS  PubMed  Google Scholar 

  • Chenal A, Karst JC, Sotomayor Perez AC, et al. Calcium-induced folding and stabilization of the intrinsically disordered RTX domain of the CyaA toxin. Biophys J. 2010;99:3744–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheong TG, Chan M, Kurunathan S, et al. Construction and characterization of rtxA and rtxC mutants of auxotrophic O139 Vibrio cholerae. Microb Pathog. 2010;48:85–90.

    Article  CAS  PubMed  Google Scholar 

  • Chiers K, De Waele T, Pasmans F, et al. Virulence factors of Actinobacillus pleuropneumoniae involved in colonization, persistence and induction of lesions in its porcine host. Vet Res. 2010;41:65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cho WS, Chae C. Expression of the apxIV gene in pigs naturally infected with Actinobacillus pleuropneumoniae. J Comp Pathol. 2001;125:34–40.

    Article  CAS  PubMed  Google Scholar 

  • Chow KH, Ng TK, Yuen KY, et al. Detection of RTX toxin gene in Vibrio cholerae by PCR. J Clin Microbiol. 2001;39:2594–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claesson R, Johansson A, Belibasakis G, et al. Release and activation of matrix metalloproteinase 8 from human neutrophils triggered by the leukotoxin of Actinobacillus actinomycetemcomitans. J Periodontal Res. 2002;37:353–9.

    Article  CAS  PubMed  Google Scholar 

  • Confer DL, Eaton JW. Phagocyte impotence caused by an invasive bacterial adenylate cyclase. Science. 1982;217:948–50.

    Article  CAS  PubMed  Google Scholar 

  • Coote JG. Structural and functional relationships among the RTX toxin determinants of gram-negative bacteria. FEMS Microbiol Rev. 1992;8:137–61.

    Article  CAS  PubMed  Google Scholar 

  • Cortajarena AL, Goni FM, Ostolaza H. Glycophorin as a receptor for Escherichia coli alpha-hemolysin in erythrocytes. J Biol Chem. 2001;276:12513–9.

    Article  CAS  PubMed  Google Scholar 

  • Cortajarena AL, Goni FM, Ostolaza H. A receptor-binding region in Escherichia coli alpha-haemolysin. J Biol Chem. 2003;278:19159–63.

    Article  CAS  PubMed  Google Scholar 

  • Czuprynski CJ, Welch RA. Biological effects of RTX toxins: the possible role of lipopolysaccharide. Trends Microbiol. 1995;3:480–3.

    Article  CAS  PubMed  Google Scholar 

  • Delepelaire P. Type I, secretion in gram-negative bacteria. Biochim Biophys Acta. 2004;1694:149–61.

    Article  CAS  PubMed  Google Scholar 

  • Dhakal BK, Mulvey MA. The UPEC pore-forming toxin alpha-hemolysin triggers proteolysis of host proteins to disrupt cell adhesion, inflammatory, and survival pathways. Cell Host Microbe. 2012;11:58–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DiFranco KM, Johnson-Farley N, Bertino JR, et al. LFA-1-targeting Leukotoxin (LtxA; Leukothera(R)) causes lymphoma tumor regression in a humanized mouse model and requires caspase-8 and Fas to kill malignant lymphocytes. Leuk Res. 2015;39:649–56.

    Article  CAS  PubMed  Google Scholar 

  • Dileepan T, Thumbikat P, Walcheck B, et al. Recombinant expression of bovine LFA-1 and characterization of its role as a receptor for Mannheimia haemolytica leukotoxin. Microb Pathog. 2005;38:249–57.

    Article  CAS  PubMed  Google Scholar 

  • Dileepan T, Kannan MS, Walcheck B, et al. Integrin-EGF-3 domain of bovine CD18 is critical for Mannheimia haemolytica leukotoxin species-specific susceptibility. FEMS Microbiol Lett. 2007;274:67–72.

    Article  CAS  PubMed  Google Scholar 

  • Dinh T, Paulsen IT, Saier Jr MH. A family of extracytoplasmic proteins that allow transport of large molecules across the outer membranes of gram-negative bacteria. J Bacteriol. 1994;176:3825–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dolores JS, Agarwal S, Egerer M, et al. Vibrio cholerae MARTX toxin heterologous translocation of beta-lactamase and roles of individual effector domains on cytoskeleton dynamics. Mol Microbiol. 2015;95:590–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dowling AJ, Daborn PJ, Waterfield NR, et al. The insecticidal toxin makes caterpillars floppy (Mcf) promotes apoptosis in mammalian cells. Cell Microbiol. 2004;6:345–53.

    Article  CAS  PubMed  Google Scholar 

  • Dowling AJ, Waterfield NR, Hares MC, et al. The Mcf1 toxin induces apoptosis via the mitochondrial pathway and apoptosis is attenuated by mutation of the BH3-like domain. Cell Microbiol. 2007;9:2470–84.

    Article  CAS  PubMed  Google Scholar 

  • Eby JC, Gray MC, Hewlett EL. Cyclic AMP-mediated suppression of neutrophil extracellular trap formation and apoptosis by the Bordetella pertussis adenylate cyclase toxin. Infect Immun. 2014;82:5256–69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • El-Azami-El-Idrissi M, Bauche C, Loucka J, et al. Interaction of Bordetella pertussis adenylate cyclase with CD11b/CD18: role of toxin acylation and identification of the main integrin interaction domain. J Biol Chem. 2003;278:38514–21.

    Article  CAS  PubMed  Google Scholar 

  • Fan JJ, Shao CP, Ho YC, et al. Isolation and characterization of a Vibrio vulnificus mutant deficient in both extracellular metalloprotease and cytolysin. Infect Immun. 2001;69:5943–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiser R, Masin J, Basler M, et al. Third activity of Bordetella adenylate cyclase (AC) toxin-hemolysin. Membrane translocation of AC domain polypeptide promotes calcium influx into CD11b + monocytes independently of the catalytic and hemolytic activities. J Biol Chem. 2007;282:2808–20.

    Article  CAS  PubMed  Google Scholar 

  • Fiser R, Masin J, Bumba L, et al. Calcium influx rescues adenylate cyclase-hemolysin from rapid cell membrane removal and enables phagocyte permeabilization by toxin pores. PLoS Pathog. 2012;8:e1002580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fong KP, Pacheco CM, Otis LL, et al. Actinobacillus actinomycetemcomitans leukotoxin requires lipid microdomains for target cell cytotoxicity. Cell Microbiol. 2006;8:1753–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forestier C, Welch RA. Identification of RTX toxin target cell specificity domains by use of hybrid genes. Infect Immun. 1991;59:4212–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frey J, Kuhnert P. RTX toxins in Pasteurellaceae. Int J Med Microbiol. 2002;292:149–58.

    Article  CAS  PubMed  Google Scholar 

  • Frey J, Nicolet J. Hemolysin patterns of Actinobacillus pleuropneumoniae. J Clin Microbiol. 1990;28:232–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frey J, Kuhn R, Nicolet J. Association of the CAMP phenomenon in Actinobacillus pleuropneumoniae with the RTX toxins ApxI, ApxII and ApxIII. FEMS Microbiol Lett. 1994;124:245–51.

    Article  CAS  PubMed  Google Scholar 

  • Fullner KJ, Mekalanos JJ. In vivo covalent cross-linking of cellular actin by the Vibrio cholerae RTX toxin. EMBO J. 2000;19:5315–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gadeberg OV, Orskov I. In vitro cytotoxic effect of alpha-hemolytic Escherichia coli on human blood granulocytes. Infect Immun. 1984;45:255–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gentschev I, Hess J, Goebel W. Change in the cellular localization of alkaline phosphatase by alteration of its carboxy-terminal sequence. Mol Gen Genet. 1990;222:211–6.

    Article  CAS  PubMed  Google Scholar 

  • Glaser P, Ladant D, Sezer O, et al. The calmodulin-sensitive adenylate cyclase of Bordetella pertussis: cloning and expression in Escherichia coli. Mol Microbiol. 1988a;2:19–30.

    Article  CAS  PubMed  Google Scholar 

  • Glaser P, Sakamoto H, Bellalou J, et al. Secretion of cyclolysin, the calmodulin-sensitive adenylate cyclase-haemolysin bifunctional protein of Bordetella pertussis. EMBO J. 1988b;7:3997–4004.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goebel W, Hedgpeth J. Cloning and functional characterization of the plasmid-encoded hemolysin determinant of Escherichia coli. J Bacteriol. 1982;151:1290–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gordon VM, Leppla SH, Hewlett EL. Inhibitors of receptor-mediated endocytosis block the entry of Bacillus anthracis adenylate cyclase toxin but not that of Bordetella pertussis adenylate cyclase toxin. Infect Immun. 1988;56:1066–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gray M, Szabo G, Otero AS, et al. Distinct mechanisms for K+ efflux, intoxication, and hemolysis by Bordetella pertussis AC toxin. J Biol Chem. 1998;273:18260–7.

    Article  CAS  PubMed  Google Scholar 

  • Greene NP, Crow A, Hughes C, et al. Structure of a bacterial toxin-activating acyltransferase. Proc Natl Acad Sci U S A. 2015;112:E3058–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimminger F, Walmrath D, Birkemeyer RG, et al. Leukotriene and hydroxyeicosatetraenoic acid generation elicited by low doses of Escherichia coli hemolysin in rabbit lungs. Infect Immun. 1990;58:2659–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guermonprez P, Khelef N, Blouin E, et al. The adenylate cyclase toxin of Bordetella pertussis binds to target cells via the alpha(M)beta(2) integrin (CD11b/CD18). J Exp Med. 2001;193:1035–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Q, Shen Y, Lee YS, et al. Structural basis for the interaction of Bordetella pertussis adenylyl cyclase toxin with calmodulin. EMBO J. 2005;24:3190–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hackett M, Guo L, Shabanowitz J, et al. Internal lysine palmitoylation in adenylate cyclase toxin from Bordetella pertussis. Science. 1994;266:433–5.

    Article  CAS  PubMed  Google Scholar 

  • Hackett M, Walker CB, Guo L, et al. Hemolytic, but not cell-invasive activity, of adenylate cyclase toxin is selectively affected by differential fatty-acylation in Escherichia coli. J Biol Chem. 1995;270:20250–3.

    Article  CAS  PubMed  Google Scholar 

  • Hamada K, Hata Y, Katsuya Y, et al. Crystal structure of Serratia protease, a zinc-dependent proteinase from Serratia sp. E-15, containing a beta-sheet coil motif at 2.0 a resolution. J Biochem. 1996;119:844–51.

    Article  CAS  PubMed  Google Scholar 

  • Hanski E, Farfel Z. Bordetella pertussis invasive adenylate cyclase. Partial resolution and properties of its cellular penetration. J Biol Chem. 1985;260:5526–32.

    CAS  PubMed  Google Scholar 

  • Hasan S, Osickova A, Bumba L, et al. Interaction of Bordetella adenylate cyclase toxin with complement receptor 3 involves multivalent glycan binding. FEBS Lett. 2015;589:374–9.

    Article  CAS  PubMed  Google Scholar 

  • Haubek D. The highly leukotoxic JP2 clone of Aggregatibacter actinomycetemcomitans: evolutionary aspects, epidemiology and etiological role in aggressive periodontitis. APMIS Suppl. 2010;118:1–53.

    Article  CAS  Google Scholar 

  • Herlax V, Mate S, Rimoldi O, et al. Relevance of fatty acid covalently bound to Escherichia coli alpha-hemolysin and membrane microdomains in the oligomerization process. J Biol Chem. 2009;284:25199–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hewlett EL, Gray L, Allietta M, et al. Adenylate cyclase toxin from Bordetella pertussis. Conformational change associated with toxin activity. J Biol Chem. 1991;266:17503–8.

    CAS  PubMed  Google Scholar 

  • Higgins CF. ABC transporters: from microorganisms to man. Annu Rev Cell Biol. 1992;8:67–113.

    Article  CAS  PubMed  Google Scholar 

  • Highlander SK. Molecular genetic analysis of virulence in Mannheimia (Pasteurella) haemolytica. Front Biosci. 2001;6:D1128–50.

    CAS  PubMed  Google Scholar 

  • Holubova J, Kamanova J, Jelinek J, et al. Delivery of large heterologous polypeptides across the cytoplasmic membrane of antigen-presenting cells by the Bordetella RTX hemolysin moiety lacking the adenylyl cyclase domain. Infect Immun. 2012;80:1181–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyland C, Vuillard L, Hughes C, et al. Membrane interaction of Escherichia coli hemolysin: flotation and insertion-dependent labeling by phospholipid vesicles. J Bacteriol. 2001;183:5364–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Issartel JP, Koronakis V, Hughes C. Activation of Escherichia coli prohaemolysin to the mature toxin by acyl carrier protein-dependent fatty acylation. Nature. 1991;351:759–61.

    Article  CAS  PubMed  Google Scholar 

  • Iwaki M, Ullmann A, Sebo P. Identification by in vitro complementation of regions required for cell-invasive activity of Bordetella pertussis adenylate cyclase toxin. Mol Microbiol. 1995;17:1015–24.

    Article  CAS  PubMed  Google Scholar 

  • Jeyaseelan S, Sreevatsan S, Maheswaran SK. Role of Mannheimia haemolytica leukotoxin in the pathogenesis of bovine pneumonic pasteurellosis. Anim Health Res Rev. 2002;3:69–82.

    Article  CAS  PubMed  Google Scholar 

  • Johansson A. Aggregatibacter actinomycetemcomitans leukotoxin: a powerful tool with capacity to cause imbalance in the host inflammatory response. Toxins (Basel). 2011;3:242–59.

    Article  CAS  Google Scholar 

  • Kachlany SC, Schwartz AB, Balashova NV, et al. Anti-leukemia activity of a bacterial toxin with natural specificity for LFA-1 on white blood cells. Leuk Res. 2009;34:777–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kagonyera GM, George LW, Munn R. Cytopathic effects of Moraxella bovis on cultured bovine neutrophils and corneal epithelial cells. Am J Vet Res. 1989;50:10–7.

    CAS  PubMed  Google Scholar 

  • Kamanova J, Kofronova O, Masin J, et al. Adenylate cyclase toxin subverts phagocyte function by RhoA inhibition and unproductive ruffling. J Immunol. 2008;181:5587–97.

    Article  CAS  PubMed  Google Scholar 

  • Kamitani S, Kitadokoro K, Miyazawa M, et al. Characterization of the membrane-targeting C1 domain in Pasteurella multocida toxin. J Biol Chem. 2010;285:25467–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamp EM, Popma JK, Anakotta J, et al. Identification of hemolytic and cytotoxic proteins of Actinobacillus pleuropneumoniae by use of monoclonal antibodies. Infect Immun. 1991;59:3079–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karch H, Tarr PI, Bielaszewska M. Enterohaemorrhagic Escherichia coli in human medicine. Int J Med Microbiol. 2005;295:405–18.

    Article  CAS  PubMed  Google Scholar 

  • Keane WF, Welch R, Gekker G, et al. Mechanism of Escherichia coli alpha-hemolysin-induced injury to isolated renal tubular cells. Am J Pathol. 1987;126:350–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kieba IR, Fong KP, Tang HY, et al. Aggregatibacter actinomycetemcomitans leukotoxin requires beta-sheets 1 and 2 of the human CD11a beta-propeller for cytotoxicity. Cell Microbiol. 2007;9:2689–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim BS, Gavin HE, Satchell KJ. Distinct roles of the repeat-containing regions and effector domains of the Vibrio vulnificus multifunctional-autoprocessing repeats-in-toxin (MARTX) toxin. MBio. 2015;6:e00324.

    PubMed  PubMed Central  Google Scholar 

  • Kloft N, Busch T, Neukirch C, et al. Pore-forming toxins activate MAPK p38 by causing loss of cellular potassium. Biochem Biophys Res Commun. 2009;385:503–6.

    Article  CAS  PubMed  Google Scholar 

  • Koronakis V, Cross M, Senior B, et al. The secreted hemolysins of Proteus mirabilis, Proteus vulgaris, and Morganella morganii are genetically related to each other and to the alpha-hemolysin of Escherichia coli. J Bacteriol. 1987;169:1509–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koronakis V, Hughes C, Koronakis E. Energetically distinct early and late stages of HlyB/HlyD-dependent secretion across both Escherichia coli membranes. EMBO J. 1991;10:3263–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koronakis V, Hughes C, Koronakis E. ATPase activity and ATP/ADP-induced conformational change in the soluble domain of the bacterial protein translocator HlyB. Mol Microbiol. 1993;8:1163–75.

    Article  CAS  PubMed  Google Scholar 

  • Koronakis E, Hughes C, Milisav I, et al. Protein exporter function and in vitro ATPase activity are correlated in ABC-domain mutants of HlyB. Mol Microbiol. 1995;16:87–96.

    Article  CAS  PubMed  Google Scholar 

  • Koronakis V, Eswaran J, Hughes C. Structure and function of TolC: the bacterial exit duct for proteins and drugs. Annu Rev Biochem. 2004;73:467–89.

    Article  CAS  PubMed  Google Scholar 

  • Koschinski A, Repp H, Unver B, et al. Why Escherichia coli alpha-hemolysin induces calcium oscillations in mammalian cells – the pore is on its own. FASEB J. 2006;20:973–5.

    Article  CAS  PubMed  Google Scholar 

  • Kudryashov DS, Durer ZA, Ytterberg AJ, et al. Connecting actin monomers by iso-peptide bond is a toxicity mechanism of the Vibrio cholerae MARTX toxin. Proc Natl Acad Sci U S A. 2008;105:18537–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kudryashova E, Heisler D, Zywiec A, et al. Thermodynamic properties of the effector domains of MARTX toxins suggest their unfolding for translocation across the host membrane. Mol Microbiol. 2014;92:1056–71.

    Article  CAS  PubMed  Google Scholar 

  • Kuhnert P, Heyberger-Meyer B, Nicolet J, et al. Characterization of PaxA and its operon: a cohemolytic RTX toxin determinant from pathogenic Pasteurella aerogenes. Infect Immun. 2000;68:6–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lally ET, Kieba IR, Sato A, et al. RTX toxins recognize a beta2 integrin on the surface of human target cells. J Biol Chem. 1997;272:30463–9.

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Kim MW, Kim BS, et al. Identification and characterization of the Vibrio vulnificus rtxA essential for cytotoxicity in vitro and virulence in mice. J Microbiol. 2007;45:146–52.

    CAS  PubMed  Google Scholar 

  • Li J, Clinkenbeard KD, Ritchey JW. Bovine CD18 identified as a species specific receptor for Pasteurella haemolytica leukotoxin. Vet Microbiol. 1999;67:91–7.

    Article  CAS  PubMed  Google Scholar 

  • Lim KB, Walker CR, Guo L, et al. Escherichia coli alpha-hemolysin (HlyA) is heterogeneously acylated in vivo with 14-, 15-, and 17-carbon fatty acids. J Biol Chem. 2000;275:36698–702.

    Article  CAS  PubMed  Google Scholar 

  • Lin W, Fullner KJ, Clayton R, et al. Identification of a Vibrio cholerae RTX toxin gene cluster that is tightly linked to the cholera toxin prophage. Proc Natl Acad Sci U S A. 1999;96:1071–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linhartova I, Bumba L, Masin J, et al. RTX proteins: a highly diverse family secreted by a common mechanism. FEMS Microbiol Rev. 2010;34:1076–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu M, Alice AF, Naka H, et al. The HlyU protein is a positive regulator of rtxA1, a gene responsible for cytotoxicity and virulence in the human pathogen Vibrio vulnificus. Infect Immun. 2007;75:3282–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ludwig A, Jarchau T, Benz R, et al. The repeat domain of Escherichia coli haemolysin (HlyA) is responsible for its Ca2 + −dependent binding to erythrocytes. Mol Gen Genet. 1988;214:553–61.

    Article  CAS  PubMed  Google Scholar 

  • Ludwig A, Benz R, Goebel W. Oligomerization of Escherichia coli haemolysin (HlyA) is involved in pore formation. Mol Gen Genet. 1993;241:89–96.

    Article  CAS  PubMed  Google Scholar 

  • Ludwig A, Garcia F, Bauer S, et al. Analysis of the in vivo activation of hemolysin (HlyA) from Escherichia coli. J Bacteriol. 1996;178:5422–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lupardus PJ, Shen A, Bogyo M, et al. Small molecule-induced allosteric activation of the Vibrio cholerae RTX cysteine protease domain. Science. 2008;322:265–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma AT, McAuley S, Pukatzki S, et al. Translocation of a Vibrio cholerae type VI secretion effector requires bacterial endocytosis by host cells. Cell Host Microbe. 2009;5:234–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackova J, Stasikova J, Kutinova L, et al. Prime/boost immunotherapy of HPV16-induced tumors with E7 protein delivered by Bordetella adenylate cyclase and modified vaccinia virus Ankara. Cancer Immunol Immunother. 2006;55:39–46.

    Article  CAS  PubMed  Google Scholar 

  • Masin J, Konopasek I, Svobodova J, et al. Different structural requirements for adenylate cyclase toxin interactions with erythrocyte and liposome membranes. Biochim Biophys Acta. 2004;1660:144–54.

    Article  CAS  PubMed  Google Scholar 

  • Masin J, Basler M, Knapp O, et al. Acylation of lysine 860 allows tight binding and cytotoxicity of Bordetella adenylate cyclase on CD11b-expressing cells. Biochemistry. 2005;44:12759–66.

    Article  CAS  PubMed  Google Scholar 

  • Masin J, Fiser R, Linhartova I, et al. Differences in purinergic amplification of osmotic cell lysis by the pore-forming RTX toxins Bordetella pertussis CyaA and Actinobacillus pleuropneumoniae ApxIA: the role of pore size. Infect Immun. 2013;81:4571–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathan MM, Chandy G, Mathan VI. Ultrastructural changes in the upper small intestinal mucosa in patients with cholera. Gastroenterology. 1995;109:422–30.

    Article  CAS  PubMed  Google Scholar 

  • McDermott C, Mylotte JM. Morganella morganii: epidemiology of bacteremic disease. Infect Control. 1984;5:131–7.

    CAS  PubMed  Google Scholar 

  • Moayeri M, Welch RA. Effects of temperature, time, and toxin concentration on lesion formation by the Escherichia coli hemolysin. Infect Immun. 1994;62:4124–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moayeri M, Welch RA. Prelytic and lytic conformations of erythrocyte-associated Escherichia coli hemolysin. Infect Immun. 1997;65:2233–9.

    PubMed  PubMed Central  Google Scholar 

  • Morova J, Osicka R, Masin J, et al. RTX cytotoxins recognize beta2 integrin receptors through N-linked oligosaccharides. Proc Natl Acad Sci U S A. 2008;105:5355–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munksgaard PS, Vorup-Jensen T, Reinholdt J, et al. Leukotoxin from Aggregatibacter actinomycetemcomitans causes shrinkage and P2X receptor-dependent lysis of human erythrocytes. Cell Microbiol. 2012;14:1904–20.

    Article  CAS  PubMed  Google Scholar 

  • Narayanan SK, Nagaraja TG, Chengappa MM, et al. Leukotoxins of gram-negative bacteria. Vet Microbiol. 2002;84:337–56.

    Article  CAS  PubMed  Google Scholar 

  • Osicka R, Osickova A, Basar T, et al. Delivery of CD8(+) T-cell epitopes into major histocompatibility complex class I antigen presentation pathway by Bordetella pertussis adenylate cyclase: delineation of cell invasive structures and permissive insertion sites. Infect Immun. 2000;68:247–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osicka R, Osickova A, Hasan S, et al. Bordetella adenylate cyclase toxin is a unique ligand of the integrin complement receptor 3. Elife. 2015;4:e10766.

    Article  PubMed  Google Scholar 

  • Osickova A, Osicka R, Maier E, et al. An amphipathic alpha-helix including glutamates 509 and 516 is crucial for membrane translocation of adenylate cyclase toxin and modulates formation and cation selectivity of its membrane channels. J Biol Chem. 1999;274:37644–50.

    CAS  PubMed  Google Scholar 

  • Osickova A, Masin J, Fayolle C, et al. Adenylate cyclase toxin translocates across target cell membrane without forming a pore. Mol Microbiol. 2010;75:1550–62.

    Article  CAS  PubMed  Google Scholar 

  • Ostolaza H, Bartolome B, Ortiz de Zarate I, et al. Release of lipid vesicle contents by the bacterial protein toxin alpha-haemolysin. Biochim Biophys Acta. 1993;1147:81–8.

    Article  CAS  PubMed  Google Scholar 

  • Ostolaza H, Bakas L, Goni FM. Balance of electrostatic and hydrophobic interactions in the lysis of model membranes by E. coli alpha-haemolysin. J Membr Biol. 1997;158:137–45.

    Article  CAS  PubMed  Google Scholar 

  • Otero AS, Yi XB, Gray MC, et al. Membrane depolarization prevents cell invasion by Bordetella pertussis adenylate cyclase toxin. J Biol Chem. 1995;270:9695–7.

    Article  CAS  PubMed  Google Scholar 

  • Pei J, Grishin NV. The Rho GTPase inactivation domain in Vibrio cholerae MARTX toxin has a circularly permuted papain-like thiol protease fold. Proteins. 2009;77:413–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pimenta AL, Racher K, Jamieson L, et al. Mutations in HlyD, part of the type 1 translocator for hemolysin secretion, affect the folding of the secreted toxin. J Bacteriol. 2005;187:7471–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prochazkova K, Satchell KJ. Structure-function analysis of inositol hexakisphosphate-induced autoprocessing of the Vibrio cholerae multifunctional autoprocessing RTX toxin. J Biol Chem. 2008;283:23656–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prochazkova K, Shuvalova LA, Minasov G, et al. Structural and molecular mechanism for autoprocessing of MARTX toxin of Vibrio cholerae at multiple sites. J Biol Chem. 2009;284:26557–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raja M, Ummer F, Dhivakar CP. Aggregatibacter actinomycetemcomitans – a tooth killer? J Clin Diagn Res. 2014;8:ZE13–6.

    PubMed  PubMed Central  Google Scholar 

  • Reimer D, Frey J, Jansen R, et al. Molecular investigation of the role of ApxI and ApxII in the virulence of Actinobacillus pleuropneumoniae serotype 5. Microb Pathog. 1995;18:197–209.

    Article  CAS  PubMed  Google Scholar 

  • Rhodes CR, Gray MC, Watson JM, et al. Structural consequences of divalent metal binding by the adenylyl cyclase toxin of Bordetella pertussis. Arch Biochem Biophys. 2001;395:169–76.

    Article  CAS  PubMed  Google Scholar 

  • Rice JA, Carrasco-Medina L, Hodgins DC, et al. Mannheimia haemolytica and bovine respiratory disease. Anim Health Res Rev. 2007;8:117–28.

    Article  CAS  PubMed  Google Scholar 

  • Rogel A, Hanski E. Distinct steps in the penetration of adenylate cyclase toxin of Bordetella pertussis into sheep erythrocytes. Translocation of the toxin across the membrane. J Biol Chem. 1992;267:22599–605.

    CAS  PubMed  Google Scholar 

  • Rogers DG, Cheville NF, Pugh Jr GW. Pathogenesis of corneal lesions caused by Moraxella bovis in gnotobiotic calves. Vet Pathol. 1987;24:287–95.

    CAS  PubMed  Google Scholar 

  • Rose T, Sebo P, Bellalou J, et al. Interaction of calcium with Bordetella pertussis adenylate cyclase toxin. Characterization of multiple calcium-binding sites and calcium-induced conformational changes. J Biol Chem. 1995;270:26370–6.

    Article  CAS  PubMed  Google Scholar 

  • Rosendal S, Devenish J, MacInnes JI, et al. Evaluation of heat-sensitive, neutrophil-toxic, and hemolytic activity of Haemophilus (Actinobacillus) pleuropneumoniae. Am J Vet Res. 1988;49:1053–8.

    CAS  PubMed  Google Scholar 

  • Rycroft AN, Williams D, Cullen JM, et al. The cytotoxin of Actinobacillus pleuropneumoniae (pleurotoxin) is distinct from the haemolysin and is associated with a 120 kDa polypeptide. J Gen Microbiol. 1991;137:561–8.

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Magraner L, Viguera AR, Garcia-Pacios M, et al. The calcium-binding C-terminal domain of Escherichia coli alpha-hemolysin is a major determinant in the surface-active properties of the protein. J Biol Chem. 2007;282:11827–35.

    Article  CAS  PubMed  Google Scholar 

  • Satchell KJ. MARTX, multifunctional autoprocessing repeats-in-toxin toxins. Infect Immun. 2007;75:5079–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satchell KJ. Structure and function of MARTX toxins and other large repetitive RTX proteins. Annu Rev Microbiol. 2011;65:71–90.

    Article  CAS  PubMed  Google Scholar 

  • Schaller A, Kuhn R, Kuhnert P, et al. Characterization of apxIVA, a new RTX determinant of Actinobacillus pleuropneumoniae. Microbiology. 1999;145(Pt 8):2105–16.

    Article  CAS  PubMed  Google Scholar 

  • Schindel C, Zitzer A, Schulte B, et al. Interaction of Escherichia coli hemolysin with biological membranes. A study using cysteine scanning mutagenesis. Eur J Biochem. 2001;268:800–8.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt H, Karch H, Beutin L. The large-sized plasmids of enterohemorrhagic Escherichia coli O157 strains encode hemolysins which are presumably members of the E. coli alpha-hemolysin family. FEMS Microbiol Lett. 1994;117:189–96.

    CAS  PubMed  Google Scholar 

  • Schmidt H, Beutin L, Karch H. Molecular analysis of the plasmid-encoded hemolysin of Escherichia coli O157:H7 strain EDL 933. Infect Immun. 1995;63:1055–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt H, Maier E, Karch H, et al. Pore-forming properties of the plasmid-encoded hemolysin of enterohemorrhagic Escherichia coli O157:H7. Eur J Biochem. 1996;241:594–601.

    Article  CAS  PubMed  Google Scholar 

  • Sebo P, Ladant D. Repeat sequences in the Bordetella pertussis adenylate cyclase toxin can be recognized as alternative carboxy-proximal secretion signals by the Escherichia coli alpha-haemolysin translocator. Mol Microbiol. 1993;9:999–1009.

    Article  CAS  PubMed  Google Scholar 

  • Sebo P, Glaser P, Sakamoto H, et al. High-level synthesis of active adenylate cyclase toxin of Bordetella pertussis in a reconstructed Escherichia coli system. Gene. 1991;104:19–24.

    Article  CAS  PubMed  Google Scholar 

  • Seeger W, Walter H, Suttorp N, et al. Thromboxane-mediated hypertension and vascular leakage evoked by low doses of Escherichia coli hemolysin in rabbit lungs. J Clin Invest. 1989;84:220–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shanthalingam S, Srikumaran S. Intact signal peptide of CD18, the beta-subunit of beta2-integrins, renders ruminants susceptible to Mannheimia haemolytica leukotoxin. Proc Natl Acad Sci U S A. 2009;106:15448–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheahan KL, Satchell KJ. Inactivation of small Rho GTPases by the multifunctional RTX toxin from Vibrio cholerae. Cell Microbiol. 2007;9:1324–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Short EC, Kurtz HJ. Properties of the hemolytic activities of Escherichia coli. Infect Immun. 1971;3:678–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sibelius U, Grandel U, Buerke M, et al. Leukotriene-mediated coronary vasoconstriction and loss of myocardial contractility evoked by low doses of Escherichia coli hemolysin in perfused rat hearts. Crit Care Med. 2003;31:683–8.

    Article  CAS  PubMed  Google Scholar 

  • Singh K, Ritchey JW, Confer AW. Mannheimia haemolytica: bacterial-host interactions in bovine pneumonia. Vet Pathol. 2011;48:338–48.

    Article  CAS  PubMed  Google Scholar 

  • Skals M, Jorgensen NR, Leipziger J, et al. Alpha-hemolysin from Escherichia coli uses endogenous amplification through P2X receptor activation to induce hemolysis. Proc Natl Acad Sci U S A. 2009;106:4030–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skals M, Bjaelde RG, Reinholdt J, et al. Bacterial RTX toxins allow acute ATP release from human erythrocytes directly through the toxin pore. J Biol Chem. 2014;289:19098–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soloaga A, Ostolaza H, Goni FM, et al. Purification of Escherichia coli pro-haemolysin, and a comparison with the properties of mature alpha-haemolysin. Eur J Biochem. 1996;238:418–22.

    Article  CAS  PubMed  Google Scholar 

  • Stanley P, Koronakis V, Hughes C. Mutational analysis supports a role for multiple structural features in the C-terminal secretion signal of Escherichia coli haemolysin. Mol Microbiol. 1991;5:2391–403.

    Article  CAS  PubMed  Google Scholar 

  • Stanley P, Packman LC, Koronakis V, et al. Fatty acylation of two internal lysine residues required for the toxic activity of Escherichia coli hemolysin. Science. 1994;266:1992–6.

    Article  CAS  PubMed  Google Scholar 

  • Stanley P, Koronakis V, Hughes C. Acylation of Escherichia coli hemolysin: a unique protein lipidation mechanism underlying toxin function. Microbiol Mol Biol Rev. 1998;62:309–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strathdee CA, Lo RY. Cloning, nucleotide sequence, and characterization of genes encoding the secretion function of the Pasteurella haemolytica leukotoxin determinant. J Bacteriol. 1989;171:916–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Clinkenbeard KD, Cudd LA, et al. Correlation of Pasteurella haemolytica leukotoxin binding with susceptibility to intoxication of lymphoid cells from various species. Infect Immun. 1999;67:6264–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suttorp N, Floer B, Schnittler H, et al. Effects of Escherichia coli hemolysin on endothelial cell function. Infect Immun. 1990;58:3796–801.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taichman NS, Simpson DL, Sakurada S, et al. Comparative studies on the biology of Actinobacillus actinomycetemcomitans leukotoxin in primates. Oral Microbiol Immunol. 1987;2:97–104.

    Article  CAS  PubMed  Google Scholar 

  • Taneike I, Zhang HM, Wakisaka-Saito N, et al. Enterohemolysin operon of Shiga toxin-producing Escherichia coli: a virulence function of inflammatory cytokine production from human monocytes. FEBS Lett. 2002;524:219–24.

    Article  CAS  PubMed  Google Scholar 

  • Thanabalu T, Koronakis E, Hughes C, et al. Substrate-induced assembly of a contiguous channel for protein export from E. coli: reversible bridging of an inner-membrane translocase to an outer membrane exit pore. EMBO J. 1998;17:6487–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thumbikat P, Briggs RE, Kannan MS, et al. Biological effects of two genetically defined leukotoxin mutants of Mannheimia haemolytica. Microb Pathog. 2003;34:217–26.

    Article  CAS  PubMed  Google Scholar 

  • Toth V, Emody L. Proteus virulence: involvement of the pore forming alpha-hemolysin (a short review). Acta Microbiol Immunol Hung. 2000;47:457–70.

    CAS  PubMed  Google Scholar 

  • Valeva A, Walev I, Kemmer H, et al. Binding of Escherichia coli hemolysin and activation of the target cells is not receptor-dependent. J Biol Chem. 2005;280:36657–63.

    Article  CAS  PubMed  Google Scholar 

  • Valeva A, Siegel I, Wylenzek M, et al. Putative identification of an amphipathic alpha-helical sequence in hemolysin of Escherichia coli (HlyA) involved in transmembrane pore formation. Biol Chem. 2008;389:1201–7.

    Article  CAS  PubMed  Google Scholar 

  • Vojtova-Vodolanova J, Basler M, Osicka R, et al. Oligomerization is involved in pore formation by Bordetella adenylate cyclase toxin. FASEB J. 2009;23:2831–43.

    Article  CAS  PubMed  Google Scholar 

  • Wagner W, Vogel M, Goebel W. Transport of hemolysin across the outer membrane of Escherichia coli requires two functions. J Bacteriol. 1983;154:200–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wald T, Petry-Podgorska I, Fiser R, et al. Quantification of potassium levels in cells treated with Bordetella adenylate cyclase toxin. Anal Biochem. 2014;450:57–62.

    Article  CAS  PubMed  Google Scholar 

  • Wald T, Osickova A, Masin J, et al. Transmembrane segments of complement receptor 3 do not participate in cytotoxic activities but determine receptor structure required for action of Bordetella adenylate cyclase toxin. Pathog Dis. 2016;74(3). pii: ftw008.

    Google Scholar 

  • Wandersman C, Delepelaire P. TolC, an Escherichia coli outer membrane protein required for hemolysin secretion. Proc Natl Acad Sci U S A. 1990;87:4776–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weingart CL, Mobberley-Schuman PS, Hewlett EL, et al. Neutralizing antibodies to adenylate cyclase toxin promote phagocytosis of Bordetella pertussis by human neutrophils. Infect Immun. 2000;68:7152–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welch RA. Pore-forming cytolysins of gram-negative bacteria. Mol Microbiol. 1991;5:521–8.

    Article  CAS  PubMed  Google Scholar 

  • Welch RA. RTX toxin structure and function: a story of numerous anomalies and few analogies in toxin biology. Curr Top Microbiol Immunol. 2001;257:85–111.

    CAS  PubMed  Google Scholar 

  • Wiles TJ, Kulesus RR, Mulvey MA. Origins and virulence mechanisms of uropathogenic Escherichia coli. Exp Mol Pathol. 2008;85:11–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Worsham LM, Trent MS, Earls L, et al. Insights into the catalytic mechanism of HlyC, the internal protein acyltransferase that activates Escherichia coli hemolysin toxin. Biochemistry. 2001;40:13607–16.

    Article  CAS  PubMed  Google Scholar 

  • Zecchinon L, Fett T, Desmecht D. How Mannheimia haemolytica defeats host defence through a kiss of death mechanism. Vet Res. 2005;36:133–56.

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Conway JF, Thibodeau PH. Calcium-induced folding and stabilization of the Pseudomonas aeruginosa alkaline protease. J Biol Chem. 2012;287:4311–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziolo KJ, Jeong HG, Kwak JS, et al. Vibrio vulnificus biotype 3 multifunctional autoprocessing RTX toxin is an adenylate cyclase toxin essential for virulence in mice. Infect Immun. 2014;82:2148–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants No. GAP302/11/0580, GA13-14547S, GA15-09157S, GAP302/12/0460, and GA15-11851S from the Czech Science Foundation and by the Institutional Research Project RVO 61388971 of the Institute of Microbiology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Sebo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Linhartova, I., Osicka, R., Bumba, L., Masin, J., Sebo, P. (2015). RTX Toxins: A Review. In: Gopalakrishnakone, P., Stiles, B., Alape-Girón, A., Dubreuil, J., Mandal, M. (eds) Microbial Toxins. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6725-6_13-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6725-6_13-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6725-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics