Skip to main content

Burkholderia pseudomallei Toxins and Clinical Implications

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Microbial Toxins

Abstract

Burkholderia pseudomallei is the causal agent of melioidosis. In spite of ongoing studies, the molecular mechanisms underlying toxin-induced pathogenesis of this bacterium are not clearly elucidated for this potential biological warfare pathogen. In this review, we highlight current information of B. pseudomallei toxins and their roles in pathophysiological effects in various experimental models. Several secretary proteins/lethal factors show lethal toxicity to cells in culture via filtrates of B. pseudomallei culture. These toxins are released in culture from strains isolated from soil, animals and humans. Toxins are also found in infected patients, which strongly correlate with severity of melioidosis. Melioidosis progression begins with an environmental reservoir and bacterial attachment in the host, invasion of epithelial/macrophage cells and subsequent intercellular spread. The molecular and cellular basis of pathogenesis in melioidosis will provide a better, rational understanding toward design and development of new drugs with novel mechanisms of action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abderrazak A, Syrovets T, Couchie D, El Hadri K, Friguet B, Simmet T, et al. NLRP3 inflammasome: from a danger signal sensor to a regulatory node of oxidative stress and inflammatory diseases. Redox Biol. 2015;4:296–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Afroze SR, Rahman MR, Barai L, Hossain MD, Uddin KN. Successful treatment outcome of primary melioidosis pneumonia-a case report from Bangladesh. BMC Res Notes. 2016;9(1):100.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmad L, Hung TL, Mat Akhir NA, Mohamed R, Nathan S, Firdaus-Raih M. Characterization of Burkholderia pseudomallei protein BPSL1375 validates the putative hemolytic activity of the COG3176 N-Acyltransferase family. BMC Microbiol. 2015;15:270.

    Article  PubMed  PubMed Central  Google Scholar 

  • Aktories K. Bacterial protein toxins that modify host regulatory GTPases. Nat Rev Microbiol. 2011;9:487–98.

    Article  CAS  PubMed  Google Scholar 

  • Aquino LL, Wu JJ. Cutaneous manifestations of category A bioweapons. J Am Acad Dermatol. 2011;65(6):1213.e1–e15.

    Article  Google Scholar 

  • Ashida H, Kim M, Sasakawa C. Exploitation of the host ubiquitin system by human bacterial pathogens. Nat Rev Microbiol. 2014;12:399–413.

    Article  CAS  PubMed  Google Scholar 

  • Attar N. Bacterial secretion: MIXing up T6SS effectors. Nat Rev Microbiol. 2015;13:600.

    Google Scholar 

  • Bast A, Krause K, Schmidt IH, Pudla M, Brakopp S, Hopf V, et al. Caspase-1-dependent and -independent cell death pathways in Burkholderia pseudomallei infection of macrophages. PLoS Pathog. 2014;10(3):e1003986.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ben Messaoud N, Katzarova I, Lopez JM. Basic properties of the p38 signaling pathway in response to hyperosmotic shock. PLoS One. 2015;10(9):e0135249.

    Article  PubMed  PubMed Central  Google Scholar 

  • Benoit TJ, Blaney DD, Gee JE, Elrod MG, Hoffmaster AR, Doker TJ, Bower WA, Walker HT. Melioidosis cases and selected reports of occupational exposures to Burkholderia pseudomallei-United States, 2008–2013 (CDC). MMWR Surveillance Summaries. 2015;64(SS05):1–9.

    Google Scholar 

  • Bokoch GM, Diebold B, Kim JS, Gianni D. Emerging evidence for the importance of phosphorylation in the regulation of NADPH oxidases. Antioxid Redox Signal. 2009;11(10):2429–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brandtzaeg P, Kierulf P, Gaustad P, Skulberg A, Bruun JN, Halvorsen S, Sorensen E. Plasma endotoxin as a predictor of multiple organ failure and death in systemic meningococcal disease. J Infect Dis. 1989;159(2):195–204.

    Article  CAS  PubMed  Google Scholar 

  • Brown L, Wolf JM, Prados-Rosales R, Casadevall A. Through the wall: extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi. Nat Rev Microbiol. 2015;13:620–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burtnick MN, DeShazer D, Nair V, Gherardini FC, Brett PJ. Burkholderia mallei cluster 1 type VI secretion mutants exhibit growth and actin polymerization defects in RAW 264.7 murine macrophages. Infect Immun. 2010;78(1):88–99.

    Article  CAS  PubMed  Google Scholar 

  • Butt A, Higman VA, Williams C, Crump MP, Hemsley CM, Harmer N, et al. The HicA toxin from Burkholderia pseudomallei has a role in persister cell formation. Biochem J. 2014;459(2):333–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan YY, Chua KL. The Burkholderia pseudomallei BpeAB-OprB efflux pump: expression and impact on quorum sensing and virulence. J Bacteriol. 2005;187(14):4707–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan YY, Tan TM, Ong YM, Chua KL. BpeAB-OprB, a multidrug efflux pump in Burkholderia pseudomallei. Antimicrob Agents Chemother. 2004;48(4):1128–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan YY, Bian HS, Tan TM, Mattmann ME, Geske GD, Igarashi J, Hatano T, Suga H, Blackwell HE, Chua KL. Control of quorum sensing by a Burkholderia pseudomallei multidrug efflux pump. J Bacteriol. 2007;189(11):4320–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen PS, Chen YS, Lin HH, Liu PJ, Ni WF, Hsueh PT, Liang SH, Chen C, Chen YL. Airborne transmission of melioidosis to humans from environmental aerosols contaminated with B. pseudomallei. PLoS Negl Trop Dis. 2015;9(6):e0003834.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chirakul S, Bartpho T, Wongsurawat T, Taweechaisupapong S, Karoonutaisiri N, Talaat AM, et al. Characterization of BPSS1521 (bprD), a regulator of Burkholderia pseudomallei virulence gene expression in the mouse model. PLoS One. 2014;9(8):e104313.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chutoam P, Charoensawan V, Wongtrakoongate P, Kum-Arth A, Buphamalai P, Tungpradabkul S. RpoS and oxidative stress conditions regulate succinyl-CoA: 3-ketoacid-coenzyme A transferase (SCOT) expression in Burkholderia pseudomallei. Microbiol Immunol. 2013;57(9):605–15.

    CAS  PubMed  Google Scholar 

  • Cruz-Migoni A, Hautbergue GM, Artymiuk PJ, Baker PJ, Bokori-Brown M, Chang CT, et al. A Burkholderia pseudomallei toxin inhibits helicase activity of translation factor eIF4A. Science. 2011;334(6057):821–4.

    Article  CAS  PubMed  Google Scholar 

  • Currie BJ. Melioidosis: an important cause of pneumonia in residents of and travelers returned from endemic regions. Eur Respir J. 2003;22(3):542–50.

    Article  CAS  PubMed  Google Scholar 

  • Currie BJ, Fisher DA, Anstey NM, Jacups SP. Melioidosis: acute and chronic disease, relapse and re-activation. Trans R Soc Trop Med Hyg. 2000;94(3):301–4.

    Article  CAS  PubMed  Google Scholar 

  • Daimon Y, Narita S, Akiyama Y. Activation of toxin-antitoxin system toxins suppresses lethality caused by the loss of sigmaE in Escherichia coli. J Bacteriol. 2015;197(14):2316–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diep DT, Phuong NT, Hlaing MM, Srimanote P, Tungpradabkul S. Role of Burkholderia pseudomallei sigma N2 in amino acids utilization and in regulation of catalase E expression at the transcriptional level. Int J Bacteriol. 2015;2015:623967.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dubail I, Berche P, Charbit A. Listeriolysin O as a reporter to identify constitutive and in vivo-inducible promoters in the pathogen Listeria monocytogenes. Infect Immun. 2000;68(6):3242–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Estes DM, Dow SW, Schweizer HP, Torres AG. Present and future therapeutic strategies for melioidosis and glanders. Expert Rev Anti Infect Ther. 2010;8(3):325–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gan YH. Interaction between Burkholderia pseudomallei and the host immune response: sleeping with the enemy?. J Infect Dis. 2005;192(10):1845–50.

    Google Scholar 

  • Gilad J. Burkholderia mallei and Burkholderia pseudomallei: the causative micro-organisms of glanders and melioidosis. Recent Pat Antiinfect Drug Discov. 2007;2(3):233–41.

    Article  CAS  PubMed  Google Scholar 

  • Goldberg E, Bishara J. Contemporary unconventional clinical use of co-trimoxazole. Clin Microbiol Infect. 2012;18(1):8–17.

    Article  CAS  PubMed  Google Scholar 

  • Guillaume V, Wong KT, Looi RY, Georges-Courbot MC, Barrot L, Buckland R, Wild TF, Horvat B. Acute hendra virus infection: analysis of the pathogenesis and passive antibody protection in the hamster model. Virology. 2009;387(2):459–65.

    Article  CAS  PubMed  Google Scholar 

  • Gurnev PA, Nestorovich EM. Channel-forming bacterial toxins in biosensing and macromolecule delivery. Toxins (Basel). 2014;6(8):2483–540.

    Article  CAS  Google Scholar 

  • Haase A, Janzen J, Barrett S, Currie B. Toxin production by Burkholderia pseudomallei strains and correlation with severity of melioidosis. J Med Microbiol. 1997;46(7):557–63.

    Article  CAS  PubMed  Google Scholar 

  • Hadjifrangiskou M, Kostakioti M, Hultgren SJ. Antitoxins: therapy for stressed bacteria. Nat Chem Biol. 2011;7(6):345–7.

    Article  CAS  PubMed  Google Scholar 

  • Han J, Lee JD, Bibbs L, Ulevitch RJ. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science. 1994;265(5173):808–11.

    Article  CAS  PubMed  Google Scholar 

  • Hauser AR, Jain M, Bar-Meir M, McColley SA. Clinical significance of microbial infection and adaptation in cystic fibrosis. Clin Microbiol Rev. 2001;24(1):29–70.

    Article  Google Scholar 

  • Hautbergue G. Characterisation of Burkholderia pseudomallei lethal factor 1 (BLF1). A breakthrough against melioidosis. Méd Sci (Paris). 2012;28(3):262–4.

    Article  Google Scholar 

  • Hayes F. Toxins-antitoxins: plasmid maintenance, programmed cell death, and cell cycle arrest. Science. 2003;301:1496–9.

    Article  CAS  PubMed  Google Scholar 

  • Henkel JS, Baldwin MR, Barbieri JT. Toxins from bacteria. Experientia Suppl. 2010;100:1–29.

    Article  CAS  Google Scholar 

  • Hunt TA, Kooi C, Sokol PA, Valvano MA. Identification of Burkholderia cenocepacia genes required for bacterial survival in vivo. Infect Immun. 2004;72(7):4010–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi S, Platanias LC. Mnk kinase pathway: cellular functions and biological outcomes. World J Biol Chem. 2014;5(3):321–33.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kimelman A, Levy A, Sberro H, Kidron S, Leavitt A, Amitai G, Yoder-Himes DR, Wurtzel O, Zhu Y, Rubin EM, Sorek R. A vast collection of microbial genes that are toxic to bacteria. Genome Res. 2012;22(4):802–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitt H, Lenney W, Gilchrist FJ. Two case reports of the successful eradication of new isolates of Burkholderia cepacia complex in children with cystic fibrosis. BMC Pharmacol Toxicol. 2016;17:14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lazar Adler NR, Govan B, Cullinane M, Harper M, Adler B, Boyce JD. The molecular and cellular basis of pathogenesis in melioidosis: how does Burkholderia pseudomallei cause disease?. FEMS Microbiol Rev. 2009;33:1079–99.

    Google Scholar 

  • Le Hello S, Currie BJ, Godoy D, Spratt BG, Mikulski M, Lacassin F, Garin B. Melioidosis in New Caledonia. Emerg Infect Dis. 2005;11(10):1607–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Leakey AK, Ulett GC, Hirst RG. BALB/c and C57Bl/6 mice infected with virulent Burkholderia pseudomallei provide contrasting animal models for the acute and chronic forms of human melioidosis. Microb Pathog. 1998;24(5):269–75.

    Article  CAS  PubMed  Google Scholar 

  • Lee SW, Yi J, Joo SI, Kang YA, Yoon YS, Yim JJ, Yoo CG, Han SK, Shim YS, Kim EC, Kim YW. A case of melioidosis presenting as migrating pulmonary infiltration: the first case in Korea. J Korean Med Sci. 2005;20:139–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leelarasamee A. Melioidosis in Southeast Asia. Acta Trop. 2000;74(2–3):129–32.

    Article  CAS  PubMed  Google Scholar 

  • Lever MS, Nelson M, Stagg AJ, Beedham RJ, Simpson AJH. Experimental acute respiratory Burkholderia pseudomallei infection in BALB/c mice. Int J Exp Pathol. 2009;90(1):16–25.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lubran MM. Bacterial toxins. Ann Clin Lab Sci. 1988;18(1):58–71.

    CAS  PubMed  Google Scholar 

  • Maniam P, Nurul Aiezzah Z, Mohamed R, Embi N, Hasidah MS. Regulatory role of GSK3beta in the activation of NF-kappaB and modulation of cytokine levels in Burkholderia pseudomallei-infected PBMC isolated from streptozotocin-induced diabetic animals. Trop Biomed. 2015;32(1):36–48.

    CAS  PubMed  Google Scholar 

  • Martin GS. Sepsis, severe sepsis and septic shock: changes in incidence, pathogens and outcomes. Expert Rev Anti Infect Ther. 2012;10(6):701–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martín MC, Fueyo JM, González-Hevia MA, Mendoza MC. Genetic procedures for identification of enterotoxigenic strains of Staphylococcus aureus from three food poisoning outbreaks. Int J Food Microbiol. 2004;94:279–86.

    Article  PubMed  Google Scholar 

  • Massey S, Yeager LA, Blumentritt CA, Vijayakumar S, Sbrana E, Peterson JW, Brasel T, LeDuc JW, Endsley J, Torres AG. Comparative Burkholderia pseudomallei natural history virulence studies using an aerosol murine model of infection. Sci Rep. 2014;4:4305.

    Article  PubMed  PubMed Central  Google Scholar 

  • Michael H, Silverman MJO. Bacterial endotoxin in human disease. BioStrategies Consulting; Wako Chemicals USA, Inc. - LAL Division; 1998. p. 1–35.

    Google Scholar 

  • Mima T, Schweizer HP. The BpeAB-OprB effux pump of Burkholderia pseudomallei 1026b does not play a role in quorum sensing, virulence factor production, or extrusion of aminoglycosides but is a broad-spectrum drug effux system. Antimicrob Agents Chemother. 2010;54:3113–20. doi:10.1128/AAC.01803-09.

    Google Scholar 

  • Mohamed R, Nathan S, Embi N, Razak N, Ismail G. Inhibition of macromolecular synthesis in cultured macrophages by Pseudomonas pseudomallei exotoxin. Microbiol Immunol. 1989;33(10):811–20.

    Article  CAS  PubMed  Google Scholar 

  • Morgan MP, Szakmany T, Power SG, Olaniyi P, Hall JE, Rowan K, Eberl M. Sepsis patients with first and second-hit infections show different outcomes depending on the causative organism. Front Microbiol. 2016;7:207.

    Article  PubMed  PubMed Central  Google Scholar 

  • Morosini MI, Quereda C, Gil H, Anda P, Núñez-Murga M, Cantón R, López-Vélez R. Melioidosis in travelers from Africa to Spain. Emerg Infect Dis. 2013;19(10):1656–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nelson M, Nunez A, Ngugi SA, Sinclair A, Atkins TP. Characterization of lesion formation in marmosets following inhalational challenge with different strains of Burkholderia pseudomallei. Int J Exp Pathol. 2015;96(6):414–26.

    Article  PubMed  Google Scholar 

  • Nikolakakis K, Amber S, Wilbur JS, Diner EJ, Aoki SK, Poole SJ, Tuanyok A, Keim PS, Peacock S, Hayes CS, Low DA. The toxin/immunity network of Burkholderia pseudomallei contact-dependent growth inhibition (CDI) systems. Mol Microbiol. 2012;84(3):516–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Overtoom R, Khieu V, Hem S, Cavailler P, Te V, Chan S, Lau P, Guillard B, Vong S. A first report of pulmonary melioidosis in Cambodia. Trans R Soc Trop Med Hyg. 2008;102:S21–5.

    Article  PubMed  Google Scholar 

  • Panomket P, Wongsana P, Wanram S, Wongratanacheewin S, Bartpho T. Relapsed melioidosis model in C57BL/6 mice. J Med Assoc Thai. 2016;99 Suppl 1:S1–6.

    PubMed  Google Scholar 

  • Pelerito A, Nunes A, Coelho S, Piedade C, Paixao P, Cordeiro R, Sampaio D, Vieira L, Gomes JP, Nuncio S. Burkholderia pseudomallei: first case of melioidosis in Portugal. IDCases. 2016;3:10–1.

    Article  PubMed  PubMed Central  Google Scholar 

  • Podnecky NL, Rhodes KA, Schweizer HP. Efflux pump-mediated drug resistance in Burkholderia. Front Microbiol. 2015;6:305.

    Article  PubMed  PubMed Central  Google Scholar 

  • Reckseidler-Zenteno SL, Moore R, Woods DE. Genetics and function of the capsules of Burkholderia pseudomallei and their potential as therapeutic targets. Mini Rev Med Chem. 2009;9(2):265–71.

    Article  CAS  PubMed  Google Scholar 

  • Riyapa D, Buddhisa S, Korbsrisate S, Cuccui J, Wren BW, Stevens MP, Ato M, Lertmemongkolchai G. Neutrophil extracellular traps exhibit antibacterial activity against Burkholderia pseudomallei and are influenced by bacterial and host factors. Infect Immun. 2012;80(11):3921–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roux PP, Blenis J. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev. 2004;68(2):320–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saravu K, Vishwanath S, Kumar RS, Barkur AS, Varghese GK, Mukhyopadhyay C, Bairy I. Melioidosis – a case series from south India. Trans R Soc Trop Med Hyg. 2008;102 suppl 1:S18–20.

    Article  PubMed  Google Scholar 

  • Sarovich DS, Price EP, Webb JR, Ward LM, Voutsinos MY, Tuanyok A, Mayo M, Kaestli M, Currie BJ. Variable virulence factors in Burkholderia pseudomallei (melioidosis) associated with human disease. PLoS One. 2014;9(3):e91682.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schuster CF, Bertram R. Toxin-antitoxin systems are ubiquitous and versatile modulators of prokaryotic cell fate. FEMS Microbiol Lett. 2013;340(2):73–85.

    Article  CAS  PubMed  Google Scholar 

  • Schweizer HP. Mechanisms of antibiotic resistance in Burkholderia pseudomallei: implications for treatment of melioidosis. Future Microbiol. 2012;7(12):1389–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shenoy V, Kamath MP, Hegde MC, D’Souza T, Mammen SS. Melioidosis and tuberculosis: dual pathogens in a neck abscess. J Laryngol Otol. 2009;123(11):1285–7.

    Article  CAS  PubMed  Google Scholar 

  • Silverman MH, Ostro MJ. Bacterial endotoxin in human disease. XOMA Ltd. 1999.

    Google Scholar 

  • Stevens MP, Wood MW, Taylor LA, Monaghan P, Hawes P, Jones PW, Wallis TS, Galyov EE. An Inv/Mxi-Spa-like type III protein secretion system in Burkholderia pseudomallei modulates intracellular behaviour of the pathogen. Mol Microbiol. 2002;46(3):649–59.

    Article  CAS  PubMed  Google Scholar 

  • Stevens MP, Haque A, Atkins T, Hill J, Wood MW, Easton A, Nelson M, Underwood-Fowler C, Titball RW, Bancroft GJ, Galyov EE. Attenuated virulence and protective efficacy of a Burkholderia pseudomallei bsa type III secretion mutant in murine models of melioidosis. Microbiology. 2004;150(Pt 8):2669–76.

    Article  CAS  PubMed  Google Scholar 

  • Stevens MP, Stevens JM, Jeng RL, Taylor LA, Wood MW, Hawes P, Monaghan P, Welch MD, Galyov EE. Identification of a bacterial factor required for actin-based motility of Burkholderia pseudomallei. Mol Microbiol. 2005;56(1):40–53.

    Article  CAS  PubMed  Google Scholar 

  • Stevens JM, Galyov EE, Stevens MP. Actin-dependent movement of bacterial pathogens. Nat Rev Microbiol. 2006;4(2):91–101.

    Article  CAS  PubMed  Google Scholar 

  • Stone JK, DeShazer D, Brett PJ, Burtnick MN. Melioidosis: molecular aspects of pathogenesis. Expert Rev Anti Infect Ther. 2014;12(12):1487–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sulaiman H, Ponnampalavanar S, Mun KS, Italiano CM. Cervical abscesses due to co-infection with Burkholderia pseudomallei, Salmonella enterica serovar Stanley and Mycobacterium tuberculosis in a patient with diabetes mellitus. BMC Infect Dis. 2013;13:527.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun J, Deng Z, Yan A. Bacterial multidrug efflux pumps: mechanisms, physiology and pharmacological exploitations. Biochem Biophys Res Commun. 2014;453(2):254–67.

    Article  CAS  PubMed  Google Scholar 

  • Tay TF, Maheran M, Too SL, Hasidah MS, Ismail G, Embi N. Glycogen synthase kinase-3beta inhibition improved survivability of mice infected with Burkholderia pseudomallei. Trop Biomed. 2012;29(4):551–67.

    CAS  PubMed  Google Scholar 

  • Truong KK, Moghaddam S, Al Saghbini S, Saatian B. Case of a lung mass due to melioidosis in Mexico. Am J Case Rep. 2015;16:272–5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsang TY, Lai ST. A case of thoracic empyema due to suppurative melioidosis. Hong Kong Med J. 2001;7(2):201–4.

    CAS  PubMed  Google Scholar 

  • Ulett GC, Ketheesan N, Hirst RG. Cytokine gene expression in innately susceptible BALB/c mice and relatively resistant C57BL/6 mice during infection with virulent Burkholderia pseudomallei. Infect Immun. 2000;68(4):2034–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Utaisincharoen P, Tangthawornchaikul N, Kespichayawattana W, Anuntagool N, Chaisuriya P, Sirisinha S. Kinetic studies of the production of nitric oxide (NO) and tumour necrosis factor-alpha (TNF-alpha) in macrophages stimulated with Burkholderia pseudomallei endotoxin. Clin Exp Immunol. 2000;122(3):324–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waiwarawooth J, Jutiworakul K, Joraka W. Epidemiology and clinical outcome of melioidosis at Chonburi Hospital, Thailand. J Infect Dis Antimicrob Agents. 2008;25:1–11.

    Google Scholar 

  • Warner JM, Pelowa DB, Gal D, Rai G, Mayo M, Currie BJ, Govan B, Skerratt LF, Hirst RG. The epidemiology of melioidosis in the Balimo region of Papua New Guinea. Epidemiol Infect. 2008;136:965–71.

    Article  CAS  PubMed  Google Scholar 

  • Whitby PW, VanWagoner TM, Taylor AA, Seale TW, Morton DJ, LiPuma JJ, Stull TL. Identification of an RTX determinant of Burkholderia cenocepacia J2315 by subtractive hybridization. J Med Microbiol. 2006;55(Pt 1):11–21.

    Article  CAS  PubMed  Google Scholar 

  • Whitmore A, Krishnaswami CS. An account of the discovery of a hither to undescribed infective disease occurring among the population of Rangoon. Ind Med Gaz. 1912;47:262–7.

    Google Scholar 

  • Wiersinga WJ, Wieland CW, Dessing MC, Chantratita N, Cheng AC, Limmathurotsakul D, Chierakul W, Leendertse M, Florguin S, de Vos AF, White N, Dondorp AM, Day NP, Peacock SJ, van der Poll T. Toll-like receptor 2 impairs host defense in gram-negative sepsis caused by Burkholderia pseudomallei (Melioidosis). PLoS Med. 2007;4(7):e248.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wiersinga WJ, Currie BJ, Peacock SJ. Melioidosis. N Engl J Med. 2012;367(11):1035–44.

    Article  CAS  PubMed  Google Scholar 

  • Willett JL, Ruhe ZC, Goulding CW, Low DA, Hayes CS. Contact-dependent growth inhibition (CDI) and CdiB/CdiA two-partner secretion proteins. J Mol Biol. 2015;427(23):3754–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams NL, Morris JL, Rush CM, Ketheesan N. Plasmacytoid dendritic cell bactericidal activity against Burkholderia pseudomallei. Microbes Infect. 2015;17(4):311–6.

    Article  CAS  PubMed  Google Scholar 

  • Woodman ME, Worth RG, Wooten RM. Capsule influences the deposition of critical complement C3 levels required for the killing of Burkholderia pseudomallei via NADPH-oxidase induction by human neutrophils. PLoS One. 2012;7(12):e52276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wuthiekanun V, Langa S, Swaddiwudhipong W, Jedsadapanpong W, Kaengnet Y, Chierakul W, Day NP, Peacock SJ. Short report: melioidosis in Myanmar: forgotten but not gone?. Am J Trop Med Hyg. 2006;75:945–6.

    PubMed  Google Scholar 

  • Yamaguchi Y, Park JH, Inouye M. Toxin-antitoxin systems in bacteria and archaea. Annu Rev Genet. 2011;45:61–79.

    Article  CAS  PubMed  Google Scholar 

  • Yan XX, Porter CJ, Hardy SP, Steer D, Smith AI, Quinsey NS, Hughes V, Cheung JK, Keyburn AL, Kaldhusdal M, Moore RJ, Bannam TL, Whisstock JC, Rood JI. Structural and functional analysis of the pore-forming toxin NetB from Clostridium perfringens. MBio. 2013;4(1):e00019–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zong Z, Wang X, Deng Y, Zhou T. Misidentification of Burkholderia pseudomallei as Burkholderia cepacia by the VITEK 2 system. J Med Microbiol. 2012;61:1483–4.

    Article  PubMed  Google Scholar 

  • Zulkiflee AB, Prepageran N, Philip R. Melioidosis: an uncommon cause of neck abscess. Am J Otolaryngol. 2008;29(1):72–4.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramar Perumal Samy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this entry

Cite this entry

Samy, R.P. et al. (2017). Burkholderia pseudomallei Toxins and Clinical Implications. In: Gopalakrishnakone, P., Stiles, B., Alape-Girón, A., Dubreuil, J., Mandal, M. (eds) Microbial Toxins. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6725-6_12-2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6725-6_12-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-6725-6

  • Online ISBN: 978-94-007-6725-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Toxins and Clinical Implications
    Published:
    28 June 2017

    DOI: https://doi.org/10.1007/978-94-007-6725-6_12-2

  2. Original

    Toxins and Clinical Implications
    Published:
    04 November 2016

    DOI: https://doi.org/10.1007/978-94-007-6725-6_12-1