Skip to main content

Clostridium perfringens Iota Toxin: A Successfully Shared Template for Common Enteric Pathogens

  • Living reference work entry
  • First Online:
Microbial Toxins

Part of the book series: Toxinology ((TOXI))

  • 243 Accesses

Abstract

Clostridium perfringens produces a myriad of protein toxins with various modes of action. One of these toxins is iota and composed of two separate proteins (iota A or Ia and iota B or Ib), produced by type E strains, as well as historically associated with animal enteric disease. Other spore-forming bacilli use a similar binary mechanism for intoxicating the intestines of insects, animals, and humans that include: Clostridium botulinum (C2 toxin), Clostridium difficile (C. difficile toxin or CDT), Clostridium perfringens (iota toxin and binary enterotoxin), Clostridium spiroforme (C. spiroforme toxin or CST), as well as Bacillus cereus (vegetative insecticidal protein or VIP). These toxins form an AB complex on a cell’s surface that consists of ADP-ribosyl transferase (A) and cell-binding (B) components, initially released as separate proteins from the bacterium. Following receptor-mediated endocytosis and endosomal trafficking, the A components mono-ADP-ribosylate globular actin that in turn destroys the cytoskeleton and causes death. The fact that different species, involving two genera, possess iota-like toxins suggests microbial sharing of a common virulence factor evidently important for these bacteria. This review presents the fundamental workings of iota, and other related, binary protein enterotoxins produced by some Clostridium and Bacillus species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aktories K, Schmidt G. Toxins as tools. In: Alouf JE, Adant D, Popoff MR, editors. The comprehensive sourcebook of bacterial protein toxins. 4th ed. Amsterdam: Academic; 2015.

    Google Scholar 

  • Aktories K, Bärmann M, Ohishi I, Tsuyama S, Jakobs KH, Habermann E. Botulinum C2 toxin ADP-ribosylates actin. Nature. 1986;322:390–2.

    Article  CAS  PubMed  Google Scholar 

  • Barth H, Blöcker D, Behlke J, Bergsma-Schutter W, Brisson A, Benz R, Aktories K. Cellular uptake of Clostridium botulinum C2 toxin requires oligomerization and acidification. J Biol Chem. 2000;275:18704–11.

    Article  CAS  PubMed  Google Scholar 

  • Barth H, Roebling R, Fritz M, Aktories K. The binary Clostridium botulinum C2 toxin as a protein delivery system: identification of the minimal protein region necessary for interaction of toxin components. J Biol Chem. 2002;277:5074–81.

    Article  CAS  PubMed  Google Scholar 

  • Barth H, Aktories K, Popoff MR, Stiles BG. Binary bacterial toxins: biochemistry, biology, and applications of common Clostridium and Bacillus proteins. Microbiol Mol Biol Rev. 2004;68:373–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barth H, Stiles BG, Popoff MR. ADP-ribosylationg toxins modifying the actin cytoskeleton. In: Alouf JE, Adant D, Popoff MR, editors. The comprehensive sourcebook of bacterial protein toxins. 4th ed. Amsterdam: Academic; 2015.

    Google Scholar 

  • Bartlett JG, Moon N, Chang TW, Taylor N, Onderdonk AB. Role of Clostridium difficile in antibiotic-associated pseudomembranous colitis. Gastroenterology. 1978;75:778–82.

    CAS  PubMed  Google Scholar 

  • Blöcker D, Barth H, Maier E, Benz R, Barbieri JT, Aktories K. The C-terminus of component C2II of Clostridium botulinum C2 toxin is essential for receptor binding. Infect Immun. 2000;68:4566–73.

    Article  PubMed  PubMed Central  Google Scholar 

  • Blöcker D, Behelke J, Aktories K, Barth H. Cellular uptake of the binary Clostridium perfringens iota-toxin. Infect Immun. 2001;69:2980–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Blöcker D, Bachmeyer C, Benz R, Aktories K, Barth H. Channel formation by the binding component of Clostridium botulinum C2 toxin: glutamate 307 of C2II affects channel properties in vitro and pH-dependent C2I translocation in vivo. Biochemistry. 2003;42:5368–77.

    Article  PubMed  Google Scholar 

  • Blonder J, Hale ML, Chan KC, Yu LR, Lucas DA, Conrads TP, Zhou M, Popoff MR, Issaq HJ, Stiles BG, Veenstra TD. Quantitative profiling of the detergent-resistant membrane proteome of iota-b toxin induced Vero cells. J Proteome Res. 2005;4:523–31.

    Article  CAS  PubMed  Google Scholar 

  • Borriello S, Carman R. Association of iota-like toxin and Clostridium spiroforme with both spontaneous and antibiotic-associated diarrhea and colitis in rabbits. J Clin Microbiol. 1983;17:414–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bosworth T. On a new type of toxin produced by Clostridium welchii. J Comp Pathol Ther. 1943;53:245–55.

    Article  Google Scholar 

  • Bravo A, Martinex de Castro DL, Sanchez J, Canton PE, Mendoza G, Pacheco S, Garcia-Gomez BI, Onofre J, Ocelotl J, Soberon M. Mechanism of action of Bacillus thuringiensis insecticidal toxins and their use in the control of insect pests. In: Alouf JE, Adant D, Popoff MR, editors. The comprehensive sourcebook of bacterial protein toxins. 4th ed. Amsterdam: Academic; 2015.

    Google Scholar 

  • Carman RJ, Evans RH. Experimental and spontaneous clostridial enteropathies of laboratory and free living lagomorphs. Lab Anim Sci. 1984;3:443–52.

    Google Scholar 

  • Devriese PP. On the discovery of Clostridium botulinum. J Hist Neurosci. 1999;8:43–50.

    Article  CAS  PubMed  Google Scholar 

  • Eckhardt M, Barth H, Blöcker D, Aktories K. Binding of Clostridium botulinum C2 toxin to asparagine-linked complex and hybrid carbohydrates. J Biol Chem. 2000;275:2328–34.

    Article  CAS  PubMed  Google Scholar 

  • Ernst K, Langer S, Kaiser E, Osseforth C, Michaelis J, Popoff MR, Schwan C, Aktories K, Fischer G, Schiene-Fischer C, Barth H. Cyclophilin-facilitated membrane translocation as pharmacological target to prevent intoxication of mammalian cells by binary clostridial actin ADP-ribosylating toxins. J Mol Biol. 2015;427:1224–38.

    Article  CAS  PubMed  Google Scholar 

  • Gerding DN, Johnson S, Rupnik M, Aktories K. Clostridium difficile binary toxin CDT. Mechanism, epidemiology, and potential clinical importance. Gut Microbes. 2014;5(1):1–13.

    Article  Google Scholar 

  • Gibert M, Petit L, Raffestin S, Okabe A, Popoff MR. Clostridium perfringens iota-toxin requires activation of both binding and enzymatic components for cytopathic activity. Infect Immun. 2000;68:3848–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillet D, Barbier J. Diphtheria toxin. In: Alouf JE, Adant D, Popoff MR, editors. The comprehensive sourcebook of bacterial protein toxins. 4th ed. Amsterdam: Academic; 2015.

    Google Scholar 

  • Gülke I, Pfeifer G, Liese J, Fritz M, Hofmann F, Aktories K, Barth H. Characterization of the enzymatic component of the ADP-ribosyltransferase toxin CDTa from Clostridium difficile. Infect Immun. 2001;69:6004–11.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hale ML, Marvaud JC, Popoff MR, Stiles BG. Detergent-resistant membrane microdomains facilitate Ib oligomer formation and biological activity of Clostridium perfringens iota-toxin. Infect Immun. 2004;72:2186–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall IC, O’Toole E. Intestinal flora in new-born infants with a description of a new pathogenic anaerobe, Bacillus difficilis. Am J Dis Child. 1935;49:390–402.

    Article  Google Scholar 

  • Han S, Craig JA, Putnam CD, Carozzi NB, Tainer JA. Evolution and mechanism from structures of an ADP-ribosylating toxin and NAD complex. Nat Struct Biol. 1999;6:932–6.

    Article  CAS  PubMed  Google Scholar 

  • Haug G, Leemhuis J, Tiemann D, Meyer DK, Aktories K, Barth H. The host cell chaperone Hsp90 is essential for translocation of the binary Clostridium botulinum C2 toxin into the cytosol. J Biol Chem. 2003;278:32266–74.

    Article  CAS  PubMed  Google Scholar 

  • Heggelund JE, Bjornestad VA, Krengel U. Vibrio cholerae and Escherichia coli heat-labile enterotoxins and beyond. In: Alouf JE, Adant D, Popoff MR, editors. The comprehensive sourcebook of bacterial protein toxins. 4th ed. Amsterdam: Academic; 2015.

    Google Scholar 

  • Hemmasi S, Czulkies BA, Schorch B, Veit A, Aktories K, Papatheodorou P. Interaction of the Clostridium difficile binary toxin CDT and its host cell receptor LSR. J Biol Chem. 2015;290:14031–44.

    Article  CAS  PubMed  Google Scholar 

  • Kaiser E, Kroll C, Ernst K, Schwan C, Popoff M, Fischer G, Buchner J, Aktories K, Barth H. Membrane translocation of binary actin-ADP-ribosylating toxins from Clostridium difficile and Clostridium perfringens is facilitated by cyclophilin A and Hsp90. Infect Immun. 2011;79:3913–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaiser E, Bohm N, Ernst K, Langer S, Schwan C, Aktories K, Popoff M, Fischer G, Barth H. FK506-binding protein 51 interacts with Clostridium botulinum C2 toxin and FK506 inhibits membrane translocation of the toxin in mammalian cells. Cell Microbiol. 2012;14:1193–205.

    Article  CAS  PubMed  Google Scholar 

  • Kaneuchi C, Miyazato T, Shinjo T, Mitsuoka T. Taxonomic study of helically coiled, sporeforming anaerobes isolated from the intestines of humans and other animals: Clostridium cocleatum sp. nov. and Clostridium spiroforme sp. nov. Int J Syst Bacteriol. 1979;29:1–12.

    Article  Google Scholar 

  • Keessen EC, Gaastra W, Lipman LJA. Clostridium difficile infection in humans and animals, differences and similarities. Vet Microbiol. 2011;153:205–17.

    Article  CAS  PubMed  Google Scholar 

  • Knapp O, Benz R, Gibert M, Marvaud JC, Popoff MR. Interaction of Clostridium perfringens iota-toxin with lipid bilayer membranes: demonstration of channel formation by the activated binding component Ib and channel block by the enzyme component Ia. J Biol Chem. 2002;277:6143–52.

    Article  CAS  PubMed  Google Scholar 

  • Lindback T, Granum PE. Bacillus cereus phospholipases, enterotoxin, and other hemolysins. In: Alouf JE, Adant D, Popoff MR, editors. The comprehensive sourcebook of bacterial protein toxins. 4th ed. Amsterdam: Academic; 2015.

    Google Scholar 

  • Liu S, Moayeri M, Pomerantsev AP, Leppla SH. Bacillus anthracis toxins. In: Alouf JE, Adant D, Popoff MR, editors. The comprehensive sourcebook of bacterial protein toxins. 4th ed. Amsterdam: Academic; 2015.

    Google Scholar 

  • Loo VG, Bourgault A-M, Poirier L, Lamothe F, Michaud S, Turgeon N, Toye B, Beaudoin A, Frost EH, Gilca R, Brassard P, Dendukuri N, Beliveau C, Oughton M, Brukner I, Dascal A. Host and pathogen factors for Clostridium difficile infection and colonization. N Engl J Med. 2011;365:1693–703.

    Article  CAS  PubMed  Google Scholar 

  • Madej T, Lanczycki CJ, Zhang D, Thiessen PA, Geer RC, Marchler-Bauer A, Bryant SH. MMDB and VAST+: tracking structural similarities between macromolecular complexes. Nucleic Acids Res. 2014;42:D297–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marvaud JC, Smith T, Hale ML, Popoff MR, Smith LA, Stiles BG. Clostridium perfringens iota-toxin: mapping of receptor binding and Ia docking domains on Ib. Infect Immun. 2001;69:2435–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marvaud JC, Stiles BG, Chenal A, Gillet D, Gibert M, Smith LA, Popoff MR. Clostridium perfringens iota toxin. Mapping of the Ia domain involved in docking with Ib and cellular internalization. J Biol Chem. 2002;277:43659–66.

    Article  CAS  PubMed  Google Scholar 

  • McDonel JL. Clostridium perfringens toxins (Type A, B, C, D, E). Pharmacol Ther. 1980;10:617–55.

    Article  CAS  PubMed  Google Scholar 

  • Nagahama M, Yamaguchi A, Hagiyama T, Ohkubo N, Kobayashi K, Sakurai J. Binding and internalization of Clostridium perfringens iota-toxin in lipid rafts. Infect Immun. 2004;72:3267–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagahama M, Hagiyama T, Kojima T, Aoyanagi K, Takahashi C, Oda M, Sakaguchi Y, Oguma K, Sakurai J. Binding and internalization of Clostridium botulinum C2 toxin. Infect Immun. 2009;77:5139–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagahama M, Umezaki M, Oda M, Kobayashi K, Tone S, Suda T, Ishidoh K, Sakurai J. Clostridium perfringens iota-toxin b induces rapid cell necrosis. Infect Immun. 2011;79:4353–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura S, Serikawa T, Yamakawa K, Nishida S, Kozaki S, Sakaguchi G. Sporulation and C2 toxin production by Clostridium botulinum type C strains producing no C1 toxin. Microbiol Immunol. 1978;22:591–6.

    Article  CAS  PubMed  Google Scholar 

  • Ohishi I, Tsuyama S. ADP-ribosylation of nonmuscle actin with component I of C2 toxin. Biochem Biophys Res Commun. 1986;136:802–6.

    Article  CAS  PubMed  Google Scholar 

  • Ohishi I, Iwasaki M, Sakaguchi G. Purification and characterization of two components of botulinum C2 toxin. Infect Immun. 1980a;30:668–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohishi I, Iwasaki M, Sakaguchi G. Vascular permeability activity of botulinum C2 toxin elicited by cooperation of two dissimilar protein components. Infect Immun. 1980b;31:890–5.

    Google Scholar 

  • Papatheodorou P, Carette JE, Bell GW, Schwan C, Guttenberg G, Brummelkamp TR, Aktories K. Lipolysis-stimulated lipoprotein receptor (LSR) is the host receptor for the binary toxin Clostridium difficile transferase (CDT). Proc Natl Acad Sci U S A. 2011;108:16422–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papatheodorou P, Wilczek C, Nolke T, Guttenberg G, Hornuss D, Schwan C, Aktories K. Identification of the cellular receptor of Clostridium spiroforme toxin. Infect Immun. 2012;80:1418–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papatheodorou P, Hornuss D, Nolke T, Hemmasi S, Castonguay J, Picchianti M, Aktories K. Clostridium difficile binary toxin CDT induces clustering of the lipolysis-stimulated lipoprotein receptor into lipid rafts. mBio. 2013;4:e00244-13.

    Article  PubMed  PubMed Central  Google Scholar 

  • Perelle S, Gibert M, Boquet P, Popoff MR. Characterization of Clostridium perfringens iota-toxin genes and expression in Escherichia coli. Infect Immun. 1993;61:5147–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perelle S, Gibert M, Bourlioux P, Corthier G, Popoff MR. Production of a complete binary toxin (actin-specific ADP-ribosyltransferase) by Clostridium difficile CD196. Infect Immun. 1997a;65:1402–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perelle S, Scalzo S, Kochi S, Mock M, Popoff MR. Immunological and functional comparison between Clostridium perfringens iota toxin, C. spiroforme toxin, and anthrax toxins. FEMS Microbiol Lett. 1997b;146:117–21.

    Article  CAS  PubMed  Google Scholar 

  • Popoff MR. Molecular biology of actin-ADP-ribosylating toxins. In: Aktories K, Just I, editors. Handbook of experimental pharmacology, Bacterial protein toxins, vol. 145. Berlin: Springer; 2000.

    Google Scholar 

  • Popoff MR, Boquet P. Clostridium spiroforme toxin is a binary toxin which ADP-ribosylates cellular actin. Biochem Biophys Res Commun. 1988;152:1361–8.

    Article  CAS  PubMed  Google Scholar 

  • Popoff MR, Milward FW, Bancillon B, Boquet P. Purification of the Clostridium spiroforme binary toxin and activity of the toxin on HEp-2 cells. Infect Immun. 1989;57:2462–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poulain B, Molgo J, Popoff MR. Clostridial neurotoxins: from the cellular and molecular mode of action to their therapeutic use. In: Alouf JE, Adant D, Popoff MR, editors. The comprehensive sourcebook of bacterial protein toxins. 4th ed. Amsterdam: Academic; 2015.

    Google Scholar 

  • Redondo LM, Carrasco JMD, Redondo EA, Delgado F, Miyakawa MEF. Clostridium perfringens type E virulence traits involved in gut colonization. PLoS One. 2015;10(30):e0121305.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sakurai J, Kobayashi K. Lethal and dermonecrotic activities of Clostridium perfringens iota toxin: biological activities induced by cooperation of two nonlinked components. Microbiol Immunol. 1995;39:249–53.

    Article  CAS  PubMed  Google Scholar 

  • Sakurai J, Nagahama M, Oda M, Tsuge H, Kobayashi K. Clostridium perfringens iota-toxin: structure and function. Toxins. 2009;1:208–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandvig K, Lingelem ABD, Skotland T, Bergan J. Shiga toxins: properties and action on cells. In: Alouf JE, Adant D, Popoff MR, editors. The comprehensive sourcebook of bacterial protein toxins. 4th ed. Amsterdam: Academic; 2015.

    Google Scholar 

  • Schering B, Barmann M, Chhatwal GS, Geipel U, Aktories K. ADP-ribosylation of skeletal muscle and non-muscle actin by Clostridium perfringens iota toxin. Eur J Biochem. 1988;171:225–9.

    Article  CAS  PubMed  Google Scholar 

  • Schleberger C, Hochmann H, Barth H, Aktories K, Schulz GE. Structure and action of the binary C2 toxin from Clostridium botulinum. J Mol Biol. 2006;364:705–15.

    Article  CAS  PubMed  Google Scholar 

  • Schwan C, Stecher B, Tzivelekidis T, van Ham M, Rohde M, Hardt W-D, Wehland J, Aktories K. Clostridium difficile toxin CDT induces formation of microtubule-based protrusions and increases adherence of bacteria. PLoS Pathog. 2009;5(10):1–14.

    Article  Google Scholar 

  • Schwan C, Kruppke AS, Nolke T, Schumacher L, Koch-Nolte F, Kudryashev M, Stahlberg H, Aktories K. Clostridium difficile toxin CDT hijacks microtubule organization and reroutes vesicle traffic to increase pathogen adherence. Proc Natl Acad Sci U S A. 2014;111:2313–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seekatz AM, Aas J, Gessert CE, Rubin TA, Saman DM, Bakken JS, Young VB. Recovery of the gut microbiome following fecal mirobiota transplantation. mBio. 2014;5:e00893–914.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shah N, Shaaban H, Spira R, Slim J, Boghossian J. Intravenous immunoglobulin in the treatment of severe Clostridium difficile colitis. J Global Infect Dis. 2014;6:82–5.

    Article  Google Scholar 

  • Shrestha A, McClane BA. Clostridium perfringens enterotoxin. In: Alouf JE, Adant D, Popoff MR, editors. The comprehensive sourcebook of bacterial protein toxins. 4th ed. Amsterdam: Academic; 2015.

    Google Scholar 

  • Stiles BG, Wilkins TD. Clostridium perfringens iota toxin: synergism between two proteins. Toxicon. 1986a;24:767–73.

    Article  CAS  PubMed  Google Scholar 

  • Stiles BG, Wilkins TD. Purification and characterization of Clostridium perfringens iota toxin: dependence on two nonlinked proteins for biological activity. Infect Immun. 1986b;54:683–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stiles BG, Hale ML, Marvaud JC, Popoff MR. Clostridium perfringens iota toxin: binding studies and characterization of cell surface receptor by fluorescence-activated cytometry. Infect Immun. 2000;68:3475–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stiles BG, Hale ML, Marvaud JC, Popoff MR. Clostridium perfringens iota toxin: characterization of the cell-associated iota b complex. Biochem J. 2002;367:801–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugii S, Kozaki S. Hemagglutinating and binding properties of botulinum C2 toxin. Biochim Biophys Acta. 1990;1034:176–9.

    Article  CAS  PubMed  Google Scholar 

  • Sundriyal A, Roberts AK, Shone CC, Acharya KR. Structural basis for substrate recognition in the enzymatic component of ADP-ribosyltransferase toxin CDTa from Clostridium difficile. J Biol Chem. 2009;284:28713–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vandekerckhove J, Schering B, Bärmann M, Aktories K. Clostridium perfringens iota toxin ADP-ribosylates skeletal muscle actin in Arg-177. FEBS Lett. 1987;22:48–52.

    Article  Google Scholar 

  • Wigelsworth DJ, Ruthel G, Schnell L, Herrlich P, Blonder J, Veenstra TD, Carman RJ, Wilkins TD, Tran van Nhieu G, Pauillac S, Gibert M, Sauvonnet N, Stiles BG, Popoff MR, Barth H. CD44 promotes intoxication by the clostridial iota-family toxins. PLoS ONE. 2012;7:e51356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yonogi S, Matsuda S, Kawai T, Yoda T, Harada T, Kumeda Y, Gotoh K, Hiyoshi H, Nakamura S, Kodama T, Iida T. BEC, a novel enterotoxin of Clostridium perfringens found in human clinical isolates from acute gastroenteritis outbreaks. Infect Immun. 2014;82:2390–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu X, Liu T, Liang X, Tang C, Zhu J, Wang S, Li S, Deng Q, Wang L, Zheng A, Li P. Rapid detection of vip1-type genes from Bacillus cereus and characterization of a novel vip binary toxin gene. FEMS Microbiol Lett. 2011;325:30–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradley G. Stiles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Stiles, B.G., Barth, H., Popoff, M.R. (2016). Clostridium perfringens Iota Toxin: A Successfully Shared Template for Common Enteric Pathogens. In: Gopalakrishnakone, P., Stiles, B., Alape-Girón, A., Dubreuil, J., Mandal, M. (eds) Microbial Toxins. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6725-6_10-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6725-6_10-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6725-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics