Skip to main content

Lignocellulose Pretreatment Using Acid as Catalyst

  • Living reference work entry
  • First Online:
Handbook of Biorefinery Research and Technology

Abstract

Pretreatment is a prerequisite step for bioconversion of lignocellulose into liquid biofuels and chemicals. Among the numerous developed pretreatment methods, acid-catalyzed pretreatment belongs to the predominant technologies which can effectively destroy the rigid structure of lignocellulose and greatly enhance the conversion of cellulose and hemicellulose. This chapter reviewed the current progress in lignocellulose pretreatment using acid as catalyst, including inorganic acids (sulfuric acid, SO2, phosphoric acid, HCl, and nitric acid) and organic acids (oxalic acid, maleic acid, and organic acids assisted fractionation), and stressed the novelty and importance of the dry acid pretreatment (DryDA) and the commercial applications of these pretreatment technologies in the established commercial cellulosic ethanol plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Lynd LR, Weimer PJ, Zyl WHV, Pretoriums IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Choi CH, Mathews AP (1996) Two-step acid hydrolysis process kinetics in the saccharification of low-grade biomass: 1. Experimental studies on the formation and degradation of sugars. Bioresour Technol 58:101–106

    CAS  Google Scholar 

  3. Kim JS, Lee YY, Torget RW (2001) Cellulose hydrolysis under extremely low sulfuric acid and high-temperature conditions. Appl Biochem Biotechnol 91–93:331–340

    PubMed  Google Scholar 

  4. Lee KC, Bulls M, Holmes J, Barrier JW (1997) Hybrid process for the conversion of lignocellulosic materials. Appl Biochem Biotechnol 66:1–23

    CAS  PubMed  Google Scholar 

  5. Liao W, Liu Y, Liu CB, Wen ZY, Chen SL (2006) Acid hydrolysis of fibers from dairy manure. Bioresour Technol 97:1687–1695

    CAS  PubMed  Google Scholar 

  6. Iranmahboob J, Nadim F, Monemi S (2002) Optimizing acid-hydrolysis: a critical step for production of ethanol from mixed wood chips. Biomass Bioenergy 22:401–404

    CAS  Google Scholar 

  7. Jung YH, Kim KH (2015) Acidic pretreatment. In: Pandey A, Negi S, Larroche C (eds) Pretreatment of biomass: processes and technologies. Elsevier B.V., Amsterdam, Netherlands, pp 27–50

    Google Scholar 

  8. Tolan JS (2002) Iogen’s process for producing ethanol from cellulosic biomass. Clean Techn Environ Policy 3:339–345

    Google Scholar 

  9. Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807

    CAS  PubMed  Google Scholar 

  10. Hu F, Ragauskas A (2012) Pretreatment and lignocellulosic chemistry. Bioenergy Res 5:1043–1066

    CAS  Google Scholar 

  11. Zhang J, Hou WL, Bao J (2016) Reactors of high solid loading pretreatment of lignocellulosic biomass. Adv Biochem Eng Biotechnol 152:75–90

    CAS  PubMed  Google Scholar 

  12. Galbe M, Zacchi G (2007) Pretreatment of lignocellulosic materials for efficient bioethanol production. Adv Biochem Eng Biotechnol 108:41–65

    CAS  PubMed  Google Scholar 

  13. Chandra RP, Bura R, Mabee WE, Berlin A, Pan X, Saddler JN (2007) Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics? Adv Biochem Eng Biotechnol 108:67–93

    CAS  PubMed  Google Scholar 

  14. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    CAS  PubMed  Google Scholar 

  15. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729

    CAS  Google Scholar 

  16. Sathitsuksanoh N, George A, Zhang YH (2013) New lignocellulose pretreatments by using cellulose solvents: a review. J Chem Technol Biotechnol 88:169–180

    CAS  Google Scholar 

  17. Um BH, Karim MN, Henk LL (2003) Effect of sulfuric and phosphoric acid pretreatments on enzymatic hydrolysis of corn stover. Appl Biochem Biotechnol 105–108:115–125

    PubMed  Google Scholar 

  18. Jensen JR, Morinelly JE, Gossen KR, Brodeur-Campbell MJ, Shonnard DR (2010) Effects of dilute acid pretreatment conditions on enzymatic hydrolysis monomer and oligomer sugar yields for aspen, balsam, and switchgrass. Bioresour Technol 101:2317–2325

    CAS  PubMed  Google Scholar 

  19. Tian S, Zhu W, Gleisner R, Pan XJ, Zhu JY (2011) Comparisons of SPORL and dilute acid pretreatments for sugar and ethanol productions from aspen. Biotechnol Prog 27:419–427

    CAS  PubMed  Google Scholar 

  20. Wyman CE, Balan V, Dale BE, Elander RT, Falls M, Hames B, Holtzapple MT, Ladisch MR, Lee YY, Mosier N, Pallapolu VR, Shi J, Thomas SR, Warner RE (2011) Comparative data on effects of leading pretreatments and enzyme loadings and formulations on sugar yields from different switchgrass sources. Bioresour Technol 102:11052–11062

    CAS  PubMed  Google Scholar 

  21. Zhang J, Ma X, Yu J, Zhang X, Tan T (2011) The effects of four different pretreatments on enzymatic hydrolysis of sweet sorghum bagasse. Bioresour Technol 102:4585–4589

    CAS  PubMed  Google Scholar 

  22. Shi J, Pu Y, Yang B, Ragauskas A, Wyman CE (2011) Comparison of microwaves to fluidized sand baths for heating tubular reactors for hydrothermal and dilute acid batch pretreatment of corn stover. Bioresour Technol 102:5952–5961

    CAS  PubMed  Google Scholar 

  23. Ucar G (1990) Pretreatment of poplar by acid and alkali for enzymatic hydrolysis. Wood Sci Technol 24:171–180

    CAS  Google Scholar 

  24. Zhu YM, Lee YY, Elander RT (2005) Optimization of dilute-acid pretreatment of corn stover using a high-solids percolation reactor. Appl Biochem Biotechnol 121:1045–1054

    PubMed  Google Scholar 

  25. Lee YY, Wu ZW, Torget RW (2000) Modeling of countercurrent shrinking-bed reactor in dilute-acid total-hydrolysis of lignocellulosic biomass. Bioresour Technol 71:29–39

    CAS  Google Scholar 

  26. Taherzadeh MJ, Karimi K (2007) Enzyme-based hydrolysis processes for ethanol from lignocellulosic materials: a review. Bioresources 2:707–738

    CAS  Google Scholar 

  27. Chen RF, Wu ZW, Lee YY (1998) Shrinking-bed model for percolation process applied to dilute-acid pretreatment hydrolysis of cellulosic biomass. Appl Biochem Biotechnol 70–72:37–49

    Google Scholar 

  28. Nguyen QA, Tucker MP, Keller FA, Eddy FP (2000) Two-stage dilute-acid pretreatment of softwoods. Appl Biochem Biotechnol 84–86:561–575

    PubMed  Google Scholar 

  29. Bhagia S, Li HJ, Gao XD, Kumar R, Wyman CE (2016) Flowthrough pretreatment with very dilute acid provides insights into high lignin contribution to biomass recalcitrance. Biotechnol Biofuels 9:245

    PubMed  PubMed Central  Google Scholar 

  30. Wang W, Chen XW, Donohoe BS, Ciesielski PN, Katahira R, Kuhn EM, Kafle K, Lee CM, Park S, Kim SH, Tucker MP, Himmel ME, Johnson D (2014) Effect of mechanical disruption on the effectiveness of three reactors used for dilute acid pretreatment of corn stover. Part 1: chemical and physical substrate analysis. Biotechnol Biofuels 7:57

    PubMed  PubMed Central  Google Scholar 

  31. Humbird D, Davis R, Tao L, Kinchin C, Hsu D, Aden A, Schoen P, Lukas J, Olthof B, Worley M, Sexton D, Dudgeon D (2011) Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol. National Renewable Energy Laboratory located in Golden, Colorado, USA, Technical report NREL/TP-5100-47764

    Google Scholar 

  32. Wu MM, Chang K, Gregg DJ, Boussaid A, Beatson RP, Saddler JN (1999) Optimization of steam explosion to enhance hemicellulose recovery and enzymatic hydrolysis of cellulose in softwoods. Appl Biochem Biotechnol 77–79:47–54

    Google Scholar 

  33. Wong KKY, Deverell KF, Mackie KL, Clark TA, Donaldson LA (1998) The relationship between fiber porosity and cellulose digestibility in steam-exploded Pinus radiata. Biotechnol Bioeng 31:447–456

    Google Scholar 

  34. Stenberg K, Tengborg C, Galbe M, Zacchi G (1998) Optimization of steam pretreatment of SO2-impregnated mixed softwoods for ethanol production. J Chem Technol Biotechnol 71:299–308

    CAS  Google Scholar 

  35. Ewanick SM, Bura R, Saddler JN (2007) Acid-catalyzed steam pretreatment of lodgepole pine and subsequent enzymatic hydrolysis and fermentation to ethanol. Biotechnol Bioeng 98:737–746

    CAS  PubMed  Google Scholar 

  36. Soderstrom J, Pilcher L, Galbe M, Zacchai G (2002) Two-step steam pretreatment of softwood with SO2 impregnation for ethanol production. Appl Biochem Biotechnol 98–100:5–21

    PubMed  Google Scholar 

  37. Monavari S, Bennato A, Galbe M, Zacchi G (2010) Improved one-step steam pretreatment of SO2-impregnated softwood with time-dependent temperature profile for ethanol production. Biotechnol Prog 26:1054–1060

    CAS  PubMed  Google Scholar 

  38. Ohgren K, Galbe M, Zacchi G (2005) Optimization of steam pretreatment of SO2-impregnated corn stover for fuel ethanol production. Appl Biochem Biotechnol 121–124:1055–1067

    PubMed  Google Scholar 

  39. Israilides CJ, Grant GA, Han YW (1978) Sugar level, fermentability, and acceptability of straw treated with different acids. Appl Environ Microbiol 36:43–46

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Nair RB, Lundin M, Brandberg T, Lennartsson PR, Taherzadeh MJ (2015) Dilute phosphoric acid pretreatment of wheat bran for enzymatic hydrolysis and subsequent ethanol production by edible fungi Neurospora intermedia. Ind Crop Prod 69:314–323

    CAS  Google Scholar 

  41. Gamez S, Ramirez JA, Garrote G, Vazquez M (2004) Manufacture of fermentable sugar solutions from sugar cane bagasse hydrolyzed with phosphoric acid at atmospheric pressure. J Agric Food Chem 52:4172–4177

    CAS  PubMed  Google Scholar 

  42. Gamez S, Gonzalez-Cabriales JJ, Ramirez JA, Garrote G, Vazquez M (2006) Study of the hydrolysis of sugar cane bagasse using phosphoric acid. J Food Eng 74:78–88

    CAS  Google Scholar 

  43. Vazquez M, Oliva M, Tellez-Luis SJ, Ramirez JA (2007) Hydrolysis of sorghum straw using phosphoric acid: evaluation of furfural production. Bioresour Technol 98:3053–3060

    CAS  PubMed  Google Scholar 

  44. Nair RB, Lundin M, Lennartsson PR, Taherzadeh MJ (2017) Optimizing dilute phosphoric acid pretreatment of wheat straw in the laboratory and in a demonstration plant for ethanol and edible fungal biomass production using Neurospora intermedia. J Chem Technol Biotechnol 92:1256–1265

    CAS  Google Scholar 

  45. Nair RB, Kabir MM, Lennartsson PR, Taherzadeh MJ, Horvath IS (2017) Integrated process for ethanol, biogas, and edible filamentous fungi-based animal feed production from dilute phosphoric acid-pretreated wheat straw. Appl Biochem Biotechnol. https://doi.org/10.1007/s12010-017-2525-1

  46. Geddes CC, Peterson JJ, Roslander C, Zacchi G, Mullinnix MT, Shanmugam KT, Ingram LO (2010) Optimizing the saccharification of sugar cane bagasse using dilute phosphoric acid followed by fungal cellulases. Bioresour Technol 101:1851–1857

    CAS  PubMed  Google Scholar 

  47. Vasconcelos SMD, Santos AMP, Rocha GJM, Souto-Maior AM (2013) Diluted phosphoric acid pretreatment for production of fermentable sugars in a sugarcane-based biorefinery. Bioresour Technol 135:46–52

    PubMed  Google Scholar 

  48. Toquero C, Bolado S (2014) Effect of four pretreatments on enzymatic hydrolysis and ethanol fermentation of wheat straw. Influence of inhibitors and washing. Bioresour Technol 157:68–76

    CAS  PubMed  Google Scholar 

  49. Kim I, Lee B, Park JY, Choi SA, Han JI (2014) Effect of nitric acid on pretreatment and fermentation for enhancing ethanol production of rice straw. Carbohydr Polym 99:563–567

    CAS  PubMed  Google Scholar 

  50. Skiba EA, Budaeva VV, Baibakova OV, Zolotukhin VN, Sakovich GV (2017) Dilute nitric-acid pretreatment of oat hulls for ethanol production. Biochem Eng J 126:118–125

    CAS  Google Scholar 

  51. Kootstra AM, Beeftink HH, Scott EL, Sanders JPM (2009) Comparison of dilute mineral and organic acid pretreatment for enzymatic hydrolysis of wheat straw. Biochem Eng J 46:126–131

    CAS  Google Scholar 

  52. Lee JW, Rodrigues RCLB, Jeffries TW (2009) Simultaneous saccharification and ethanol fermentation of oxalic acid pretreated corncob assessed with response surface methodology. Bioresour Technol 100:6307–6311

    CAS  PubMed  Google Scholar 

  53. Lu Y, Mosier NS (2007) Biomimetic catalysis for hemicelluloses hydrolysis in corn stover. Biotechnol Prog 23:116–123

    CAS  PubMed  Google Scholar 

  54. Lee JW, Jeffries TW (2011) Efficiencies of acid catalysts in the hydrolysis of lignocellulosic biomass over a range of combined severity factors. Bioresour Technol 102:5884–5890

    CAS  PubMed  Google Scholar 

  55. Mosier NS, Sarikaya A, Ladisch CM, Ladisch MR (2001) Characterization of dicarboxylic acids for cellulose hydrolysis. Biotechnol Prog 17:474–480

    CAS  PubMed  Google Scholar 

  56. Schmidi CJ, Whitten BK, Nicholas DD (1981) A proposed role for oxalic acid in non-enzymatic wood decay by brown-rot fungi. In: Proceedings of the American Wood Preservers’ Association, vol 77, pp 157–164

    Google Scholar 

  57. Munir EM, Yoon JJ, Tokimatsu T, Hattori T, Shimada M (2001) A physiological role for oxalic acids biosynthesis in the wood-rotting basidiomycete Fomitopsis palustris. Proc Natl Acad Sci USA 98:11126–11130

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Shimada M, Ma DB, Akamatsu Y, Hattori T (1994) A proposed role of oxalic acid in wood decay systems of wood-rotting basidiomycetes. FEMS Microbiol Rev 13:285–296

    CAS  Google Scholar 

  59. Dutton MV, Evans CS (1996) Oxalate production by fungi: its role in pathogenicity and ecology in the soil environment. Can J Microbiol 42:881–895

    CAS  Google Scholar 

  60. Green F, Larsen MJ, Winandy JE, Highley TL (1991) Role of oxalic-acid in incipient brown-rot decay. Mater Org 26:191–213

    CAS  Google Scholar 

  61. Evans CS, Dutton MV, Guilen F, Veness RG (1994) Enzymes and small molecular mass agents involved with lignocellulose degradation. FEMS Microbiol Rev 13:235–239

    CAS  Google Scholar 

  62. Hofrichter M (2002) Review: lignin conversion by manganese peroxidase (MnP). Enzyme Microb Technol 30:454–466

    CAS  Google Scholar 

  63. Lee JW, Houtman CJ, Kim HY, Choi IG, Jeffries TW (2011) Scale-up study of oxalic acid pretreatment of agricultural lignocellulosic biomass for the production of bioethanol. Bioresour Technol 102:7451–7456

    CAS  PubMed  Google Scholar 

  64. Zhang TY, Kumar R, Wyman CE (2013) Sugar yields from dilute oxalic acid pretreatment of maple wood compared to those with other dilute acids and hot water. Carbohydr Polym 92:334–344

    CAS  PubMed  Google Scholar 

  65. Kundu C, Lee HJ, Lee JW (2015) Enhanced bioethanol production from yellow poplar by deacetylation and oxalic acid pretreatment without detoxification. Bioresour Technol 178:28–35

    CAS  PubMed  Google Scholar 

  66. Scordia D, Cosentino SL, Jeffries TW (2013) Enzymatic hydrolysis, simultaneous saccharification and ethanol fermentation of oxalic acid pretreated giant reed (Arundo donax L.). Ind Crop Prod 49:392–399

    CAS  Google Scholar 

  67. Lee HJ, Seo YJ, Lee JW (2013) Characterization of oxalic acid pretreatment on lignocellulosic biomass using oxalic acid recovered by electrodialysis. Bioresour Technol 133:87–91

    CAS  PubMed  Google Scholar 

  68. Kootstra AMJ, Beeftink HH, Scott EL, Sanders JPM (2009) Optimization of the dilute maleic acid pretreatment of wheat straw. Biotechnol Biofuels 2:31

    PubMed  PubMed Central  Google Scholar 

  69. Barisik G, Isci A, Kutlu N, Elmaci SB, Akay B (2016) Optimization of organic acid pretreatment of wheat straw. Biotechnol Prog 32:1487–1493

    CAS  PubMed  Google Scholar 

  70. Jung YH, Park HM, Kim KH (2015) Whole slurry saccharification and fermentation of maleic acid-pretreated rice straw for ethanol production. Bioprocess Biosyst Eng 38:1639–1644

    CAS  PubMed  Google Scholar 

  71. Jung YH, Park HM, Kim DH, Park YC, Seo JH, Kim KH (2015) Combination of high solids loading pretreatment and ethanol fermentation of whole slurry of pretreated rice straw to obtain high ethanol titers and yields. Bioresour Technol 198:861–866

    CAS  PubMed  Google Scholar 

  72. Zhao XB, Li SM, Wu RC, Liu DH (2017) Organosolv fractionating pretreatment of lignocellulosic biomass for efficient enzymatic saccharification: chemistry, kinetics, and substrate structures. Biofuels Bioprod Biorefin 11:567–590

    CAS  Google Scholar 

  73. Zhao XB, Liu DH (2012) Fractionating pretreatment of sugarcane bagasse by aqueous formic acid with direct recycle of spent liquor to increase cellulose digestibility-the Formiline process. Bioresour Technol 117:25–32

    CAS  PubMed  Google Scholar 

  74. Yu G, Li B, Liu C, Zhang YD, Wang HS, Mu XD (2013) Fractionation of the main components of corn stover by formic acid and enzymatic saccharification of solid residue. Ind Crop Prod 50:75–757

    Google Scholar 

  75. Xu J, Thomsen MH, Thomsen AB (2010) Investigation of acetic acid-catalyzed hydrothermal pretreatment on corn stover. Appl Microbiol Biotechnol 86:509–516

    CAS  PubMed  Google Scholar 

  76. Wi SG, Cho EJ, Lee DS, Lee SJ, Lee YJ, Bae HJ (2015) Lignocellulose conversion for biofuel: a new pretreatment greatly improves downstream biocatalytic hydrolysis of various lignocellulosic materials. Biotechnol Biofuels 8:228

    PubMed  PubMed Central  Google Scholar 

  77. Zhang J, Wang XS, Chu DQ, He YQ, Bao J (2011) Dry pretreatment of lignocellulose with extremely low steam and water usage for bioethanol production. Bioresour Technol 102:4480–4488

    CAS  PubMed  Google Scholar 

  78. He YQ, Zhang LP, Zhang J, Bao J (2014) Helically agitated mixing in dry dilute acid pretreatment enhances the bioconversion of corn stover into ethanol. Biotechnol Biofuels 7:1

    PubMed  PubMed Central  Google Scholar 

  79. He YQ, Zhang J, Bao J (2014) Dry dilute acid pretreatment by co-currently feeding of corn stover feedstock and dilute acid solution without impregnation. Bioresour Technol 158:360–364

    CAS  PubMed  Google Scholar 

  80. Shao S, Zhang J, Bao J (2017) Reducing of reactor corrosion by eliminating liquid-phase existence in dry dilute acid pretreatment of corn stover. Energy Fuels 31:6140–6144

    CAS  Google Scholar 

  81. Zhang J, Shao S, Bao J (2016) Long term storage of dilute acid pretreated corn stover feedstock and ethanol fermentability evaluation. Bioresour Technol 201:355–359

    CAS  PubMed  Google Scholar 

  82. Fang ZH, Zhang J, Lu QM, Bao J (2014) Process development of short-chain polyols synthesis from corn stover by combination of enzymatic hydrolysis and catalytic hydrogenolysis. Biotechnol Rep 3:15–20

    CAS  Google Scholar 

  83. Liu G, Bao J (2017) Maximizing cellulosic ethanol potentials by minimizing wastewater generation and energy consumption: competing with corn ethanol. Bioresour Technol 245:18–26

    CAS  PubMed  Google Scholar 

  84. Valdivia M, Galan JL, Laffarga J, Ramos JL (2016) Biofuels 2020: biorefineries based on lignocellulosic materials. Microb Biotechnol 9:585–594

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Bao .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature B.V.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zhang, J., Bao, J. (2018). Lignocellulose Pretreatment Using Acid as Catalyst. In: Bisaria, V. (eds) Handbook of Biorefinery Research and Technology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6724-9_3-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6724-9_3-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-6724-9

  • Online ISBN: 978-94-007-6724-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics