Skip to main content

The Contribution of Reg Family Proteins to Cell Growth and Survival in Pancreatic Islets

  • Reference work entry
  • First Online:
Islets of Langerhans

Abstract

In 2008, we have reviewed Reg family proteins which have been found and characterized in several systems including cell growth and regeneration in the pancreas. Since then the research scope has expanded significantly to the (patho-)physiology of the liver, intestine, immunity, and cancer. More importantly, in communicating our research findings, we feel the need of further classification in the family of seven independent genes and among key species. A more uniformed terminology should help us to understand their isoform-specific functions and/or mode of activation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

HIP:

Gene expressed in hepatocellular carcinoma-intestine-pancreas

PAP:

Pancreatitis-associated protein

PSP:

Pancreatic stone protein

PTP:

Pancreatic thread protein

RELP:

Regenerating protein-like protein

References

  • Abe M et al (2000) Identification of a novel Reg family gene, Reg IIIdelta, and mapping of all three types of Reg family gene in a 75 kilobase mouse genomic region. Gene 246(1–2):111–122

    PubMed  CAS  Google Scholar 

  • Acquatella-Tran Van Ba I et al (2012) Regenerating islet-derived 1α (Reg-1α) protein is new neuronal secreted factor that stimulates neurite outgrowth via exostosin Tumor-like 3 (EXTL3) receptor. J Biol Chem 287(7):4726–4739

    PubMed  PubMed Central  Google Scholar 

  • Aggarwal S et al (2001) Acinar cells of the pancreas are a target of interleukin-22. J Interferon Cytokine Res 21(12):1047–1053

    PubMed  CAS  Google Scholar 

  • Akiyama T et al (2001) Activation of Reg gene, a gene for insulin-producing β-cell regeneration: poly(ADP-ribose) polymerase binds Reg promoter and regulates the transcription by autopoly(ADP-ribosyl)ation. Proc Natl Acad Sci USA 98(1):48–53

    PubMed  CAS  PubMed Central  Google Scholar 

  • Algul H et al (2007) Pancreas-specific RelA/p65 truncation increases susceptibility of acini to inflammation-associated cell death following cerulein pancreatitis. J Clin Invest 117(6):1490–1501

    PubMed  PubMed Central  Google Scholar 

  • Anastasi E et al (1999) Expression of Reg and cytokeratin 20 during ductal cell differentiation and proliferation in a mouse model of autoimmune diabetes. Eur J Endocrinol 141(6):644–652

    PubMed  CAS  Google Scholar 

  • Ashcroft FJ et al (2004) Control of expression of the lectin-like protein Reg-1 by gastrin: role of the Rho family GTPase RhoA and a C-rich promoter element. Biochem J 381(Pt 2):397–403

    PubMed  CAS  PubMed Central  Google Scholar 

  • Astorri E et al (2010) Circulating Reg1α proteins and autoantibodies to Reg1α proteins as biomarkers of β-cell regeneration and damage in type 1 diabetes. Horm Metab Res 42(13):955–960

    PubMed  CAS  Google Scholar 

  • Baeza N et al (1997) Specific reg II gene overexpression in the non-obese diabetic mouse pancreas during active diabetogenesis. FEBS Lett 416(3):364–368

    PubMed  CAS  Google Scholar 

  • Baeza N et al (2001) Pancreatitis-associated protein (HIP/PAP) gene expression is upregulated in NOD mice pancreas and localized in exocrine tissue during diabetes. Digestion 64(4):233–239

    PubMed  CAS  Google Scholar 

  • Barbosa H et al (2006) Islet Neogenesis Associated Protein (INGAP) modulates gene expression in cultured neonatal rat islets. Regul Pept 136(1–3):78–84

    PubMed  CAS  Google Scholar 

  • Bartoli C et al (1993) A gene homologous to the reg gene is expressed in the human pancreas. FEBS Lett 327(3):289–293

    PubMed  CAS  Google Scholar 

  • Bartoli C et al (1998) Expression of peptide-23/pancreatitis-associated protein and Reg genes in human pituitary and adenomas: comparison with other fetal and adult human tissues. J Clin Endocrinol Metab 83(11):4041–4046

    PubMed  CAS  Google Scholar 

  • Billestrup N, Nielsen JH (1991) The stimulatory effect of growth hormone, prolactin, and placental lactogen on β-cell proliferation is not mediated by insulin-like growth factor-I. Endocrinology 129(2):883–888

    PubMed  CAS  Google Scholar 

  • Bimmler D et al (1999) Regulation of PSP/reg in rat pancreas: immediate and steady-state adaptation to different diets. Pancreas 19(3):255–267

    PubMed  CAS  Google Scholar 

  • Bimmler D et al (2004) Coordinate regulation of PSP/reg and PAP isoforms as a family of secretory stress proteins in an animal model of chronic pancreatitis. J Surg Res 118(2):122–135

    PubMed  CAS  Google Scholar 

  • Bishnupuri KS et al (2010) Reg IV regulates normal intestinal and colorectal cancer cell susceptibility to radiation-induced apoptosis. Gastroenterology 138(2):616.e1–626.e2

    Google Scholar 

  • Bonner-Weir S (2000a) Life and death of the pancreatic β cells. Trends Endocrinol Metab 11(9):375–378

    PubMed  CAS  Google Scholar 

  • Bonner-Weir S (2000b) Perspective: postnatal pancreatic β cell growth. Endocrinology 141(6):1926–1929

    PubMed  CAS  Google Scholar 

  • Bonner-Weir S et al (2004) The pancreatic ductal epithelium serves as a potential pool of progenitor cells. Pediatr Diabetes 5:16–22

    PubMed  Google Scholar 

  • Bonner-Weir S et al (2008) Transdifferentiation of pancreatic ductal cells to endocrine β-cells. Biochem Soc Trans 36(Pt 3):353–356

    PubMed  CAS  Google Scholar 

  • Borelli MI et al (2005) INGAP-related pentadecapeptide: its modulatory effect upon insulin secretion. Regul Pept 131(1–3):97–102

    PubMed  CAS  Google Scholar 

  • Bouwens L et al (1994) Cytokeratins as markers of ductal cell differentiation and islet neogenesis in the neonatal rat pancreas. Diabetes 43(11):1279–1283

    PubMed  CAS  Google Scholar 

  • Cavard C et al (2006) Overexpression of regenerating islet-derived 1 α and 3 α genes in human primary liver tumors with β-catenin mutations. Oncogene 25(4):599–608

    PubMed  CAS  Google Scholar 

  • Chakraborty C et al (1995) Age-related changes in peptide-23/pancreatitis-associated protein and pancreatic stone protein/reg gene expression in the rat and regulation by growth hormone-releasing hormone. Endocrinology 136(5):1843–1849

    PubMed  CAS  Google Scholar 

  • Chang TJ et al (2011) Targeted expression of INGAP to β cells enhances glucose tolerance and confers resistance to streptozotocin-induced hyperglycemia. Mol Cell Endocrinol 335(2):104–109

    PubMed  CAS  Google Scholar 

  • Cheng CM et al (2000) Insulin-like growth factor 1 regulates developing brain glucose metabolism. Proc Natl Acad Sci USA 97(18):10236–10241

    PubMed  CAS  PubMed Central  Google Scholar 

  • Choi JH et al (2010) Isolation of genes involved in pancreas regeneration by subtractive hybridization. Biol Chem 391(9):1019–1029

    PubMed  CAS  Google Scholar 

  • Choi SM et al (2013) Innate Stat3-mediated induction of the antimicrobial protein Reg3gamma is required for host defense against MRSA pneumonia. J Exp Med 210(3):551–561

    PubMed  CAS  PubMed Central  Google Scholar 

  • Christa L et al (1996) HIP/PAP is an adhesive protein expressed in hepatocarcinoma, normal Paneth, and pancreatic cells. Am J Physiol 271(6 Pt 1):G993–G1002

    PubMed  CAS  Google Scholar 

  • Closa D, Motoo Y, Iovanna JL (2007) Pancreatitis-associated protein: from a lectin to an anti-inflammatory cytokine. World J Gastroenterol 13(2):170–174

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cozar-Castellano I et al (2004) Induction of β-cell proliferation and retinoblastoma protein phosphorylation in rat and human islets using adenovirus-mediated transfer of CDK4 and cyclin D1. Diabetes 53(1):149–159

    PubMed  CAS  Google Scholar 

  • Cui W et al (2009) Overexpression of Reg3α increases cell growth and the levels of cyclin D1 and CDK4 in insulinoma cells. Growth Factors 27(3):195–202

    PubMed  CAS  Google Scholar 

  • D’Amour KA et al (2006) Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 24(11):1392–1401

    PubMed  Google Scholar 

  • D’Ercole AJ (1999) Actions of IGF system proteins from studies of transgenic and gene knockout models. In: Rosenfeld RG, Roberts J (eds) The IGF system: molecular biology, physiology, and clinical applications. Humana Press, Totowa, pp 545–576

    Google Scholar 

  • De Leon DD et al (2006) Identification of transcriptional targets during pancreatic growth after partial pancreatectomy and exendin-4 treatment. Physiol Genomics 24(2):133–143

    PubMed  Google Scholar 

  • Dessein R et al (2009) Toll-like receptor 2 is critical for induction of Reg3β expression and intestinal clearance of Yersinia pseudotuberculosis. Gut 58(6):771–776

    PubMed  CAS  Google Scholar 

  • Dheen ST, Rajkumar K, Murphy LJ (1997) Islet cell proliferation and apoptosis in insulin-like growth factor binding protein-1 in transgenic mice. J Endocrinol 155(3):551–558

    PubMed  CAS  Google Scholar 

  • Diehl JA et al (1998) Glycogen synthase kinase-3β regulates cyclin D1 proteolysis and subcellular localization. Genes Dev 12(22):3499–3511

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dor Y et al (2004) Adult pancreatic β-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429(6987):41–46

    PubMed  CAS  Google Scholar 

  • Dungan KM, Buse JB, Ratner RE (2009) Effects of therapy in type 1 and type 2 diabetes mellitus with a peptide derived from islet neogenesis associated protein (INGAP). Diabetes Metab Res Rev 25(6):558–565

    PubMed  CAS  Google Scholar 

  • Dusetti NJ et al (1994) Molecular cloning, genomic organization, and chromosomal localization of the human pancreatitis-associated protein (PAP) gene. Genomics 19(1):108–114

    PubMed  CAS  Google Scholar 

  • Dusetti NJ et al (1995) Pancreatitis-associated protein I (PAP I), an acute phase protein induced by cytokines. Identification of two functional interleukin-6 response elements in the rat PAP I promoter region. J Biol Chem 270(38):22417–22421

    PubMed  CAS  Google Scholar 

  • Ferrés-Masó M et al (2009) PAP1 signaling involves MAPK signal transduction. Cell Mol Life Sci 66(13):2195–2204

    PubMed  Google Scholar 

  • Folch-Puy E et al (2006) Pancreatitis-associated protein I suppresses NF-kappa B activation through a JAK/STAT-mediated mechanism in epithelial cells. J Immunol 176(6):3774–3779

    PubMed  CAS  Google Scholar 

  • Frigerio JM et al (1993a) Identification of a second rat pancreatitis-associated protein. Messenger RNA cloning, gene structure, and expression during acute pancreatitis. Biochemistry 32(35):9236–9241

    PubMed  CAS  Google Scholar 

  • Frigerio JM et al (1993b) The pancreatitis associated protein III (PAP III), a new member of the PAP gene family. Biochim Biophys Acta 1216(2):329–331

    PubMed  CAS  Google Scholar 

  • Fujishiro M et al (2012) Regenerating gene (REG) 1 α promotes pannus progression in patients with rheumatoid arthritis. Mod Rheumatol 22(2):228–237

    PubMed  CAS  Google Scholar 

  • Gedulin BR et al (2005) Exenatide (exendin-4) improves insulin sensitivity and β-cell mass in insulin-resistant obese fa/fa Zucker rats independent of glycemia and body weight. Endocrinology 146(4):2069–2076

    PubMed  CAS  Google Scholar 

  • George M et al (2002) β cell expression of IGF-I leads to recovery from type 1 diabetes. J Clin Invest 109(9):1153–1163

    PubMed  CAS  PubMed Central  Google Scholar 

  • Georgia S, Bhushan A (2004) β cell replication is the primary mechanism for maintaining postnatal β cell mass. J Clin Invest 114(7):963–968

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gigoux V et al (2008) Reg genes are CCK2 receptor targets in ElasCCK2 mice pancreas. Regul Pept 146(1–3):88–98

    PubMed  CAS  Google Scholar 

  • Gironella M et al (2007) Experimental acute pancreatitis in PAP/HIP knock-out mice. Gut 56(8):1091–1097

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gironella M et al (2013) Reg3β deficiency impairs pancreatic tumor growth by skewing macrophage polarization. Cancer Res 73(18):5682–5694

    PubMed  CAS  Google Scholar 

  • Graf R et al (2001) A family of 16-kDa pancreatic secretory stress proteins form highly organized fibrillar structures upon tryptic activation. J Biol Chem 276(24):21028–21038

    PubMed  CAS  Google Scholar 

  • Graf R et al (2002) Coordinate regulation of secretory stress proteins (PSP/reg, PAP I, PAP II, and PAP III) in the rat exocrine pancreas during experimental acute pancreatitis. J Surg Res 105(2):136–144

    PubMed  CAS  Google Scholar 

  • Graf R et al (2006) Exocrine meets endocrine: pancreatic stone protein and regenerating protein–two sides of the same coin. J Surg Res 133(2):113–120

    PubMed  CAS  Google Scholar 

  • Gross DJ et al (1998) Amelioration of diabetes in nonobese diabetic mice with advanced disease by linomide-induced immunoregulation combined with Reg protein treatment. Endocrinology 139(5):2369–2374

    PubMed  CAS  Google Scholar 

  • Gu G, Brown JR, Melton DA (2003) Direct lineage tracing reveals the ontogeny of pancreatic cell fates during mouse embryogenesis. Mech Dev 120(1):35–43

    PubMed  CAS  Google Scholar 

  • Gurr W et al (2002) A Reg family protein is overexpressed in islets from a patient with new-onset type 1 diabetes and acts as T-cell autoantigen in NOD mice. Diabetes 51(2):339–346

    PubMed  CAS  Google Scholar 

  • Gurr W et al (2007) RegII is a β-cell protein and autoantigen in diabetes of NOD mice. Diabetes 56(1):34–40

    PubMed  CAS  Google Scholar 

  • Hamblet NS et al (2008) The Reg family member INGAP is a marker of endocrine patterning in the embryonic pancreas. Pancreas 36(1):1–9

    PubMed  CAS  Google Scholar 

  • Hansson A, Thoren M (1995) Activation of MAP kinase in Swiss 3T3 fibroblasts by insulin-like growth factor-I. Growth Regul 5(2):92–100

    PubMed  CAS  Google Scholar 

  • Hansson A, Hehenberger K, Thoren M (1996) Long-term treatment of Swiss 3T3 fibroblasts with dexamethasone attenuates MAP kinase activation induced by insulin-like growth factor- I (IGF-I). Cell Biochem Funct 14(2):121–129

    PubMed  CAS  Google Scholar 

  • Harbeck MC et al (1996) Expression of insulin receptor mRNA and insulin receptor substrate 1 in pancreatic islet β-cells. Diabetes 45(6):711–717

    PubMed  CAS  Google Scholar 

  • Harrison M et al (1998) Growth factor protection against cytokine-induced apoptosis in neonatal rat islets of Langerhans: role of Fas. FEBS Lett 435(2–3):207–210

    PubMed  CAS  Google Scholar 

  • Hartupee JC et al (2001) Isolation and characterization of a cDNA encoding a novel member of the human regenerating protein family: Reg IV. Biochim Biophys Acta 1518(3):287–293

    PubMed  CAS  Google Scholar 

  • Hashimoto N et al (2006) Ablation of PDK1 in pancreatic β cells induces diabetes as a result of loss of β cell mass. Nat Genet 38(5):589–593

    PubMed  CAS  Google Scholar 

  • He S-Q et al (2010) Inflammation and nerve injury induce expression of pancreatitis-associated protein-II in primary sensory neurons. Mol Pain 6:23

    PubMed  PubMed Central  Google Scholar 

  • Heald A, Stephens R, Gibson JM (2006) The insulin-like growth factor system and diabetes–an overview. Diabet Med 23(Suppl 1):19–24

    PubMed  CAS  Google Scholar 

  • Heiskala K et al (2010) Expression of Reg IV and Hath1 in neuroendocrine neoplasms. Histol Histopathol 25(1):63–72

    PubMed  CAS  Google Scholar 

  • Hervieu V et al (2006) HIP/PAP, a member of the reg family, is expressed in glucagon-producing enteropancreatic endocrine cells and tumors. Hum Pathol 37(8):1066–1075

    PubMed  CAS  Google Scholar 

  • Hill DJ et al (1999) Insulin-like growth factors prevent cytokine-mediated cell death in isolated islets of Langerhans from pre-diabetic non-obese diabetic mice. J Endocrinol 161(1):153–165

    PubMed  CAS  Google Scholar 

  • Hodin CM et al (2011) Starvation compromises Paneth cells. Am J Pathol 179(6):2885–2893

    PubMed  CAS  PubMed Central  Google Scholar 

  • Honda H, Nakamura H, Otsuki M (2002) The elongated PAP II/Reg III mRNA is upregulated in rat pancreas during acute experimental pancreatitis. Pancreas 25(2):192–197

    PubMed  Google Scholar 

  • Hu G et al (2011) Reg4 protects against acinar cell necrosis in experimental pancreatitis. Gut 60(6):820–828

    PubMed  CAS  Google Scholar 

  • Huszarik K et al (2010) Adjuvant immunotherapy increases β cell regenerative factor Reg2 in the pancreas of diabetic mice. J Immunol 185(9):5120–5129

    PubMed  CAS  Google Scholar 

  • Iovanna J et al (1991) Messenger RNA sequence and expression of rat pancreatitis-associated protein, a lectin-related protein overexpressed during acute experimental pancreatitis. J Biol Chem 266(36):24664–24669

    PubMed  CAS  Google Scholar 

  • Iovanna JL et al (1993) PAP, a pancreatic secretory protein induced during acute pancreatitis, is expressed in rat intestine. Am J Physiol 265(4 Pt 1):G611–G618

    PubMed  CAS  Google Scholar 

  • Itoh T, Teraoka H (1993) Cloning and tissue-specific expression of cDNAs for the human and mouse homologues of rat pancreatitis-associated protein (PAP). Biochim Biophys Acta 1172(1–2):184–186

    PubMed  CAS  Google Scholar 

  • Jamal AM et al (2005) Morphogenetic plasticity of adult human pancreatic islets of Langerhans. Cell Death Differ 12:702–712

    PubMed  CAS  Google Scholar 

  • Johansson ME, Hansson GC (2011) Microbiology. Keeping bacteria at a distance. Science 334(6053):182–183

    PubMed  CAS  Google Scholar 

  • Jung EJ, Kim CW (2002) Interaction between chicken protein tyrosine phosphatase 1 (CPTP1)-like rat protein phosphatase 1 (PTP1) and p60(v-src) in v-src-transformed Rat-1 fibroblasts. Exp Mol Med 34(6):476–480

    PubMed  CAS  Google Scholar 

  • Kamarainen M et al (2003) RELP, a novel human REG-like protein with up-regulated expression in inflammatory and metaplastic gastrointestinal mucosa. Am J Pathol 163(1):11–20

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kamimura T, West C, Beutler E (1992) Sequence of a cDNA clone encoding a rat Reg-2 protein. Gene 118(2):299–300

    PubMed  CAS  Google Scholar 

  • Kapur R et al (2012) Short-term effects of INGAP and Reg family peptides on the appearance of small β-cells clusters in non-diabetic mice. Islets 4(1):40–48

    Google Scholar 

  • Keim V, Loffler HG (1986) Pancreatitis-associated protein in bile acid-induced pancreatitis of the rat. Clin Physiol Biochem 4(2):136–142

    PubMed  CAS  Google Scholar 

  • Keim V et al (1984) An additional secretory protein in the rat pancreas. Digestion 29(4):242–249

    PubMed  CAS  Google Scholar 

  • Kimura N et al (1992) Expression of human regenerating gene mRNA and its product in normal and neoplastic human pancreas. Cancer 70(7):1857–1863

    PubMed  CAS  Google Scholar 

  • Klasan GS et al (2013) Reg3G gene expression in regenerating skeletal muscle and corresponding nerve. Muscle Nerve 49(1):61–68

    PubMed  Google Scholar 

  • Kobayashi S et al (2000) Identification of a receptor for reg (regenerating gene) protein, a pancreatic β-cell regeneration factor. J Biol Chem 275(15):10723–10726

    PubMed  CAS  Google Scholar 

  • Konishi H et al (2013) N-terminal cleaved pancreatitis-associated protein-III (PAP-III) serves as a scaffold for neurites and promotes neurite outgrowth. J Biol Chem 288(15):10205–10213

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lai Y et al (2012) The antimicrobial protein REG3A regulates keratinocyte proliferation and differentiation after skin injury. Immunity 37(1):74–84

    PubMed  CAS  Google Scholar 

  • Lasserre C et al (1992) A novel gene (HIP) activated in human primary liver cancer. Cancer Res 52(18):5089–5095

    PubMed  CAS  Google Scholar 

  • Lasserre C et al (1994) Structural organization and chromosomal localization of a human gene (HIP/PAP) encoding a C-type lectin overexpressed in primary liver cancer. Eur J Biochem 224(1):29–38

    PubMed  CAS  Google Scholar 

  • Laurine E et al (2005) PAP IB, a new member of the Reg gene family: cloning, expression, structural properties, and evolution by gene duplication. Biochim Biophys Acta 1727(3):177–187

    PubMed  CAS  Google Scholar 

  • Lee KS et al (2012) Helicobacter pylori CagA triggers expression of the bactericidal lectin REG3gamma via gastric STAT3 activation. PLoS One 7(2):e30786

    PubMed  CAS  PubMed Central  Google Scholar 

  • Levetan CS et al (2008) Discovery of a human peptide sequence signaling islet neogenesis. Endocr Pract 14(9):1075–1083

    PubMed  Google Scholar 

  • Levetan CS et al (2010) Human Reg3a gene protein as a novel islet neogenesis therapy for reversal of type 1 and 2 diabetes. In: American Diabetes Association, 70th scientific sessions, Orlando

    Google Scholar 

  • Li J et al (2009) Islet neogenesis-associated protein-related pentadecapeptide enhances the differentiation of islet-like clusters from human pancreatic duct cells. Peptides 30(12):2242–2249

    PubMed  CAS  Google Scholar 

  • Li L et al (2010) PSP/reg inhibits cultured pancreatic stellate cell and regulates MMP/TIMP ratio. Eur J Clin Invest 41(2):151–158

    PubMed  Google Scholar 

  • Li B et al (2013a) Intestinal adaptation and Reg gene expression induced by antidiabetic duodenal-jejunal bypass surgery in Zucker fatty rats. Am J Physiol Gastrointest Liver Physiol 304(7):G635–G645

    PubMed  CAS  Google Scholar 

  • Li B et al (2013b) Intestinal adaptation and Reg gene expression induced by anti-diabetic duodenal-jejunal bypass surgery in Zucker fatty rats. Am J Physiol Gastrointestin Liver Physiol 304(7):G635–G645

    CAS  Google Scholar 

  • Lieu HT et al (2005) HIP/PAP accelerates liver regeneration and protects against acetaminophen injury in mice. Hepatology 42(3):618–626

    PubMed  CAS  Google Scholar 

  • Lieu HT et al (2006) Reg2 inactivation increases sensitivity to Fas hepatotoxicity and delays liver regeneration post-hepatectomy in mice. Hepatology 44(6):1452–1464

    PubMed  CAS  Google Scholar 

  • Lipsett M et al (2007a) The role of islet neogenesis-associated protein (INGAP) in islet neogenesis. Cell Biochem Biophys 48(2–3):127–137

    PubMed  CAS  Google Scholar 

  • Lipsett MA, Castellarin ML, Rosenberg L (2007b) Acinar plasticity: development of a novel in vitro model to study human acinar-to-duct-to-islet differentiation. Pancreas 34(4):452–457

    PubMed  Google Scholar 

  • Liu JL, Cui W (2007) Which gene, Reg2 or Reg3β, was targeted that affected liver regeneration? Hepatology 45(6):1584–1585

    PubMed  Google Scholar 

  • Liu JL et al (2008) Possible roles of reg family proteins in pancreatic islet cell growth. Endocr Metab Immune Disord Drug Targets 8(1):1–10

    PubMed  CAS  Google Scholar 

  • Liu Y et al (2009) β-Cells at the crossroads: choosing between insulin granule production and proliferation. Diab Obes Metab 11:54–64

    CAS  Google Scholar 

  • Liu L, Liu JL, Srikant CB (2010) Reg2 protects mouse insulinoma cells from streptozotocin-induced mitochondrial disruption and apoptosis. Growth Factors 28(5):370–378

    PubMed  CAS  Google Scholar 

  • Luo C et al (2013) Transcriptional activation of Reg2 and Reg3β genes by glucocorticoids and interleukin-6 in pancreatic acinar and islet cells. Mol Cell Endocrinol 365(2):187–196

    PubMed  CAS  Google Scholar 

  • Maake C, Reinecke M (1993) Immunohistochemical localization of insulin-like growth factor 1 and 2 in the endocrine pancreas of rat, dog, and man, and their coexistence with classical islet hormones. Cell Tissue Res 273(2):249–259

    PubMed  CAS  Google Scholar 

  • Mally MI et al (1994) Developmental gene expression in the human fetal pancreas. Pediatr Res 36(4):537–544

    PubMed  CAS  Google Scholar 

  • Marselli L et al (2010) Gene expression profiles of β-cell enriched tissue obtained by laser capture microdissection from subjects with Type 2 diabetes. PLoS One 5(7):e11499

    PubMed  PubMed Central  Google Scholar 

  • Mauras N et al (2000) Recombinant human insulin-like growth factor I has significant anabolic effects in adults with growth hormone receptor deficiency: studies on protein, glucose, and lipid metabolism. J Clin Endocrinol Metab 85(9):3036–3042. [MEDLINE record in process]

    PubMed  CAS  Google Scholar 

  • Meier JJ et al (2008) β-cell replication is the primary mechanism subserving the postnatal expansion of β-cell mass in humans. Diabetes 57(6):1584–1594

    PubMed  CAS  PubMed Central  Google Scholar 

  • Meili S et al (2003) Secretory apparatus assessed by analysis of pancreatic secretory stress protein expression in a rat model of chronic pancreatitis. Cell Tissue Res 312(3):291–299

    PubMed  CAS  Google Scholar 

  • Moriizumi S et al (1994) Isolation, structural determination and expression of a novel reg gene, human regI β. Biochim Biophys Acta 1217(2):199–202

    PubMed  CAS  Google Scholar 

  • Moriscot C et al (1996) Absence of correlation between reg and insulin gene expression in pancreas during fetal development. Pediatr Res 39(2):349–353

    PubMed  CAS  Google Scholar 

  • Moses A et al (1996) Recombinant human insulin-like growth factor I increases insulin sensitivity and improves glycemic control in type II diabetes. Diabetes 45(1):91–100

    PubMed  CAS  Google Scholar 

  • Mueller CM, Zhang H, Zenilman ME (2008) Pancreatic reg I binds MKP-1 and regulates cyclin D in pancreatic-derived cells. J Surg Res 150(1):137–143

    PubMed  CAS  PubMed Central  Google Scholar 

  • Multigner L et al (1983) Pancreatic stone protein, a phosphoprotein which inhibits calcium carbonate precipitation from human pancreatic juice. Biochem Biophys Res Commun 110(1):69–74

    PubMed  CAS  Google Scholar 

  • Namikawa K et al (2005) Expression of Reg/PAP family members during motor nerve regeneration in rat. Biochem Biophys Res Commun 332(1):126–134

    PubMed  CAS  Google Scholar 

  • Narushima Y et al (1997) Structure, chromosomal localization and expression of mouse genes encoding type III Reg, RegIII α, RegIII β, RegIII γ. Gene 185(2):159–168

    PubMed  CAS  Google Scholar 

  • Nata K et al (2004) Molecular cloning, expression and chromosomal localization of a novel human REG family gene, REG III. Gene 340(1):161–170

    PubMed  CAS  Google Scholar 

  • Nguyen KT et al (2006) Essential role of Pten in body size determination and pancreatic β-cell homeostasis in vivo. Mol Cell Biol 26(12):4511–4518

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nishimune H et al (2000) Reg-2 is a motoneuron neurotrophic factor and a signalling intermediate in the CNTF survival pathway. Nat Cell Biol 2(12):906–914

    PubMed  CAS  Google Scholar 

  • O’Hara A et al (2013) The role of proteasome β subunits in gastrin-mediated transcription of plasminogen activator inhibitor-2 and regenerating protein1. PLoS One 8(3):e59913

    PubMed  PubMed Central  Google Scholar 

  • Ochiai K et al (2004) Activated pancreatic enzyme and pancreatic stone protein (PSP/reg) in bile of patients with pancreaticobiliary maljunction/choledochal cysts. Dig Dis Sci 49(11–12):1953–1956

    PubMed  Google Scholar 

  • Ohara S et al (2008) Reg IV is an independent prognostic factor for relapse in patients with clinically localized prostate cancer. Cancer Sci 99(8):1570–1577

    PubMed  CAS  Google Scholar 

  • Okamoto H (1999) The Reg gene family and Reg proteins: with special attention to the regeneration of pancreatic β-cells. J Hepatobiliary Pancreat Surg 6(3):254–262

    PubMed  CAS  Google Scholar 

  • Orelle B et al (1992) Human pancreatitis-associated protein. Messenger RNA cloning and expression in pancreatic diseases. J Clin Invest 90(6):2284–2291

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ose T et al (2007) Reg I-knockout mice reveal its role in regulation of cell growth that is required in generation and maintenance of the villous structure of small intestine. Oncogene 26(3):349–359

    PubMed  CAS  Google Scholar 

  • Oue N et al (2005) Expression and localization of Reg IV in human neoplastic and non-neoplastic tissues: Reg IV expression is associated with intestinal and neuroendocrine differentiation in gastric adenocarcinoma. J Pathol 207(2):185–198

    PubMed  CAS  Google Scholar 

  • Parikh A, Stephan AF, Tzanakakis ES (2012) Regenerating proteins and their expression, regulation and signaling. Biomol Concept 3(1):57–70

    CAS  Google Scholar 

  • Pelengaris S et al (2004) Brief inactivation of c-Myc is not sufficient for sustained regression of c-Myc-induced tumours of pancreatic islets and skin epidermis. BMC Biol 2:26

    PubMed  PubMed Central  Google Scholar 

  • Perfetti R et al (1996a) Regenerating (reg) and insulin genes are expressed in prepancreatic mouse embryos. J Mol Endocrinol 17(1):79–88

    PubMed  CAS  Google Scholar 

  • Perfetti R et al (1996b) Differential expression of reg-I and reg-II genes during aging in the normal mouse. J Gerontol A Biol Sci Med Sci 51(5):B308–B315

    PubMed  CAS  Google Scholar 

  • Petropavlovskaia M et al (2012) Mechanisms of action of islet neogenesis-associated protein: comparison of the full-length recombinant protein and a bioactive peptide. Am J Physiol Endocrinol Metab 303(7):E917–E927

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pittenger GL et al (2007) Intramuscular injection of islet neogenesis-associated protein peptide stimulates pancreatic islet neogenesis in healthy dogs. Pancreas 34(1):103–111

    PubMed  Google Scholar 

  • Pittenger GL, Taylor-Fishwick D, Vinik AI (2009a) The role of islet neogenesis-associated protein (INGAP) in pancreatic islet neogenesis. Curr Protein Pept Sci 10(1):37–45

    PubMed  CAS  Google Scholar 

  • Pittenger GL, Taylor-Fishwick D, Vinik AI (2009b) A role for islet neogenesis in curing diabetes. Diabetologia 52(5):735–738

    PubMed  CAS  Google Scholar 

  • Pospisilik JA et al (2003) Dipeptidyl peptidase IV inhibitor treatment stimulates β-cell survival and islet neogenesis in streptozotocin-induced diabetic rats. Diabetes 52(3):741–750

    PubMed  CAS  Google Scholar 

  • Quaife CJ et al (1989) Histopathology associated with elevated levels of growth hormone and insulin-like growth factor I in transgenic mice. Endocrinology 124(1):40–48

    PubMed  CAS  Google Scholar 

  • Rafaeloff R et al (1997) Cloning and sequencing of the pancreatic islet neogenesis associated protein (INGAP) gene and its expression in islet neogenesis in hamsters. J Clin Invest 99(9):2100–2109

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rane SG, Reddy EP (2000) Cell cycle control of pancreatic β cell proliferation. Front Biosci 5:D1–D19

    PubMed  CAS  Google Scholar 

  • Rane SG et al (1999) Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in β-islet cell hyperplasia. Nat Genet 22(1):44–52

    PubMed  CAS  Google Scholar 

  • Rankin MM, Kushner JA (2010) Aging induces a distinct gene expression program in mouse islets. Islets 2(6):4–11

    Google Scholar 

  • Reichert M, Rustgi AK (2011) Pancreatic ductal cells in development, regeneration, and neoplasia. J Clin Invest 121(12):4572–4578

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rooman I, Lardon J, Bouwens L (2002) Gastrin stimulates β-cell neogenesis and increases islet mass from transdifferentiated but not from normal exocrine pancreas tissue. Diabetes 51(3):686–690

    PubMed  CAS  Google Scholar 

  • Rosenberg L et al (2004) A pentadecapeptide fragment of islet neogenesis-associated protein increases β-cell mass and reverses diabetes in C57BL/6J mice. Ann Surg 240(5):875–884

    PubMed  PubMed Central  Google Scholar 

  • Rouimi P et al (1988) The disulfide bridges of the immunoreactive forms of human pancreatic stone protein isolated from pancreatic juice. FEBS Lett 229(1):171–174

    PubMed  CAS  Google Scholar 

  • Rouquier S et al (1991) Rat pancreatic stone protein messenger RNA. Abundant expression in mature exocrine cells, regulation by food content, and sequence identity with the endocrine reg transcript. J Biol Chem 266(2):786–791

    PubMed  CAS  Google Scholar 

  • Sanchez D et al (2000) Overexpression of the reg gene in non-obese diabetic mouse pancreas during active diabetogenesis is restricted to exocrine tissue. J Histochem Cytochem 48(10):1401–1410

    PubMed  CAS  Google Scholar 

  • Sanchez D et al (2001) Preferential expression of reg I β gene in human adult pancreas. Biochem Biophys Res Commun 284(3):729–737

    PubMed  CAS  Google Scholar 

  • Sanchez D et al (2004) Implication of Reg I in human pancreatic duct-like cells in vivo in the pathological pancreas and in vitro during exocrine dedifferentiation. Pancreas 29(1):14–21

    PubMed  CAS  Google Scholar 

  • Sandgren EP et al (1990) Overexpression of TGF α in transgenic mice: induction of epithelial hyperplasia, pancreatic metaplasia, and carcinoma of the breast. Cell 61(6):1121–1135

    PubMed  CAS  Google Scholar 

  • Sasahara K et al (2000) Molecular cloning and tissue-specific expression of a new member of the regenerating protein family, islet neogenesis-associated protein-related protein. Biochim Biophys Acta 1500(1):142–146

    PubMed  CAS  Google Scholar 

  • Scharfmann R, Corvol M, Czernichow P (1989) Characterization of insulin-like growth factor I produced by fetal rat pancreatic islets. Diabetes 38(6):686–690

    PubMed  CAS  Google Scholar 

  • Schiesser M et al (2001) Conformational changes of pancreatitis-associated protein (PAP) activated by trypsin lead to insoluble protein aggregates. Pancreas 22(2):186–192

    PubMed  CAS  Google Scholar 

  • Schmied BM et al (2001) Transdifferentiation of human islet cells in a long-term culture. Pancreas 23(2):157–171

    PubMed  CAS  Google Scholar 

  • Seaberg RM et al (2004) Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nat Biotechnol 22(9):1115–1124

    PubMed  CAS  Google Scholar 

  • Sherr CJ (2001) The INK4a/ARF network in tumour suppression. Nat Rev Mol Cell Biol 2(10):731–737

    PubMed  CAS  Google Scholar 

  • Shervani NJ et al (2004) Autoantibodies to REG, a β-cell regeneration factor, in diabetic patients. Eur J Clin Invest 34(11):752–758

    PubMed  CAS  Google Scholar 

  • Sieradzki J et al (1988) Stimulatory effect of insulin-like growth factor-I on [3H]thymidine incorporation, DNA content and insulin biosynthesis and secretion of isolated pancreatic rat islets. J Endocrinol 117(1):59–62

    PubMed  CAS  Google Scholar 

  • Skarnes WC et al (2011) A conditional knockout resource for the genome-wide study of mouse gene function. Nature 474(7351):337–342

    PubMed  CAS  PubMed Central  Google Scholar 

  • Smith FE et al (1991) Enhanced insulin-like growth factor I gene expression in regenerating rat pancreas. Proc Natl Acad Sci USA 88(14):6152–6256

    PubMed  CAS  PubMed Central  Google Scholar 

  • Smith FE et al (1994) Pancreatic Reg/pancreatic stone protein (PSP) gene expression does not correlate with β-cell growth and regeneration in rats. Diabetologia 37(10):994–999

    PubMed  CAS  Google Scholar 

  • Song SY et al (1999) Expansion of Pdx1-expressing pancreatic epithelium and islet neogenesis in transgenic mice overexpressing transforming growth factor α. Gastroenterology 117(6):1416–1426

    PubMed  CAS  Google Scholar 

  • Spak E et al (2010) Changes in the mucosa of the Roux-limb after gastric bypass surgery. Histopathology 57(5):680–688

    PubMed  Google Scholar 

  • Suarez-Pinzon WL et al (2008) Combination therapy with glucagon-like peptide-1 and gastrin restores normoglycemia in diabetic NOD mice. Diabetes 57(12):3281–3288

    PubMed  CAS  PubMed Central  Google Scholar 

  • Suzuki Y et al (1994) Structure and expression of a novel rat RegIII gene. Gene 144(2):315–316

    PubMed  CAS  Google Scholar 

  • Takasawa S et al (2006) Cyclin D1 activation through ATF-2 in Reg-induced pancreatic β-cell regeneration. FEBS Lett 580(2):585–591

    PubMed  CAS  Google Scholar 

  • Takatori A et al (2003) Protective effects of probucol treatment on pancreatic β-cell function of SZ-induced diabetic APA hamsters. Exp Anim 52(4):317–327

    PubMed  CAS  Google Scholar 

  • Taylor-Fishwick DA et al (2006a) Islet neogenesis associated protein transgenic mice are resistant to hyperglycemia induced by streptozotocin. J Endocrinol 190(3):729–737

    PubMed  CAS  Google Scholar 

  • Taylor-Fishwick DA et al (2006b) PDX-1 can repress stimulus-induced activation of the INGAP promoter. J Endocrinol 188(3):611–621

    PubMed  CAS  Google Scholar 

  • Taylor-Fishwick DA et al (2008) Pancreatic islet immunoreactivity to the Reg protein INGAP. J Histochem Cytochem 56(2):183–191

    PubMed  CAS  PubMed Central  Google Scholar 

  • Taylor-Fishwick DA et al (2010) Pdx-1 regulation of the INGAP promoter involves sequestration of NeuroD into a non-DNA-binding complex. Pancreas 39(1):64–70

    PubMed  CAS  Google Scholar 

  • Terazono K et al (1988) A novel gene activated in regenerating islets. J Biol Chem 263(5):2111–2114

    PubMed  CAS  Google Scholar 

  • Terazono K et al (1990) Expression of reg protein in rat regenerating islets and its co-localization with insulin in the β cell secretory granules. Diabetologia 33(4):250–252

    PubMed  CAS  Google Scholar 

  • Teta M et al (2007) Growth and regeneration of adult β cells does not involve specialized progenitors. Dev Cell 12(5):817–826

    PubMed  CAS  Google Scholar 

  • Tezel E et al (2004) REG I as a marker for human pancreatic acinoductular cells. Hepatogastroenterology 51(55):91–96

    PubMed  Google Scholar 

  • Tourrel C et al (2001) Glucagon-like peptide-1 and exendin-4 stimulate β-cell neogenesis in streptozotocin-treated newborn rats resulting in persistently improved glucose homeostasis at adult age. Diabetes 50(7):1562–1570

    PubMed  CAS  Google Scholar 

  • Unno M et al (1993) Structure, chromosomal localization, and expression of mouse reg genes, reg I and reg II. A novel type of reg gene, reg II, exists in the mouse genome. J Biol Chem 268(21):15974–15982

    PubMed  CAS  Google Scholar 

  • Unno M et al (2002) Production and characterization of Reg knockout mice: reduced proliferation of pancreatic β-cells in Reg knockout mice. Diabetes 51(Suppl 3):S478–S483

    PubMed  CAS  Google Scholar 

  • Vaishnava S et al (2011) The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine. Science 334(6053):255–258

    PubMed  CAS  PubMed Central  Google Scholar 

  • Vasseur S et al (2004) p8 improves pancreatic response to acute pancreatitis by enhancing the expression of the anti-inflammatory protein pancreatitis-associated protein I. J Biol Chem 279(8):7199–7207

    PubMed  CAS  Google Scholar 

  • Violette S et al (2003) Reg IV, a new member of the regenerating gene family, is overexpressed in colorectal carcinomas. Int J Cancer 103(2):185–193

    PubMed  CAS  Google Scholar 

  • Viterbo D et al (2009) Administration of anti-Reg I and anti-PAPII antibodies worsens pancreatitis. JOP 10(1):15–23

    PubMed  PubMed Central  Google Scholar 

  • Waelput W et al (2000) Identification and expression analysis of leptin-regulated immediate early response and late target genes. Biochem J 348(Pt 1):55–61

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wang TC et al (1993) Pancreatic gastrin stimulates islet differentiation of transforming growth factor α-induced ductular precursor cells. J Clin Invest 92(3):1349–1356

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wang RN et al (1997) Expression of gastrin and transforming growth factor-α during duct to islet cell differentiation in the pancreas of duct-ligated adult rats. Diabetologia 40(8):887–893

    PubMed  CAS  Google Scholar 

  • Wang F et al (2011) Identification of RegIV as a novel GLI1 target gene in human pancreatic cancer. PLoS One 6(4):e18434

    PubMed  CAS  PubMed Central  Google Scholar 

  • Watanabe T et al (1990) Complete nucleotide sequence of human reg gene and its expression in normal and tumoral tissues. The reg protein, pancreatic stone protein, and pancreatic thread protein are one and the same product of the gene. J Biol Chem 265(13):7432–7439

    PubMed  CAS  Google Scholar 

  • Watanabe T et al (1994) Pancreatic β-cell replication and amelioration of surgical diabetes by Reg protein. Proc Natl Acad Sci USA 91(9):3589–3592

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wilding Crawford L et al (2008) Gene expression profiling of a mouse model of pancreatic islet dysmorphogenesis. PLoS One 3(2):e1611

    PubMed  PubMed Central  Google Scholar 

  • Xiong X et al (2011) Pancreatic islet-specific overexpression of Reg3β protein induced the expression of pro-islet genes and protected mice against streptozotocin-induced diabetes. Am J Physiol Endocrinol Metab 300:E669–E680

    PubMed  CAS  Google Scholar 

  • Xu G et al (1999) Exendin-4 stimulates both β-cell replication and neogenesis, resulting in increased β-cell mass and improved glucose tolerance in diabetic rats. Diabetes 48(12):2270–2276

    PubMed  CAS  Google Scholar 

  • Xu G et al (2006) GLP-1/exendin-4 facilitates [β]-cell neogenesis in rat and human pancreatic ducts. Diabetes Res Clin Pract 73(1):107–110

    PubMed  CAS  Google Scholar 

  • Xu X et al (2008) β cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell 132(2):197–207

    PubMed  CAS  Google Scholar 

  • Yamagishi H et al (2009) Expression profile of REG family proteins REG I[α] and REG IV in advanced gastric cancer: comparison with mucin phenotype and prognostic markers. Mod Pathol 22(7):906–913

    PubMed  CAS  Google Scholar 

  • Yamaoka T et al (2000) Diabetes and tumor formation in transgenic mice expressing Reg I. Biochem Biophys Res Commun 278(2):368–376

    PubMed  CAS  Google Scholar 

  • Ying LS et al (2013) Enhanced RegIV expression predicts the intrinsic 5-fluorouracil (5-FU) resistance in advanced gastric cancer. Dig Dis Sci 58(2):414–422

    PubMed  CAS  Google Scholar 

  • Zenilman ME et al (1996a) Pancreatic regeneration (reg) gene expression in a rat model of islet hyperplasia. Surgery 119(5):576–584

    PubMed  CAS  Google Scholar 

  • Zenilman ME et al (1996b) Pancreatic thread protein is mitogenic to pancreatic-derived cells in culture. Gastroenterology 110(4):1208–1214

    PubMed  CAS  Google Scholar 

  • Zenilman ME et al (1997) Pancreatic reg gene expression is inhibited during cellular differentiation. Ann Surg 225(3):327–332

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zenilman ME, Chen J, Magnuson TH (1998) Effect of reg protein on rat pancreatic ductal cells. Pancreas 17(3):256–261

    PubMed  CAS  Google Scholar 

  • Zenilman ME et al (2000) Comparison of reg I and reg III levels during acute pancreatitis in the rat. Ann Surg 232(5):646–652

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang Y et al (2003) Reg IV, a differentially expressed gene in colorectal adenoma. Chin Med J (Engl) 116(6):918–922

    CAS  Google Scholar 

  • Zhao AZ et al (1997) Attenuation of insulin secretion by insulin-like growth factor 1 is mediated through activation of phosphodiesterase 3B. Proc Natl Acad Sci USA 94(7):3223–3228

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhou J, Bievre M, Bondy CA (2000) Reduced GLUT1 expression in Igf1−/− null oocytes and follicles. Growth Horm IGF Res 10(3):111–117

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Our research activity was supported by the Canadian Diabetes Association (OG-3-11-3469-JL) and the China Scholarship Council (201208370055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Li Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Li, Q., Xiong, X., Liu, JL. (2015). The Contribution of Reg Family Proteins to Cell Growth and Survival in Pancreatic Islets. In: Islam, M. (eds) Islets of Langerhans. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6686-0_47

Download citation

Publish with us

Policies and ethics