Skip to main content

Inflammatory Pathways Linked to β Cell Demise in Diabetes

  • Reference work entry
  • First Online:
Islets of Langerhans

Abstract

Inflammation is proposed to play a key role in the development of both type 1 diabetes (T1D) and type 2 diabetes (T2D). It is well established that autoimmunity against β cells is responsible for massive loss of β cells in T1D. Recently, it has been recognized that chronic low-grade inflammation is not limited to insulin target organs but is also seen in islets in T2D. In T1D, T lymphocytes are primed to destroy the β cells. However, the process that leads to the development of self-reactive T lymphocytes remains elusive and is an area of intense research. A complex interplay between genetic and environmental factors, β cells, and immune cells is likely involved in the process. Immunomodulatory therapies have been attempted with some promises in animal models of T1D but have not yielded satisfactory effects on humans. Recent initiatives to evaluate T1D pathology in human donor pancreata hold promise to increase our knowledge in the coming years. In T2D, overnutrition results in metabolic stress including glucolipotoxicity, endoplasmic reticulum stress, and oxidative stress that potentially trigger an inflammatory response in the islets. Substantial evidence exists for an increase in humoral inflammatory mediators and an accumulation of macrophages in the islets of T2D subjects. Anti-inflammatory therapies targeting IL-1β and NFkB have shown improvement in β cell functions in small short term studies of T2D humans, providing a proof of principle for targeting islet inflammation in T2D. However, the nature of islet inflammation in T2D needs better characterization to tailor anti-inflammatory therapies that are effective and durable for T2D.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

12/15LO:

12/15-Lipoxygenase

12-HETE:

12-Hyrdroxyeicosatetraenoic acid

12LO:

12-Lipoxygenase

A1c:

Hemoglobin A1c

AAb:

Autoantibody

ACE:

Angiotensin-converting enzyme

AdipoR1:

Adiponectin receptor 1

AMPK:

AMP-activated kinase

ANGPTL8:

Angiopoietin-like 8

AP-1:

Activator protein-1

ARb:

Angiotensin receptor blockers

AT:

Adipose tissue

ATF6:

Activating transcription factor-6

CANTOS:

Canakinumab Anti-inflammatory Thrombosis Outcomes Study

CB1:

Cannabinoid receptor type 1

CCL:

Chemokine (C-C motif) ligand

CDKAL1:

CDK5 regulatory subunit-associated protein-1-like

CHOP:

C/EBP homology protein

CLECL1:

C-type leptin-like 1

CVD:

Cardiovascular disease

CXCL:

Chemokine(C-X-C motif) ligand

DAISY:

Diabetes Association in Support of Youth

DC:

Dendritic cells

DEXI:

Dexamethasone induced

DHA:

Docosahexaenoic acid

DMT1:

Divalent metal transporter 1

DPPIV:

Dipeptidyl peptidase-IV

EIF2AK3:

Eukaryotic translation initiation factor 2α kinase-3

ER:

Endoplasmic reticulum

ERK:

Extracellular signal-regulated kinases

FasL:

Fas ligand

GAD:

Glutamic acid decarboxylase

GIP:

Gastric inhibitory polypeptide

GK rat:

Goto-Kakizaki rat

GLIS3:

Gli-similar 3

GLP:

Glucagon-like peptide

GWAS:

Genome-wide association study

HLA:

Human leukocyte antigen

HOMA:

Homeostasis Model Assessment

hsCRP:

High sensitivity C-reactive protein

IA2:

Islet antigen 2

IAA:

Insulin autoantibody

IAPP:

Islet amyloid polypeptide

ICA:

Islet cell antibody

IFN:

Interferon

IL:

Interleukin

IL-18RAP:

IL-18R accessory protein

IL-1Ra:

IL-1 receptor antagonist

iNKT:

Invariant natural killer T cells

IRE1:

Inositol requiring enzyme-1

IRS:

Insulin receptor substrate

JDRF:

Juvenile Diabetes Research Foundation

JNK:

c-Jun N-terminal kinase

KIR:

Killer immunoglobulin-like receptor

LADA:

Latent autoimmune diabetes of adults

Lp:

Lactobacillus plantarum

LPS:

Lipopolysaccharide

MΦ:

Macrophages

MAPK:

Mitogen-activated protein kinase

MHC:

Major histocompatibility complex

MIP:

Macrophage Inflammatory Proteins

NADPH:

Nicotinamide adenine dinucleotide phosphate

NEFA:

Non-esterified fatty acids

NFκB:

Nuclear factor kappa light chain enhancer of activated B cells

NK:

Natural killer

NLRP3:

NLR family, pyrin domain containing 3

NOD:

Nonobese diabetic

Non-DM:

Nondiabetic

nPOD:

Network for the Pancreatic Organ Donor with Diabetes

OM:

Omental

PA:

Palmitic acids

PERK:

PKR-like eukaryotic initiation factor 2α kinase

PEVNET:

Persistent Virus Infection in Diabetes Network

PI3K:

Phosphoinositide 3-kinase

PKB:

Protein kinase B

PPAR:

Peroxisome proliferator-activated receptor

PTB1B:

Protein tyrosine phosphatase 1B

PTEN:

Phosphatase and tensin homolog

qRT-PCR:

Real-time reverse transcription polymerase chain reaction

ROS:

Reactive oxygen species

SC:

Subcutaneous

SLE:

Systemic lupus erythematosus

SOCS3:

Suppressor of cytokine signaling 3

STAT:

Signal transducer and activator of signal transduction

STZ:

Streptozotocin

SUOX:

Sulfite oxidase

SVF:

Seminal vesicle fluid

T1D:

Type 1 diabetes

T2D:

Type 2 diabetes

Th:

T helper

TINSAL-T2D:

Targeting-Inflammation Using Salsalate in Type 2 Diabetes

TLR4:

Toll receptor 4

TNF:

Tumor necrosis factor

TXNIP:

Thioredoxin-interacting protein

UKPDS:

United Kingdom Prospective Diabetes Study

UPR:

Unfolded protein response

WFS1:

Wolfram syndrome 1

References

  • Aceves M, Duenas A, Gomez C, San Vicente E, Crespo MS, Garcia-Rodriguez C (2004) A new pharmacological effect of salicylates: inhibition of NFAT-dependent transcription. J Immunol 173:5721–5729

    PubMed  CAS  Google Scholar 

  • Achenbach P, Warncke K, Reiter J, Naserke HE, Williams AJ, Bingley PJ, Bonifacio E, Ziegler AG (2004) Stratification of type 1 diabetes risk on the basis of islet autoantibody characteristics. Diabetes 53:384–392

    PubMed  CAS  Google Scholar 

  • Akesson C, Uvebrant K, Oderup C, Lynch K, Harris RA, Lernmark A, Agardh CD, Cilio CM (2010) Altered natural killer (NK) cell frequency and phenotype in latent autoimmune diabetes in adults (LADA) prior to insulin deficiency. Clin Exp Immunol 161:48–56

    PubMed  CAS  PubMed Central  Google Scholar 

  • Alkanani AK, Rewers M, Dong F, Waugh K, Gottlieb PA, Zipris D (2012) Dysregulated Toll-like receptor-induced interleukin-1β and interleukin-6 responses in subjects at risk for the development of type 1 diabetes. Diabetes 61:2525–2533

    PubMed  CAS  PubMed Central  Google Scholar 

  • Allen JS, Pang K, Skowera A, Ellis R, Rackham C, Lozanoska-Ochser B, Tree T, Leslie RD, Tremble JM, Dayan CM, Peakman M (2009) Plasmacytoid dendritic cells are proportionally expanded at diagnosis of type 1 diabetes and enhance islet autoantigen presentation to T-cells through immune complex capture. Diabetes 58:138–145

    PubMed  CAS  PubMed Central  Google Scholar 

  • Al-Maskari M, Al-Shukaili A, Al-Mammari A (2010) Pro-inflammatory cytokines in Omani type 2 diabetic patients presenting anxiety and depression. Iran J Immunol 7:124–129

    PubMed  CAS  Google Scholar 

  • Al-Salam S, Rashed H, Adeghate E (2011) Diabetes mellitus is associated with an increased expression of resistin in human pancreatic islet cells. Islets 3:246–249

    PubMed  Google Scholar 

  • Antkowiak PF, Stevens BK, Nunemaker CS, McDuffie M, Epstein FH (2013) Manganese-enhanced magnetic resonance imaging detects declining pancreatic β-cell mass in a cyclophosphamide-accelerated mouse model of type 1 diabetes. Diabetes 62:44–48

    PubMed  CAS  PubMed Central  Google Scholar 

  • Arif S, Tree TI, Astill TP, Tremble JM, Bishop AJ, Dayan CM, Roep BO, Peakman M (2004) Autoreactive T cell responses show proinflammatory polarization in diabetes but a regulatory phenotype in health. J Clin Invest 113:451–463

    PubMed  CAS  PubMed Central  Google Scholar 

  • Arif S, Moore F, Marks K, Bouckenooghe T, Dayan CM, Planas R, Vives-Pi M, Powrie J, Tree T, Marchetti P, Huang GC, Gurzov EN, Pujol-Borrell R, Eizirik DL, Peakman M (2011) Peripheral and islet interleukin-17 pathway activation characterizes human autoimmune diabetes and promotes cytokine-mediated β-cell death. Diabetes 60:2112–2119

    PubMed  CAS  PubMed Central  Google Scholar 

  • Atkinson MA, Eisenbarth GS, Michels AW (2013) Type 1 diabetes. Lancet 383(9911):69–82

    PubMed  Google Scholar 

  • Axling U, Olsson C, Xu J, Fernandez C, Larsson S, Strom K, Ahrne S, Holm C, Molin G, Berger K (2012) Green tea powder and Lactobacillus plantarum affect gut microbiota, lipid metabolism and inflammation in high-fat fed C57BL/6J mice. Nutr Metab 9:105

    CAS  Google Scholar 

  • Baeyens A, Perol L, Fourcade G, Cagnard N, Carpentier W, Woytschak J, Boyman O, Hartemann A, Piaggio E (2013) Limitations of IL-2 and rapamycin in immunotherapy of type 1 diabetes. Diabetes 62(9):3120–3131

    PubMed  CAS  PubMed Central  Google Scholar 

  • Baldwin AC, Green CD, Olson LK, Moxley MA, Corbett JA (2012) A role for aberrant protein palmitoylation in FFA-induced ER stress and β-cell death. Am J Physiol Endocrinol Metab 302:E1390–E1398

    PubMed  CAS  PubMed Central  Google Scholar 

  • Beilke JN, Meagher CT, Hosiawa K, Champsaur M, Bluestone JA, Lanier LL (2012) NK cells are not required for spontaneous autoimmune diabetes in NOD mice. PloS One 7:e36011

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bensellam M, Laybutt DR, Jonas JC (2012) The molecular mechanisms of pancreatic β-cell glucotoxicity: recent findings and future research directions. Mol Cell Endocrinol 364:1–27

    PubMed  CAS  Google Scholar 

  • Bleich D, Chen S, Zipser B, Sun D, Funk CD, Nadler JL (1999) Resistance to type 1 diabetes induction in 12-lipoxygenase knockout mice. J Clin Invest 103:1431–1436

    PubMed  CAS  PubMed Central  Google Scholar 

  • Boll EJ, Struve C, Sander A, Demma Z, Krogfelt KA, McCormick BA (2012) Enteroaggregative Escherichia coli promotes transepithelial migration of neutrophils through a conserved 12-lipoxygenase pathway. Cell Microbiol 14:120–132

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bonifacio E, Bingley PJ, Shattock M, Dean BM, Dunger D, Gale EA, Bottazzo GF (1990) Quantification of islet-cell antibodies and prediction of insulin-dependent diabetes. Lancet 335:147–149

    PubMed  CAS  Google Scholar 

  • Boni-Schnetzler M, Thorne J, Parnaud G, Marselli L, Ehses JA, Kerr-Conte J, Pattou F, Halban PA, Weir GC, Donath MY (2008) Increased interleukin IL-1β messenger ribonucleic acid expression in β-cells of individuals with type 2 diabetes and regulation of IL-1β in human islets by glucose and autostimulation. J Clin Endocrinol Metab 93:4065–4074

    PubMed  PubMed Central  Google Scholar 

  • Bosi E, Molteni L, Radaelli MG, Folini L, Fermo I, Bazzigaluppi E, Piemonti L, Pastore MR, Paroni R (2006) Increased intestinal permeability precedes clinical onset of type 1 diabetes. Diabetologia 49:2824–2827

    PubMed  CAS  Google Scholar 

  • Boslem E, Meikle PJ, Biden TJ (2012) Roles of ceramide and sphingolipids in pancreatic β-cell function and dysfunction. Islets 4:177–187

    PubMed  PubMed Central  Google Scholar 

  • Boudaly S, Morin J, Berthier R, Marche P, Boitard C (2002) Altered dendritic cells (DC) might be responsible for regulatory T cell imbalance and autoimmunity in nonobese diabetic (NOD) mice. Eur Cytokine Netw 13:29–37

    PubMed  CAS  Google Scholar 

  • Bradshaw EM, Raddassi K, Elyaman W, Orban T, Gottlieb PA, Kent SC, Hafler DA (2009) Monocytes from patients with type 1 diabetes spontaneously secrete proinflammatory cytokines inducing Th17 cells. J Immunol 183:4432–4439

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brauner H, Elemans M, Lemos S, Broberger C, Holmberg D, Flodstrom-Tullberg M, Karre K, Hoglund P (2010) Distinct phenotype and function of NK cells in the pancreas of nonobese diabetic mice. J Immunol 184:2272–2280

    PubMed  CAS  Google Scholar 

  • Brom M, Andralojc K, Oyen WJ, Boerman OC, Gotthardt M (2010) Development of radiotracers for the determination of the β-cell mass in vivo. Curr Pharm Des 16:1561–1567

    PubMed  CAS  Google Scholar 

  • Brooks-Worrell B, Palmer JP (2012) Immunology in the Clinic Review Series; focus on metabolic diseases: development of islet autoimmune disease in type 2 diabetes patients: potential sequelae of chronic inflammation. Clin Exp Immunol 167:40–46

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brooks-Worrell BM, Palmer JP (2013) Attenuation of islet-specific T cell responses is associated with C-peptide improvement in autoimmune type 2 diabetes patients. Clin Exp Immunol 171:164–170

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brooks-Worrell BM, Reichow JL, Goel A, Ismail H, Palmer JP (2011) Identification of autoantibody-negative autoimmune type 2 diabetic patients. Diabetes Care 34:168–173

    PubMed  PubMed Central  Google Scholar 

  • Brooks-Worrell B, Narla R, Palmer JP (2012) Biomarkers and immune-modulating therapies for type 2 diabetes. Trends Immunol 33:546–553

    PubMed  CAS  Google Scholar 

  • Brown JE, Conner AC, Digby JE, Ward KL, Ramanjaneya M, Randeva HS, Dunmore SJ (2010a) Regulation of β-cell viability and gene expression by distinct agonist fragments of adiponectin. Peptides 31:944–949

    PubMed  CAS  Google Scholar 

  • Brown JE, Onyango DJ, Ramanjaneya M, Conner AC, Patel ST, Dunmore SJ, Randeva HS (2010b) Visfatin regulates insulin secretion, insulin receptor signalling and mRNA expression of diabetes-related genes in mouse pancreatic β-cells. J Mol Endocrinol 44:171–178

    PubMed  CAS  Google Scholar 

  • Brown CT, Davis-Richardson AG, Giongo A, Gano KA, Crabb DB, Mukherjee N, Casella G, Drew JC, Ilonen J, Knip M, Hyoty H, Veijola R, Simell T, Simell O, Neu J, Wasserfall CH, Schatz D, Atkinson MA, Triplett EW (2011) Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes. PLoS One 6:e25792

    PubMed  CAS  PubMed Central  Google Scholar 

  • Buschard K, Mansson JE, Roep BO, Nikolic T (2012) Self-glycolipids modulate dendritic cells changing the cytokine profiles of committed autoreactive T cells. PLoS One 7:e52639

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cabrera SM, Colvin SC, Tersey SA, Maier B, Nadler JL, Mirmira RG (2013) Effects of combination therapy with dipeptidyl peptidase-IV and histone deacetylase inhibitors in the non-obese diabetic mouse model of type 1 diabetes. Clin Exp Immunol 172:375–382

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cai K, Qi D, Wang O, Chen J, Liu X, Deng B, Qian L, Liu X, Le Y (2011) TNF-α acutely upregulates amylin expression in murine pancreatic β cells. Diabetologia 54:617–626

    PubMed  CAS  Google Scholar 

  • Cani PD, Possemiers S, Van de Wiele T, Guiot Y, Everard A, Rottier O, Geurts L, Naslain D, Neyrinck A, Lambert DM, Muccioli GG, Delzenne NM (2009) Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 58:1091–1103

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cao P, Marek P, Noor H, Patsalo V, Tu LH, Wang H, Abedini A, Raleigh DP (2013) Islet amyloid: from fundamental biophysics to mechanisms of cytotoxicity. FEBS letters 587:1106–1118

    PubMed  CAS  PubMed Central  Google Scholar 

  • Carrington EM, Kos C, Zhan Y, Krishnamurthy B, Allison J (2011) Reducing or increasing β-cell apoptosis without inflammation does not affect diabetes initiation in neonatal NOD mice. Eur J Immunol 41:2238–2247

    PubMed  CAS  Google Scholar 

  • Catalan V, Gomez-Ambrosi J, Ramirez B, Rotellar F, Pastor C, Silva C, Rodriguez A, Gil MJ, Cienfuegos JA, Fruhbeck G (2007) Proinflammatory cytokines in obesity: impact of type 2 diabetes mellitus and gastric bypass. Obes Surg 17:1464–1474

    PubMed  Google Scholar 

  • Cavelti-Weder C, Babians-Brunner A, Keller C, Stahel MA, Kurz-Levin M, Zayed H, Solinger AM, Mandrup-Poulsen T, Dinarello CA, Donath MY (2012) Effects of gevokizumab on glycemia and inflammatory markers in type 2 diabetes. Diabetes Care 35:1654–1662

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chai F, Wang Y, Zhou Y, Liu Y, Geng D, Liu J (2011) Adiponectin downregulates hyperglycemia and reduces pancreatic islet apoptosis after roux-en-y gastric bypass surgery. Obes Surg 21:768–773

    PubMed  Google Scholar 

  • Chakrabarti SK, Cole BK, Wen Y, Keller SR, Nadler JL (2009) 12/15-lipoxygenase products induce inflammation and impair insulin signaling in 3T3-L1 adipocytes. Obesity (Silver Spring) 17(9):1657–1663

    CAS  Google Scholar 

  • Chakrabarti SK, Wen Y, Dobrian AD, Cole BK, Ma Q, Pei H, Williams MD, Bevard MH, Vandenhoff GE, Keller SR, Gu J, Nadler JL (2011) Evidence for activation of inflammatory lipoxygenase pathways in visceral adipose tissue of obese zucker rats. Am J Physiol Endocrinol Metab 300(1):E175–E187

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chan JY, Luzuriaga J, Bensellam M, Biden TJ, Laybutt DR (2013) Failure of the adaptive unfolded protein response in islets of obese mice is linked with abnormalities in β-cell gene expression and progression to diabetes. Diabetes 62:1557–1568

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chang YH, Chang DM, Lin KC, Shin SJ, Lee YJ (2011) Visfatin in overweight/obesity, type 2 diabetes mellitus, insulin resistance, metabolic syndrome and cardiovascular diseases: a meta-analysis and systemic review. Diabetes Metab Res Rev 27:515–527

    PubMed  Google Scholar 

  • Charre S, Rosmalen JG, Pelegri C, Alves V, Leenen PJ, Drexhage HA, Homo-Delarche F (2002) Abnormalities in dendritic cell and macrophage accumulation in the pancreas of nonobese diabetic (NOD) mice during the early neonatal period. Histol Histopathol 17:393–401

    PubMed  CAS  Google Scholar 

  • Chawla A, Nguyen KD, Goh YP (2011) Macrophage-mediated inflammation in metabolic disease. Nat Rev Immunol 11:738–749

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chen JJ, Wang R, Li XF, Wang RL (2011) Bifidobacterium longum supplementation improved high-fat-fed-induced metabolic syndrome and promoted intestinal Reg I gene expression. Exp Biol Med (Maywood) 236:823–831

    CAS  Google Scholar 

  • Cheng Q, Dong W, Qian L, Wu J, Peng Y (2011) Visfatin inhibits apoptosis of pancreatic β-cell line, MIN6, via the mitogen-activated protein kinase/phosphoinositide 3-kinase pathway. J Mol Endocrinol 47:13–21

    PubMed  CAS  Google Scholar 

  • Cleland SJ, Fisher BM, Colhoun HM, Sattar N, Petrie JR (2013) Insulin resistance in type 1 diabetes: what is ‘double diabetes’ and what are the risks? Diabetologia 56:1462–1470

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cnop M, Welsh N, Jonas JC, Jorns A, Lenzen S, Eizirik DL (2005) Mechanisms of pancreatic β-cell death in type 1 and type 2 diabetes: many differences, few similarities. Diabetes 54(Suppl 2):S97–S107

    PubMed  CAS  Google Scholar 

  • Cnop M, Ladriere L, Igoillo-Esteve M, Moura RF, Cunha DA (2010) Causes and cures for endoplasmic reticulum stress in lipotoxic β-cell dysfunction. Diabetes Obes Metab 12(Suppl 2):76–82

    PubMed  CAS  Google Scholar 

  • Cole BK, Kuhn NS, Green-Mitchell SM, Leone KA, Raab RM, Nadler JL, Chakrabarti SK (2012a) 12/15-lipoxygenase signaling in the endoplasmic reticulum stress response. Am J Physiol Endocrinol Metab 302:E654–E665

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cole BK, Morris MA, Grzesik WJ, Leone KA, Nadler JL (2012b) Adipose tissue-specific deletion of 12/15-lipoxygenase protects mice from the consequences of a high-fat diet. Mediators Inflamm 2012:851798

    PubMed  PubMed Central  Google Scholar 

  • Cunningham GA, McClenaghan NH, Flatt PR, Newsholme P (2005) L-alanine induces changes in metabolic and signal transduction gene expression in a clonal rat pancreatic β-cell line and protects from pro-inflammatory cytokine-induced apoptosis. Clin Sci (Lond) 109:447–455

    CAS  Google Scholar 

  • D’Alise AM, Auyeung V, Feuerer M, Nishio J, Fontenot J, Benoist C, Mathis D (2008) The defect in T-cell regulation in NOD mice is an effect on the T-cell effectors. Proc Natl Acad Sci USA 105:19857–19862

    PubMed  PubMed Central  Google Scholar 

  • Danaei G, Finucane MM, Lu Y, Singh GM, Cowan MJ, Paciorek CJ, Lin JK, Farzadfar F, Khang YH, Stevens GA, Rao M, Ali MK, Riley LM, Robinson CA, Ezzati M (2011) National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet 378:31–40

    PubMed  CAS  Google Scholar 

  • Davis TM, Wright AD, Mehta ZM, Cull CA, Stratton IM, Bottazzo GF, Bosi E, Mackay IR, Holman RR (2005) Islet autoantibodies in clinically diagnosed type 2 diabetes: prevalence and relationship with metabolic control (UKPDS 70). Diabetologia 48:695–702

    PubMed  CAS  Google Scholar 

  • de Goffau MC, Luopajarvi K, Knip M, Ilonen J, Ruohtula T, Harkonen T, Orivuori L, Hakala S, Welling GW, Harmsen HJ, Vaarala O (2013) Fecal microbiota composition differs between children with β-cell autoimmunity and those without. Diabetes 62:1238–1244

    PubMed  PubMed Central  Google Scholar 

  • DeFuria J, Belkina AC, Jagannathan-Bogdan M, Snyder-Cappione J, Carr JD, Nersesova YR, Markham D, Strissel KJ, Watkins AA, Zhu M, Allen J, Bouchard J, Toraldo G, Jasuja R, Obin MS, McDonnell ME, Apovian C, Denis GV, Nikolajczyk BS (2013) B cells promote inflammation in obesity and type 2 diabetes through regulation of T-cell function and an inflammatory cytokine profile. Proc Natl Acad Sci USA 110:5133–5138

    PubMed  CAS  PubMed Central  Google Scholar 

  • Deng Y, Scherer PE (2010) Adipokines as novel biomarkers and regulators of the metabolic syndrome. Ann N Y Acad Sci 1212:E1–E19

    PubMed  PubMed Central  Google Scholar 

  • Dobrian AD, Lieb DC, Cole BK, Taylor-Fishwick DA, Chakrabarti SK, Nadler JL (2010a) Functional and pathological roles of the 12- and 15-lipoxygenases. Prog Lipid Res 50:115–131

    PubMed  PubMed Central  Google Scholar 

  • Dobrian AD, Lieb DC, Ma Q, Lindsay JW, Cole BK, Ma K, Chakrabarti SK, Kuhn NS, Wohlgemuth SD, Fontana M, Nadler JL (2010b) Differential expression and localization of 12/15 lipoxygenases in adipose tissue in human obese subjects. Biochem Biophys Res Commun 403:485–490

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dobrian AD, Ma Q, Lindsay JW, Leone KA, Ma K, Coben J, Galkina EV, Nadler JL (2010c) Dipeptidyl peptidase IV inhibitor sitagliptin reduces local inflammation in adipose tissue and in pancreatic islets of obese mice. Am J Physiol Endocrinol Metab 300:E410–E421

    PubMed  PubMed Central  Google Scholar 

  • Dobrian AD, Lieb DC, Cole BK, Taylor-Fishwick DA, Chakrabarti SK, Nadler JL (2011) Functional and pathological roles of the 12- and 15-lipoxygenases. Prog Lipid Res 50:115–131

    PubMed  CAS  PubMed Central  Google Scholar 

  • Donath MY, Shoelson SE (2011) Type 2 diabetes as an inflammatory disease. Nat Rev Immunol 11:98–107

    PubMed  CAS  Google Scholar 

  • Donath MY, Dalmas E, Sauter NS, Boni-Schnetzler M (2013) Inflammation in obesity and diabetes: islet dysfunction and therapeutic opportunity. Cell Metab 17:860–872

    PubMed  CAS  Google Scholar 

  • Dotta F, Censini S, van Halteren AG, Marselli L, Masini M, Dionisi S, Mosca F, Boggi U, Muda AO, Del Prato S, Elliott JF, Covacci A, Rappuoli R, Roep BO, Marchetti P (2007) Coxsackie B4 virus infection of β cells and natural killer cell insulitis in recent-onset type 1 diabetic patients. Proc Natl Acad Sci USA 104:5115–5120

    PubMed  CAS  PubMed Central  Google Scholar 

  • Drucker DJ (2006) The biology of incretin hormones. Cell Metab 3:153–165

    PubMed  CAS  Google Scholar 

  • Drucker DJ (2007) Dipeptidyl peptidase-4 inhibition and the treatment of type 2 diabetes: preclinical biology and mechanisms of action. Diabetes Care 30:1335–1343

    PubMed  CAS  Google Scholar 

  • Dunmore SJ, Brown JE (2013) The role of adipokines in β-cell failure of type 2 diabetes. J Endocrinol 216:T37–T45

    PubMed  CAS  Google Scholar 

  • Eguchi K, Manabe I, Oishi-Tanaka Y, Ohsugi M, Kono N, Ogata F, Yagi N, Ohto U, Kimoto M, Miyake K, Tobe K, Arai H, Kadowaki T, Nagai R (2012) Saturated fatty acid and TLR signaling link β cell dysfunction and islet inflammation. Cell Metab 15:518–533

    PubMed  CAS  Google Scholar 

  • Ehses JA, Perren A, Eppler E, Ribaux P, Pospisilik JA, Maor-Cahn R, Gueripel X, Ellingsgaard H, Schneider MK, Biollaz G, Fontana A, Reinecke M, Homo-Delarche F, Donath MY (2007) Increased number of islet-associated macrophages in type 2 diabetes. Diabetes 56:2356–2370

    PubMed  CAS  Google Scholar 

  • Ehses JA, Lacraz G, Giroix MH, Schmidlin F, Coulaud J, Kassis N, Irminger JC, Kergoat M, Portha B, Homo-Delarche F, Donath MY (2009) IL-1 antagonism reduces hyperglycemia and tissue inflammation in the type 2 diabetic GK rat. Proc Natl Acad Sci USA 106:13998–14003

    PubMed  CAS  PubMed Central  Google Scholar 

  • Eizirik DL, Mandrup-Poulsen T (2001) A choice of death – the signal-transduction of immune-mediated β-cell apoptosis. Diabetologia 44:2115–2133

    PubMed  CAS  Google Scholar 

  • Eizirik DL, Sammeth M, Bouckenooghe T, Bottu G, Sisino G, Igoillo-Esteve M, Ortis F, Santin I, Colli ML, Barthson J, Bouwens L, Hughes L, Gregory L, Lunter G, Marselli L, Marchetti P, McCarthy MI, Cnop M (2012) The human pancreatic islet transcriptome: expression of candidate genes for type 1 diabetes and the impact of pro-inflammatory cytokines. PLoS Genet 8:e1002552

    PubMed  CAS  PubMed Central  Google Scholar 

  • Eizirik DL, Miani M, Cardozo AK (2013) Signalling danger: endoplasmic reticulum stress and the unfolded protein response in pancreatic islet inflammation. Diabetologia 56:234–241

    PubMed  CAS  Google Scholar 

  • El Ouaamari A, Kawamori D, Dirice E, Liew CW, Shadrach JL, Hu J, Katsuta H, Hollister-Lock J, Qian WJ, Wagers AJ, Kulkarni RN (2013) Liver-derived systemic factors drive β cell hyperplasia in insulin-resistant states. Cell Rep 3:401–410

    PubMed  PubMed Central  Google Scholar 

  • Ellingsgaard H, Hauselmann I, Schuler B, Habib AM, Baggio LL, Meier DT, Eppler E, Bouzakri K, Wueest S, Muller YD, Hansen AM, Reinecke M, Konrad D, Gassmann M, Reimann F, Halban PA, Gromada J, Drucker DJ, Gribble FM, Ehses JA, Donath MY (2011) Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and α cells. Nat Med 17:1481–1489

    PubMed  CAS  Google Scholar 

  • Estall JL, Drucker DJ (2006) Glucagon and glucagon-like peptide receptors as drug targets. Curr Pharm Des 12:1731–1750

    PubMed  CAS  Google Scholar 

  • Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, Guiot Y, Derrien M, Muccioli GG, Delzenne NM, de Vos WM, Cani PD (2013) Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA 110:9066–9071

    PubMed  CAS  PubMed Central  Google Scholar 

  • Faghihimani E, Aminorroaya A, Rezvanian H, Adibi P, Ismail-Beigi F, Amini M (2013) Salsalate improves glycemic control in patients with newly diagnosed type 2 diabetes. Acta Diabetologica 50:537–543

    PubMed  CAS  Google Scholar 

  • Fliser D, Buchholz K, Haller H (2004) Antiinflammatory effects of angiotensin II subtype 1 receptor blockade in hypertensive patients with microinflammation. Circulation 110:1103–1107

    PubMed  CAS  Google Scholar 

  • Frederiksen B, Kroehl M, Lamb MM, Seifert J, Barriga K, Eisenbarth GS, Rewers M, Norris JM (2013) Infant exposures and development of type 1 diabetes mellitus: the Diabetes Autoimmunity Study in the Young (DAISY). JAMA Pediatr 167:808–815

    PubMed  PubMed Central  Google Scholar 

  • Fujisaka S, Usui I, Kanatani Y, Ikutani M, Takasaki I, Tsuneyama K, Tabuchi Y, Bukhari A, Yamazaki Y, Suzuki H, Senda S, Aminuddin A, Nagai Y, Takatsu K, Kobayashi M, Tobe K (2011) Telmisartan improves insulin resistance and modulates adipose tissue macrophage polarization in high-fat-fed mice. Endocrinology 152:1789–1799

    PubMed  CAS  Google Scholar 

  • Fujitani Y, Ueno T, Watada H (2010) Autophagy in health and disease. 4. The role of pancreatic β-cell autophagy in health and diabetes. Am J physiol Cell Physiol 299:C1–C6

    PubMed  CAS  Google Scholar 

  • Garg AD, Kaczmarek A, Krysko O, Vandenabeele P, Krysko DV, Agostinis P (2012) ER stress-induced inflammation: does it aid or impede disease progression? Trends Mol Med 18:589–598

    PubMed  CAS  Google Scholar 

  • Ghosh K, Kanapathipillai M, Korin N, McCarthy JR, Ingber DE (2012) Polymeric nanomaterials for islet targeting and immunotherapeutic delivery. Nano Lett 12:203–208

    PubMed  CAS  PubMed Central  Google Scholar 

  • Giacca A, Xiao C, Oprescu AI, Carpentier AC, Lewis GF (2011) Lipid-induced pancreatic β-cell dysfunction: focus on in vivo studies. Am J Physiol Endocrinol Metab 300:E255–E262

    PubMed  CAS  Google Scholar 

  • Giongo A, Gano KA, Crabb DB, Mukherjee N, Novelo LL, Casella G, Drew JC, Ilonen J, Knip M, Hyoty H, Veijola R, Simell T, Simell O, Neu J, Wasserfall CH, Schatz D, Atkinson MA, Triplett EW (2011) Toward defining the autoimmune microbiome for type 1 diabetes. ISME J 5:82–91

    PubMed  CAS  PubMed Central  Google Scholar 

  • Goldfine AB, Fonseca V, Jablonski KA, Pyle L, Staten MA, Shoelson SE (2010) The effects of salsalate on glycemic control in patients with type 2 diabetes: a randomized trial. Ann Intern Med 152:346–357

    PubMed  PubMed Central  Google Scholar 

  • Goldfine AB, Fonseca V, Shoelson SE (2011) Therapeutic approaches to target inflammation in type 2 diabetes. Clin Chem 57:162–167

    PubMed  CAS  PubMed Central  Google Scholar 

  • Goldfine AB, Conlin PR, Halperin F, Koska J, Permana P, Schwenke D, Shoelson SE, Reaven PD (2013a) A randomised trial of salsalate for insulin resistance and cardiovascular risk factors in persons with abnormal glucose tolerance. Diabetologia 56:714–723

    PubMed  CAS  Google Scholar 

  • Goldfine AB, Fonseca V, Jablonski KA, Chen YD, Tipton L, Staten MA, Shoelson SE (2013b) Salicylate (salsalate) in patients with type 2 diabetes: a randomized trial. Ann Intern Med 159:1–12

    PubMed  PubMed Central  Google Scholar 

  • Green-Mitchell SM, Tersey SA, Cole BK, Ma K, Kuhn NS, Cunningham TD, Maybee NA, Chakrabarti SK, McDuffie M, Taylor-Fishwick DA, Mirmira RG, Nadler JL, Morris MA (2013) Deletion of 12/15-lipoxygenase alters macrophage and islet function in NOD-Alox15(null) mice, leading to protection against type 1 diabetes development. PLoS One 8:e56763

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hansen CH, Krych L, Nielsen DS, Vogensen FK, Hansen LH, Sorensen SJ, Buschard K, Hansen AK (2012a) Early life treatment with vancomycin propagates Akkermansia muciniphila and reduces diabetes incidence in the NOD mouse. Diabetologia 55:2285–2294

    PubMed  CAS  Google Scholar 

  • Hansen JB, Tonnesen MF, Madsen AN, Hagedorn PH, Friberg J, Grunnet LG, Heller RS, Nielsen AO, Storling J, Baeyens L, Anker-Kitai L, Qvortrup K, Bouwens L, Efrat S, Aalund M, Andrews NC, Billestrup N, Karlsen AE, Holst B, Pociot F, Mandrup-Poulsen T (2012b) Divalent metal transporter 1 regulates iron-mediated ROS and pancreatic β cell fate in response to cytokines. Cell Metab 16:449–461

    PubMed  CAS  Google Scholar 

  • Hara N, Alkanani AK, Ir D, Robertson CE, Wagner BD, Frank DN, Zipris D (2012) Prevention of virus-induced type 1 diabetes with antibiotic therapy. J Immunol 189:3805–3814

    PubMed  CAS  Google Scholar 

  • Hawley SA, Fullerton MD, Ross FA, Schertzer JD, Chevtzoff C, Walker KJ, Peggie MW, Zibrova D, Green KA, Mustard KJ, Kemp BE, Sakamoto K, Steinberg GR, Hardie DG (2012) The ancient drug salicylate directly activates AMP-activated protein kinase. Science 336:918–922

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hayashi Y, Utsuyama M, Kurashima C, Hirokawa K (1989) Spontaneous development of organ-specific autoimmune lesions in aged C57BL/6 mice. Clin Exp Immunol 78:120–126

    PubMed  CAS  PubMed Central  Google Scholar 

  • Herder C, Haastert B, Muller-Scholze S, Koenig W, Thorand B, Holle R, Wichmann HE, Scherbaum WA, Martin S, Kolb H (2005) Association of systemic chemokine concentrations with impaired glucose tolerance and type 2 diabetes: results from the Cooperative Health Research in the Region of Augsburg Survey S4 (KORA S4). Diabetes 54(Suppl 2):S11–S17

    PubMed  CAS  Google Scholar 

  • Herder C, Hauner H, Kempf K, Kolb H, Skurk T (2007) Constitutive and regulated expression and secretion of interferon-gamma-inducible protein 10 (IP-10/CXCL10) in human adipocytes. Int J Obes (Lond) 31:403–410

    CAS  Google Scholar 

  • Hines WJ, Smith MJ (1964) Inhibition of dehydrogenases by salicylate. Nature 201:192

    PubMed  CAS  Google Scholar 

  • Hogan AE, Tobin AM, Ahern T, Corrigan MA, Gaoatswe G, Jackson R, O’Reilly V, Lynch L, Doherty DG, Moynagh PN, Kirby B, O’Connell J, O’Shea D (2011) Glucagon-like peptide-1 (GLP-1) and the regulation of human invariant natural killer T cells: lessons from obesity, diabetes and psoriasis. Diabetologia 54:2745–2754

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hogan AE, Lynch L, Gaoatswe G, Woods C, Jackson R, O’Connell J, Moynagh PN, O’Shea D (2013) Glucagon-like peptide-1 (GLP-1) analogue therapy impacts inflammatory macrophages and cytokine increasing evidence for its anti-inflammatory actions. Endocr Rev 34:FP13–FP15

    Google Scholar 

  • Holland WL, Miller RA, Wang ZV, Sun K, Barth BM, Bui HH, Davis KE, Bikman BT, Halberg N, Rutkowski JM, Wade MR, Tenorio VM, Kuo MS, Brozinick JT, Zhang BB, Birnbaum MJ, Summers SA, Scherer PE (2011) Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nat Med 17:55–63

    PubMed  CAS  PubMed Central  Google Scholar 

  • Homo-Delarche F, Calderari S, Irminger JC, Gangnerau MN, Coulaud J, Rickenbach K, Dolz M, Halban P, Portha B, Serradas P (2006) Islet inflammation and fibrosis in a spontaneous model of type 2 diabetes, the GK rat. Diabetes 55:1625–1633

    PubMed  CAS  Google Scholar 

  • Honda K, Moto M, Uchida N, He F, Hashizume N (2012) Anti-diabetic effects of lactic acid bacteria in normal and type 2 diabetic mice. J Clin Biochem Nutr 51:96–101

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444:860–867

    PubMed  CAS  Google Scholar 

  • Hotamisligil GS (2010) Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140:900–917

    PubMed  CAS  PubMed Central  Google Scholar 

  • Huang CJ, Lin CY, Haataja L, Gurlo T, Butler AE, Rizza RA, Butler PC (2007) High expression rates of human islet amyloid polypeptide induce endoplasmic reticulum stress mediated β-cell apoptosis, a characteristic of humans with type 2 but not type 1 diabetes. Diabetes 56:2016–2027

    PubMed  CAS  Google Scholar 

  • Hummel S, Pfluger M, Hummel M, Bonifacio E, Ziegler AG (2011) Primary dietary intervention study to reduce the risk of islet autoimmunity in children at increased risk for type 1 diabetes: the BABYDIET study. Diabetes Care 34:1301–1305

    PubMed  PubMed Central  Google Scholar 

  • Hundal RS, Petersen KF, Mayerson AB, Randhawa PS, Inzucchi S, Shoelson SE, Shulman GI (2002) Mechanism by which high-dose aspirin improves glucose metabolism in type 2 diabetes. J Clin Invest 109:1321–1326

    PubMed  CAS  PubMed Central  Google Scholar 

  • Igoillo-Esteve M, Marselli L, Cunha DA, Ladriere L, Ortis F, Grieco FA, Dotta F, Weir GC, Marchetti P, Eizirik DL, Cnop M (2010) Palmitate induces a pro-inflammatory response in human pancreatic islets that mimics CCL2 expression by β cells in type 2 diabetes. Diabetologia 53:1395–1405

    PubMed  CAS  Google Scholar 

  • Imai J, Katagiri H, Yamada T, Ishigaki Y, Suzuki T, Kudo H, Uno K, Hasegawa Y, Gao J, Kaneko K, Ishihara H, Niijima A, Nakazato M, Asano T, Minokoshi Y, Oka Y (2008) Regulation of pancreatic β cell mass by neuronal signals from the liver. Science 322:1250–1254

    PubMed  CAS  Google Scholar 

  • Imai Y, Dobrian AD, Morris MA, Nadler JL (2013a) Islet inflammation: a unifying target for diabetes treatment? Trends Endocrinol Metab: TEM 24:351–360

    PubMed  CAS  PubMed Central  Google Scholar 

  • Imai Y, Dobrian AD, Weaver JR, Butcher MJ, Cole BK, Galkina EV, Morris MA, Taylor-Fishwick DA, Nadler JL (2013b) Interaction between cytokines and inflammatory cells in islet dysfunction, insulin resistance, and vascular disease. Diabetes Obes Metab 15(Suppl 3):117–129

    Google Scholar 

  • Inoguchi T, Nawata H (2005) NAD(P)H oxidase activation: a potential target mechanism for diabetic vascular complications, progressive β-cell dysfunction and metabolic syndrome. Curr Drug Targets 6:495–501

    PubMed  CAS  Google Scholar 

  • Jaidane H, Hober D (2008) Role of coxsackievirus B4 in the pathogenesis of type 1 diabetes. Diabetes Metab 34:537–548

    PubMed  CAS  Google Scholar 

  • Janciauskiene S, Ahren B (2000) Fibrillar islet amyloid polypeptide differentially affects oxidative mechanisms and lipoprotein uptake in correlation with cytotoxicity in two insulin-producing cell lines. Biochem Biophys Res Commun 267:619–625

    PubMed  CAS  Google Scholar 

  • Jelsing J, Vrang N, van Witteloostuijn SB, Mark M, Klein T (2012) The DPP4 inhibitor linagliptin delays the onset of diabetes and preserves β-cell mass in non-obese diabetic mice. J Endocrinol 214:381–387

    PubMed  CAS  Google Scholar 

  • Jorns A, Gunther A, Hedrich HJ, Wedekind D, Tiedge M, Lenzen S (2005) Immune cell infiltration, cytokine expression, and β-cell apoptosis during the development of type 1 diabetes in the spontaneously diabetic LEW.1AR1/Ztm-iddm rat. Diabetes 54:2041–2052

    PubMed  Google Scholar 

  • Joseph J, Bittner S, Kaiser FM, Wiendl H, Kissler S (2012) IL-17 silencing does not protect nonobese diabetic mice from autoimmune diabetes. J Immunol 188:216–221

    PubMed  CAS  Google Scholar 

  • Jourdan T, Godlewski G, Cinar R, Bertola A, Szanda G, Liu J, Tam J, Han T, Mukhopadhyay B, Skarulis MC, Ju C, Aouadi M, Czech MP, Kunos G (2013) Activation of the Nlrp3 inflammasome in infiltrating macrophages by endocannabinoids mediates β cell loss in type 2 diabetes. Nat Med 19:1132–1140

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jurgens CA, Toukatly MN, Fligner CL, Udayasankar J, Subramanian SL, Zraika S, Aston-Mourney K, Carr DB, Westermark P, Westermark GT, Kahn SE, Hull RL (2011) β-cell loss and β-cell apoptosis in human type 2 diabetes are related to islet amyloid deposition. Am J Pathol 178:2632–2640

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kahn SE, Hull RL, Utzschneider KM (2006) Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444:840–846

    PubMed  CAS  Google Scholar 

  • Kahn SE, Zraika S, Utzschneider KM, Hull RL (2009) The β cell lesion in type 2 diabetes: there has to be a primary functional abnormality. Diabetologia 52:1003–1012

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kang YS, Song HK, Lee MH, Ko GJ, Cha DR (2010) Plasma concentration of visfatin is a new surrogate marker of systemic inflammation in type 2 diabetic patients. Diabetes Res Clin Pract 89:141–149

    PubMed  CAS  Google Scholar 

  • Karlsson FH, Tremaroli V, Nookaew I, Bergstrom G, Behre CJ, Fagerberg B, Nielsen J, Backhed F (2013) Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498:99–103

    PubMed  CAS  Google Scholar 

  • Kenyon V, Rai G, Jadhav A, Schultz L, Armstrong M, Jameson JB 2nd, Perry S, Joshi N, Bougie JM, Leister W, Taylor-Fishwick DA, Nadler JL, Holinstat M, Simeonov A, Maloney DJ, Holman TR (2011) Discovery of potent and selective inhibitors of human platelet-type 12- lipoxygenase. J Med Chem 54:5485–5497

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kleijwegt FS, Jansen DT, Teeler J, Joosten AM, Laban S, Nikolic T, Roep BO (2013) Tolerogenic dendritic cells impede priming of naive CD8+ T cells and deplete memory CD8+ T cells. Eur J Immunol 43:85–92

    PubMed  CAS  Google Scholar 

  • Knight RR, Kronenberg D, Zhao M, Huang GC, Eichmann M, Bulek A, Wooldridge L, Cole DK, Sewell AK, Peakman M, Skowera A (2013) Human β-cell killing by autoreactive preproinsulin-specific CD8 T cells is predominantly granule-mediated with the potency dependent upon T-cell receptor avidity. Diabetes 62:205–213

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kobayashi M, Kaneko-Koike C, Abiru N, Uchida T, Akazawa S, Nakamura K, Kuriya G, Satoh T, Ida H, Kawasaki E, Yamasaki H, Nagayama Y, Sasaki H, Kawakami A (2013) Genetic deletion of granzyme B does not confer resistance to the development of spontaneous diabetes in non-obese diabetic mice. Clin Exp Immunol 173:411–418

    PubMed  CAS  PubMed Central  Google Scholar 

  • Koska J, Ortega E, Bunt JC, Gasser A, Impson J, Hanson RL, Forbes J, de Courten B, Krakoff J (2009) The effect of salsalate on insulin action and glucose tolerance in obese non-diabetic patients: results of a randomised double-blind placebo-controlled study. Diabetologia 52:385–393

    PubMed  CAS  PubMed Central  Google Scholar 

  • Koulajian K, Desai T, Liu GC, Ivovic A, Patterson JN, Tang C, El-Benna J, Joseph JW, Scholey JW, Giacca A (2013) NADPH oxidase inhibition prevents β cell dysfunction induced by prolonged elevation of oleate in rodents. Diabetologia 56:1078–1087

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kriegel MA, Sefik E, Hill JA, Wu HJ, Benoist C, Mathis D (2011) Naturally transmitted segmented filamentous bacteria segregate with diabetes protection in nonobese diabetic mice. Proc Natl Acad Sci USA 108:11548–11553

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kriegel MA, Rathinam C, Flavell RA (2012) Pancreatic islet expression of chemokine CCL2 suppresses autoimmune diabetes via tolerogenic CD11c + CD11b + dendritic cells. Proc Natl Acad Sci USA 109:3457–3462

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lamb RE, Goldstein BJ (2008) Modulating an oxidative-inflammatory cascade: potential new treatment strategy for improving glucose metabolism, insulin resistance, and vascular function. Int J Clin Pract 62:1087–1095

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lamers D, Famulla S, Wronkowitz N, Hartwig S, Lehr S, Ouwens DM, Eckardt K, Kaufman JM, Ryden M, Muller S, Hanisch FG, Ruige J, Arner P, Sell H, Eckel J (2011) Dipeptidyl peptidase 4 is a novel adipokine potentially linking obesity to the metabolic syndrome. Diabetes 60:1917–1925

    PubMed  CAS  PubMed Central  Google Scholar 

  • Larsen CM, Faulenbach M, Vaag A, Volund A, Ehses JA, Seifert B, Mandrup-Poulsen T, Donath MY (2007) Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med 356:1517–1526

    PubMed  CAS  Google Scholar 

  • Larsen CM, Faulenbach M, Vaag A, Ehses JA, Donath MY, Mandrup-Poulsen T (2009) Sustained effects of interleukin-1 receptor antagonist treatment in type 2 diabetes. Diabetes Care 32:1663–1668

    PubMed  CAS  PubMed Central  Google Scholar 

  • Larsen N, Vogensen FK, van den Berg FW, Nielsen DS, Andreasen AS, Pedersen BK, Al-Soud WA, Sorensen SJ, Hansen LH, Jakobsen M (2010) Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One 5:e9085

    PubMed  PubMed Central  Google Scholar 

  • Lee AS, Gibson DL, Zhang Y, Sham HP, Vallance BA, Dutz JP (2010) Gut barrier disruption by an enteric bacterial pathogen accelerates insulitis in NOD mice. Diabetologia 53:741–748

    PubMed  CAS  Google Scholar 

  • Lee YS, Park MS, Choung JS, Kim SS, Oh HH, Choi CS, Ha SY, Kang Y, Kim Y, Jun HS (2012) Glucagon-like peptide-1 inhibits adipose tissue macrophage infiltration and inflammation in an obese mouse model of diabetes. Diabetologia 55:2456–2468

    PubMed  CAS  Google Scholar 

  • Lenzen S (2008) Oxidative stress: the vulnerable β-cell. Biochem Soc Trans 36:343–347

    PubMed  CAS  Google Scholar 

  • Lerner AG, Upton JP, Praveen PV, Ghosh R, Nakagawa Y, Igbaria A, Shen S, Nguyen V, Backes BJ, Heiman M, Heintz N, Greengard P, Hui S, Tang Q, Trusina A, Oakes SA, Papa FR (2012) IRE1α induces thioredoxin-interacting protein to activate the NLRP3 inflammasome and promote programmed cell death under irremediable ER stress. Cell Metab 16:250–264

    PubMed  CAS  PubMed Central  Google Scholar 

  • Levine B, Mizushima N, Virgin HW (2011) Autophagy in immunity and inflammation. Nature 469:323–335

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lightfoot YL, Chen J, Mathews CE (2012) Oxidative stress and β cell dysfunction. Methods Mol Biol 900:347–362

    PubMed  CAS  Google Scholar 

  • Lindley S, Dayan CM, Bishop A, Roep BO, Peakman M, Tree TI (2005) Defective suppressor function in CD4+CD25+ T-cells from patients with type 1 diabetes. Diabetes 54:92–99

    PubMed  CAS  Google Scholar 

  • Lohmann T, Kellner K, Verlohren HJ, Krug J, Steindorf J, Scherbaum WA, Seissler J (2001) Titre and combination of ICA and autoantibodies to glutamic acid decarboxylase discriminate two clinically distinct types of latent autoimmune diabetes in adults (LADA). Diabetologia 44:1005–1010

    PubMed  CAS  Google Scholar 

  • Long SA, Rieck M, Sanda S, Bollyky JB, Samuels PL, Goland R, Ahmann A, Rabinovitch A, Aggarwal S, Phippard D, Turka LA, Ehlers MR, Bianchine PJ, Boyle KD, Adah SA, Bluestone JA, Buckner JH, Greenbaum CJ (2012) Rapamycin/IL-2 combination therapy in patients with type 1 diabetes augments Tregs yet transiently impairs β-cell function. Diabetes 61:2340–2348

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lumeng CN, Saltiel AR (2011) Inflammatory links between obesity and metabolic disease. J Clin Invest 121:2111–2117

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ma K, Nunemaker CS, Wu R, Chakrabarti SK, Taylor-Fishwick DA, Nadler JL (2010) 12-Lipoxygenase Products Reduce Insulin Secretion and β-Cell Viability in Human Islets. J Clin Endocrinol Metab 95:887–893

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mahdi T, Hanzelmann S, Salehi A, Muhammed SJ, Reinbothe TM, Tang Y, Axelsson AS, Zhou Y, Jing X, Almgren P, Krus U, Taneera J, Blom AM, Lyssenko V, Esguerra JL, Hansson O, Eliasson L, Derry J, Zhang E, Wollheim CB, Groop L, Renstrom E, Rosengren AH (2012) Secreted frizzled-related protein 4 reduces insulin secretion and is overexpressed in type 2 diabetes. Cell Metab 16:625–633

    PubMed  CAS  Google Scholar 

  • Marhfour I, Lopez XM, Lefkaditis D, Salmon I, Allagnat F, Richardson SJ, Morgan NG, Eizirik DL (2012) Expression of endoplasmic reticulum stress markers in the islets of patients with type 1 diabetes. Diabetologia 55:2417–2420

    PubMed  CAS  Google Scholar 

  • Markle JG, Frank DN, Mortin-Toth S, Robertson CE, Feazel LM, Rolle-Kampczyk U, von Bergen M, McCoy KD, Macpherson AJ, Danska JS (2013a) Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science 339:1084–1088

    PubMed  CAS  Google Scholar 

  • Markle JG, Mortin-Toth S, Wong AS, Geng L, Hayday A, Danska JS (2013b) Gammadelta T cells are essential effectors of type 1 diabetes in the nonobese diabetic mouse model. J Immunol 190:5392–5401

    PubMed  CAS  Google Scholar 

  • Marroqui L, Gonzalez A, Neco P, Caballero-Garrido E, Vieira E, Ripoll C, Nadal A, Quesada I (2012) Role of leptin in the pancreatic β-cell: effects and signaling pathways. J Mol Endocrinol 49:R9–R17

    PubMed  CAS  Google Scholar 

  • Marselli L, Thorne J, Dahiya S, Sgroi DC, Sharma A, Bonner-Weir S, Marchetti P, Weir GC (2010) Gene expression profiles of β-cell enriched tissue obtained by laser capture microdissection from subjects with type 2 diabetes. PloS One 5:e11499

    PubMed  PubMed Central  Google Scholar 

  • Martin AP, Rankin S, Pitchford S, Charo IF, Furtado GC, Lira SA (2008) Increased expression of CCL2 in insulin-producing cells of transgenic mice promotes mobilization of myeloid cells from the bone marrow, marked insulitis, and diabetes. Diabetes 57:3025–3033

    PubMed  CAS  PubMed Central  Google Scholar 

  • Martinez J, Verbist K, Wang R, Green DR (2013) The relationship between metabolism and the autophagy machinery during the innate immune response. Cell Metab 17:895–900

    PubMed  CAS  PubMed Central  Google Scholar 

  • Masters SL, Dunne A, Subramanian SL, Hull RL, Tannahill GM, Sharp FA, Becker C, Franchi L, Yoshihara E, Chen Z, Mullooly N, Mielke LA, Harris J, Coll RC, Mills KH, Mok KH, Newsholme P, Nunez G, Yodoi J, Kahn SE, Lavelle EC, O’Neill LA (2010) Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes. Nat Immunol 11:897–904

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mathis D (2013) Immunological goings-on in visceral adipose tissue. Cell Metab 17:851–859

    PubMed  CAS  Google Scholar 

  • Matveyenko AV, Liuwantara D, Gurlo T, Kirakossian D, Dalla Man C, Cobelli C, White MF, Copps KD, Volpi E, Fujita S, Butler PC (2012) Pulsatile portal vein insulin delivery enhances hepatic insulin action and signaling. Diabetes 61:2269–2279

    PubMed  CAS  PubMed Central  Google Scholar 

  • McDuffie M, Maybee NA, Keller SR, Stevens BK, Garmey JC, Morris MA, Kropf E, Rival C, Ma K, Carter JD, Tersey SA, Nunemaker CS, Nadler JL (2008) Nonobese diabetic (NOD) mice congenic for a targeted deletion of 12/15-lipoxygenase are protected from autoimmune diabetes. Diabetes 57:199–208

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mehers KL, Long AE, van der Slik AR, Aitken RJ, Nathwani V, Wong FS, Bain S, Gill G, Roep BO, Bingley PJ, Gillespie KM (2011) An increased frequency of NK cell receptor and HLA-C group 1 combinations in early-onset type 1 diabetes. Diabetologia 54:3062–3070

    PubMed  CAS  Google Scholar 

  • Meier JJ, Veldhuis JD, Butler PC (2005) Pulsatile insulin secretion dictates systemic insulin delivery by regulating hepatic insulin extraction in humans. Diabetes 54:1649–1656

    PubMed  CAS  Google Scholar 

  • Meyers AJ, Shah RR, Gottlieb PA, Zipris D (2010) Altered Toll-like receptor signaling pathways in human type 1 diabetes. J Mol Med (Berl) 88:1221–1231

    CAS  Google Scholar 

  • Michalska M, Wolf G, Walther R, Newsholme P (2010) The effects of pharmacologic inhibition of NADPH oxidase or iNOS on pro-inflammatory cytokine, palmitic acid or H2O2 -induced mouse islet or clonal pancreatic β cell dysfunction. Biosci Rep 30:445–453

    PubMed  CAS  Google Scholar 

  • Miller MR, Seifert J, Szabo NJ, Clare-Salzler M, Rewers M, Norris JM (2010) Erythrocyte membrane fatty acid content in infants consuming formulas supplemented with docosahexaenoic acid (DHA) and arachidonic acid (ARA): an observational study. Matern Child Nutr 6:338–346

    PubMed  PubMed Central  Google Scholar 

  • Miller MR, Yin X, Seifert J, Clare-Salzler M, Eisenbarth GS, Rewers M, Norris JM (2011) Erythrocyte membrane omega-3 fatty acid levels and omega-3 fatty acid intake are not associated with conversion to type 1 diabetes in children with islet autoimmunity: the Diabetes Autoimmunity Study in the Young (DAISY). Pediatr Diabetes 12:669–675

    PubMed  CAS  PubMed Central  Google Scholar 

  • Montane J, Klimek-Abercrombie A, Potter KJ, Westwell-Roper C, Verchere CB (2012) Metabolic stress, IAPP and islet amyloid. Diabetes Obes Metab 14:68–77

    PubMed  CAS  Google Scholar 

  • Moran A, Bundy B, Becker DJ, DiMeglio LA, Gitelman SE, Goland R, Greenbaum CJ, Herold KC, Marks JB, Raskin P, Sanda S, Schatz D, Wherrett DK, Wilson DM, Krischer JP, Skyler JS, Pickersgill L, de Koning E, Ziegler AG, Boehm B, Badenhoop K, Schloot N, Bak JF, Pozzilli P, Mauricio D, Donath MY, Castano L, Wagner A, Lervang HH, Perrild H, Mandrup-Poulsen T, Pociot F, Dinarello CA (2013) Interleukin-1 antagonism in type 1 diabetes of recent onset: two multicentre, randomised, double-blind, placebo-controlled trials. Lancet 381:1905–1915

    PubMed  CAS  Google Scholar 

  • Morgan D, Oliveira-Emilio HR, Keane D, Hirata AE, Santos da Rocha M, Bordin S, Curi R, Newsholme P, Carpinelli AR (2007) Glucose, palmitate and pro-inflammatory cytokines modulate production and activity of a phagocyte-like NADPH oxidase in rat pancreatic islets and a clonal β cell line. Diabetologia 50:359–369

    PubMed  CAS  Google Scholar 

  • Morioka T, Asilmaz E, Hu J, Dishinger JF, Kurpad AJ, Elias CF, Li H, Elmquist JK, Kennedy RT, Kulkarni RN (2007) Disruption of leptin receptor expression in the pancreas directly affects β cell growth and function in mice. J Clin Invest 117:2860–2868

    PubMed  CAS  PubMed Central  Google Scholar 

  • Murri M, Leiva I, Gomez-Zumaquero JM, Tinahones FJ, Cardona F, Soriguer F, Queipo-Ortuno MI (2013) Gut microbiota in children with type 1 diabetes differs from that in healthy children: a case-control study. BMC Med 11:46

    PubMed  PubMed Central  Google Scholar 

  • Myers MG Jr, Leibel RL, Seeley RJ, Schwartz MW (2010) Obesity and leptin resistance: distinguishing cause from effect. Trends Endocrinol Metab: TEM 21:643–651

    PubMed  CAS  PubMed Central  Google Scholar 

  • Myhr CB, Hulme MA, Wasserfall CH, Hong PJ, Lakshmi PS, Schatz DA, Haller MJ, Brusko TM, Atkinson MA (2013) The autoimmune disease-associated SNP rs917997 of IL18RAP controls IFNgamma production by PBMC. J Autoimmun 44:8–12

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nakata M, Okada T, Ozawa K, Yada T (2007) Resistin induces insulin resistance in pancreatic islets to impair glucose-induced insulin release. Biochem Biophys Res Commun 353:1046–1051

    PubMed  CAS  Google Scholar 

  • Nakayama M, Inoguchi T, Sonta T, Maeda Y, Sasaki S, Sawada F, Tsubouchi H, Sonoda N, Kobayashi K, Sumimoto H, Nawata H (2005) Increased expression of NAD(P)H oxidase in islets of animal models of type 2 diabetes and its improvement by an AT1 receptor antagonist. Biochem Biophys Res Commun 332:927–933

    PubMed  CAS  Google Scholar 

  • Nguyen MT, Favelyukis S, Nguyen AK, Reichart D, Scott PA, Jenn A, Liu-Bryan R, Glass CK, Neels JG, Olefsky JM (2007) A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids via Toll-like receptors 2 and 4 and JNK-dependent pathways. J Biol Chem 282:35279–35292

    PubMed  CAS  Google Scholar 

  • Nicoloff G, Blazhev A, Petrova C, Christova P (2004) Circulating immune complexes among diabetic children. Clin Dev Immunol 11:61–66

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nie Y, Ma RC, Chan JC, Xu H, Xu G (2012) Glucose-dependent insulinotropic peptide impairs insulin signaling via inducing adipocyte inflammation in glucose-dependent insulinotropic peptide receptor-overexpressing adipocytes. Faseb J 26:2383–2393

    PubMed  CAS  Google Scholar 

  • Nikolajczyk BS, Jagannathan-Bogdan M, Denis GV (2012) The outliers become a stampede as immunometabolism reaches a tipping point. Immunol Rev 249:253–275

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nikolic T, Bouma G, Drexhage HA, Leenen PJ (2005) Diabetes-prone NOD mice show an expanded subpopulation of mature circulating monocytes, which preferentially develop into macrophage-like cells in vitro. J Leukoc Biol 78:70–79

    PubMed  CAS  Google Scholar 

  • Nixon M, Wake DJ, Livingstone DE, Stimson RH, Esteves CL, Seckl JR, Chapman KE, Andrew R, Walker BR (2012) Salicylate downregulates 11β-HSD1 expression in adipose tissue in obese mice and in humans, mediating insulin sensitization. Diabetes 61:790–796

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nogueira TC, Paula FM, Villate O, Colli ML, Moura RF, Cunha DA, Marselli L, Marchetti P, Cnop M, Julier C, Eizirik DL (2013) GLIS3, a susceptibility gene for type 1 and type 2 diabetes, modulates pancreatic β cell apoptosis via regulation of a splice variant of the BH3-only protein Bim. PLoS Genet 9:e1003532

    PubMed  CAS  PubMed Central  Google Scholar 

  • Oliveira HR, Verlengia R, Carvalho CR, Britto LR, Curi R, Carpinelli AR (2003) Pancreatic β-cells express phagocyte-like NAD(P)H oxidase. Diabetes 52:1457–1463

    PubMed  CAS  Google Scholar 

  • Omar BA, Vikman J, Winzell MS, Voss U, Ekblad E, Foley JE, Ahren B (2013) Enhanced β cell function and anti-inflammatory effect after chronic treatment with the dipeptidyl peptidase-4 inhibitor vildagliptin in an advanced-aged diet-induced obesity mouse model. Diabetologia 56:1752–1760

    PubMed  CAS  Google Scholar 

  • Orban T, Sosenko JM, Cuthbertson D, Krischer JP, Skyler JS, Jackson R, Yu L, Palmer JP, Schatz D, Eisenbarth G (2009) Pancreatic islet autoantibodies as predictors of type 1 diabetes in the Diabetes Prevention Trial-Type 1. Diabetes Care 32:2269–2274

    PubMed  PubMed Central  Google Scholar 

  • Ortis F, Miani M, Colli ML, Cunha DA, Gurzov EN, Allagnat F, Chariot A, Eizirik DL (2012) Differential usage of NF-kappaB activating signals by IL-1β and TNF-α in pancreatic β cells. FEBS Lett 586:984–989

    PubMed  CAS  Google Scholar 

  • Osborn O, Olefsky JM (2012) The cellular and signaling networks linking the immune system and metabolism in disease. Nat Med 18:363–374

    PubMed  CAS  Google Scholar 

  • Oslowski CM, Urano F (2010) The binary switch between life and death of endoplasmic reticulum-stressed β cells. Curr Opin Endocrinol Diabetes Obes 17:107–112

    PubMed  PubMed Central  Google Scholar 

  • Oslowski CM, Hara T, O’Sullivan-Murphy B, Kanekura K, Lu S, Hara M, Ishigaki S, Zhu LJ, Hayashi E, Hui ST, Greiner D, Kaufman RJ, Bortell R, Urano F (2012) Thioredoxin-interacting protein mediates ER stress-induced β cell death through initiation of the inflammasome. Cell Metab 16:265–273

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ouchi N, Parker JL, Lugus JJ, Walsh K (2011) Adipokines in inflammation and metabolic disease. Nat Rev Immunol 11:85–97

    PubMed  CAS  PubMed Central  Google Scholar 

  • Padgett LE, Broniowska KA, Hansen PA, Corbett JA, Tse HM (2013) The role of reactive oxygen species and proinflammatory cytokines in type 1 diabetes pathogenesis. Ann N Y Acad Sci 1281:16–35

    PubMed  CAS  PubMed Central  Google Scholar 

  • Patel SB, Reams GP, Spear RM, Freeman RH, Villarreal D (2008) Leptin: linking obesity, the metabolic syndrome, and cardiovascular disease. Curr Hypertens Rep 10:131–137

    PubMed  CAS  Google Scholar 

  • Pavlatou MG, Mastorakos G, Margeli A, Kouskouni E, Tentolouris N, Katsilambros N, Chrousos GP, Papassotiriou I (2011) Angiotensin blockade in diabetic patients decreases insulin resistance-associated low-grade inflammation. Eur J Clin Invest 41:652–658

    PubMed  CAS  Google Scholar 

  • Petrie JR, Pearson ER, Sutherland C (2011) Implications of genome wide association studies for the understanding of type 2 diabetes pathophysiology. Biochem Pharmacol 81:471–477

    PubMed  CAS  Google Scholar 

  • Pi J, Collins S (2010) Reactive oxygen species and uncoupling protein 2 in pancreatic β-cell function. Diabetes Obes Metab 12(Suppl 2):141–148

    PubMed  CAS  Google Scholar 

  • Piya MK, McTernan PG, Kumar S (2013) Adipokine inflammation and insulin resistance: the role of glucose, lipids and endotoxin. J Endocrinol 216:T1–T15

    PubMed  CAS  Google Scholar 

  • Poitout V, Robertson RP (2008) Glucolipotoxicity: fuel excess and β-cell dysfunction. Endocr Rev 29:351–366

    PubMed  CAS  PubMed Central  Google Scholar 

  • Prentki M, Nolan CJ (2006) Islet β cell failure in type 2 diabetes. J Clin Invest 116:1802–1812

    PubMed  CAS  PubMed Central  Google Scholar 

  • Prieur X, Mok CY, Velagapudi VR, Nunez V, Fuentes L, Montaner D, Ishikawa K, Camacho A, Barbarroja N, O’Rahilly S, Sethi JK, Dopazo J, Oresic M, Ricote M, Vidal-Puig A (2011) Differential lipid partitioning between adipocytes and tissue macrophages modulates macrophage lipotoxicity and M2/M1 polarization in obese mice. Diabetes 60:797–809

    PubMed  CAS  PubMed Central  Google Scholar 

  • Putnam AL, Brusko TM, Lee MR, Liu W, Szot GL, Ghosh T, Atkinson MA, Bluestone JA (2009) Expansion of human regulatory T-cells from patients with type 1 diabetes. Diabetes 58:652–662

    PubMed  CAS  PubMed Central  Google Scholar 

  • Quagliarini F, Wang Y, Kozlitina J, Grishin NV, Hyde R, Boerwinkle E, Valenzuela DM, Murphy AJ, Cohen JC, Hobbs HH (2012) Atypical angiopoietin-like protein that regulates ANGPTL3. Proc Natl Acad Sci USA 109:19751–19756

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rabinovitch A, Sumoski W, Rajotte RV, Warnock GL (1990) Cytotoxic effects of cytokines on human pancreatic islet cells in monolayer culture. J Clin Endocrinol Metab 71:152–156

    PubMed  CAS  Google Scholar 

  • Ramos-Lopez E, Scholten F, Aminkeng F, Wild C, Kalhes H, Seidl C, Tonn T, Van der Auwera B, Badenhoop K (2009) Association of KIR2DL2 polymorphism rs2756923 with type 1 diabetes and preliminary evidence for lack of inhibition through HLA-C1 ligand binding. Tissue Antigens 73:599–603

    PubMed  CAS  Google Scholar 

  • Ramos-Zavala MG, Gonzalez-Ortiz M, Martinez-Abundis E, Robles-Cervantes JA, Gonzalez-Lopez R, Santiago-Hernandez NJ (2011) Effect of diacerein on insulin secretion and metabolic control in drug-naive patients with type 2 diabetes: a randomized clinical trial. Diabetes Care 34:1591–1594

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rao JR, Keating DJ, Chen C, Parkington HC (2012) Adiponectin increases insulin content and cell proliferation in MIN6 cells via PPARgamma-dependent and PPARgamma-independent mechanisms. Diabetes Obes Metab 14:983–989

    PubMed  CAS  Google Scholar 

  • Redondo MJ, Rewers M, Yu L, Garg S, Pilcher CC, Elliott RB, Eisenbarth GS (1999) Genetic determination of islet cell autoimmunity in monozygotic twin, dizygotic twin, and non-twin siblings of patients with type 1 diabetes: prospective twin study. BMJ 318:698–702

    PubMed  CAS  PubMed Central  Google Scholar 

  • Revollo JR, Korner A, Mills KF, Satoh A, Wang T, Garten A, Dasgupta B, Sasaki Y, Wolberger C, Townsend RR, Milbrandt J, Kiess W, Imai S (2007) Nampt/PBEF/Visfatin regulates insulin secretion in β cells as a systemic NAD biosynthetic enzyme. Cell Metab 6:363–375

    PubMed  CAS  PubMed Central  Google Scholar 

  • Richardson SJ, Willcox A, Bone AJ, Foulis AK, Morgan NG (2009) Islet-associated macrophages in type 2 diabetes. Diabetologia 52:1686–1688

    PubMed  CAS  Google Scholar 

  • Ridker PM, Thuren T, Zalewski A, Libby P (2011) Interleukin-1β inhibition and the prevention of recurrent cardiovascular events: rationale and design of the Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS). Am Heart J 162:597–605

    PubMed  CAS  Google Scholar 

  • Ridker PM, Howard CP, Walter V, Everett B, Libby P, Hensen J, Thuren T (2012) Effects of interleukin-1β inhibition with canakinumab on hemoglobin A1c, lipids, C-reactive protein, interleukin-6, and fibrinogen: a phase IIb randomized, placebo-controlled trial. Circulation 126:2739–2748

    PubMed  CAS  Google Scholar 

  • Rissanen A, Howard CP, Botha J, Thuren T (2012) Effect of anti-IL-1β antibody (canakinumab) on insulin secretion rates in impaired glucose tolerance or type 2 diabetes: results of a randomized, placebo-controlled trial. Diabetes Obes Metab 14:1088–1096

    PubMed  CAS  Google Scholar 

  • Rodacki M, Svoren B, Butty V, Besse W, Laffel L, Benoist C, Mathis D (2007) Altered natural killer cells in type 1 diabetic patients. Diabetes 56:177–185

    PubMed  CAS  Google Scholar 

  • Roggli E, Gattesco S, Pautz A, Regazzi R (2012) Involvement of the RNA-binding protein ARE/poly(U)-binding factor 1 (AUF1) in the cytotoxic effects of proinflammatory cytokines on pancreatic β cells. Diabetologia 55:1699–1708

    PubMed  CAS  Google Scholar 

  • Roivainen M, Knip M, Hyoty H, Kulmala P, Hiltunen M, Vahasalo P, Hovi T, Akerblom HK (1998) Several different enterovirus serotypes can be associated with prediabetic autoimmune episodes and onset of overt IDDM. Childhood Diabetes in Finland (DiMe) Study Group. J Med Virol 56:74–78

    PubMed  CAS  Google Scholar 

  • Rolandsson O, Palmer JP (2010) Latent autoimmune diabetes in adults (LADA) is dead: long live autoimmune diabetes! Diabetologia 53:1250–1253

    PubMed  CAS  Google Scholar 

  • Rolo AP, Palmeira CM (2006) Diabetes and mitochondrial function: role of hyperglycemia and oxidative stress. Toxicol Appl Pharmacol 212:167–178

    PubMed  CAS  Google Scholar 

  • Rosmalen JG, van Ewijk W, Leenen PJ (2002) T-cell education in autoimmune diabetes: teachers and students. Trends Immunol 23:40–46

    PubMed  CAS  Google Scholar 

  • Ryan EA, Lakey JR, Paty BW, Imes S, Korbutt GS, Kneteman NM, Bigam D, Rajotte RV, Shapiro AM (2002) Successful islet transplantation: continued insulin reserve provides long-term glycemic control. Diabetes 51:2148–2157

    PubMed  CAS  Google Scholar 

  • Saha SS, Ghosh M (2012) Antioxidant and anti-inflammatory effect of conjugated linolenic acid isomers against streptozotocin-induced diabetes. Br J Nutr 108:974–983

    PubMed  CAS  Google Scholar 

  • Sakai T, Taki T, Nakamoto A, Shuto E, Tsutsumi R, Toshimitsu T, Makino S, Ikegami S (2013) Lactobacillus plantarum OLL2712 regulates glucose metabolism in C57BL/6 mice fed a high-fat diet. J Nutr Sci Vitaminol 59:144–147

    PubMed  CAS  Google Scholar 

  • Saxena G, Chen J, Shalev A (2010) Intracellular shuttling and mitochondrial function of thioredoxin-interacting protein. J Biol Chem 285:3997–4005

    PubMed  CAS  PubMed Central  Google Scholar 

  • Saxena A, Desbois S, Carrie N, Lawand M, Mars LT, Liblau RS (2012) Tc17 CD8+ T cells potentiate Th1-mediated autoimmune diabetes in a mouse model. J Immunol 189:3140–3149

    PubMed  CAS  Google Scholar 

  • Scheen AJ (2004) Pathophysiology of insulin secretion. Ann Endocrinol (Paris) 65:29–36

    CAS  Google Scholar 

  • Scheuner D, Kaufman RJ (2008) The unfolded protein response: a pathway that links insulin demand with β-cell failure and diabetes. Endocr Rev 29:317–333

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schulthess FT, Paroni F, Sauter NS, Shu L, Ribaux P, Haataja L, Strieter RM, Oberholzer J, King CC, Maedler K (2009) CXCL10 impairs β cell function and viability in diabetes through TLR4 signaling. Cell Metab 9:125–139

    PubMed  CAS  Google Scholar 

  • Scott GS, Fishman S, Khai Siew L, Margalit A, Chapman S, Chervonsky AV, Wen L, Gross G, Wong FS (2010) Immunotargeting of insulin reactive CD8 T cells to prevent diabetes. J Autoimmun 35:390–397

    PubMed  CAS  Google Scholar 

  • Secondulfo M, Iafusco D, Carratu R, deMagistris L, Sapone A, Generoso M, Mezzogiomo A, Sasso FC, Carteni M, De Rosa R, Prisco F, Esposito V (2004) Ultrastructural mucosal alterations and increased intestinal permeability in non-celiac, type I diabetic patients. Dig Liver Dis: Off J Ital Soc Gastroenterol Ital Assoc Study Liver 36:35–45

    CAS  Google Scholar 

  • Shapiro AM, Lakey JR, Ryan EA, Korbutt GS, Toth E, Warnock GL, Kneteman NM, Rajotte RV (2000) Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 343:230–238

    PubMed  CAS  Google Scholar 

  • Shoda LK, Young DL, Ramanujan S, Whiting CC, Atkinson MA, Bluestone JA, Eisenbarth GS, Mathis D, Rossini AA, Campbell SE, Kahn R, Kreuwel HT (2005) A comprehensive review of interventions in the NOD mouse and implications for translation. Immunity 23:115–126

    PubMed  CAS  Google Scholar 

  • Skurk T, Herder C, Kraft I, Muller-Scholze S, Hauner H, Kolb H (2005a) Production and release of macrophage migration inhibitory factor from human adipocytes. Endocrinology 146:1006–1011

    PubMed  CAS  Google Scholar 

  • Skurk T, Kolb H, Muller-Scholze S, Rohrig K, Hauner H, Herder C (2005b) The proatherogenic cytokine interleukin-18 is secreted by human adipocytes. Eur J Endocrinol 152:863–868

    PubMed  CAS  Google Scholar 

  • Skurk T, Alberti-Huber C, Herder C, Hauner H (2007) Relationship between adipocyte size and adipokine expression and secretion. J Clin Endocrinol Metab 92:1023–1033

    PubMed  CAS  Google Scholar 

  • Skurk T, Mack I, Kempf K, Kolb H, Hauner H, Herder C (2009) Expression and secretion of RANTES (CCL5) in human adipocytes in response to immunological stimuli and hypoxia. Horm Metab Res 41:183–189

    PubMed  CAS  Google Scholar 

  • Skyler JS, Sosenko JM (2013) The evolution of type 1 diabetes. JAMA: J Am Med Assoc 309:2491–2492

    CAS  Google Scholar 

  • Sloan-Lancaster J, Abu-Raddad E, Polzer J, Miller JW, Scherer JC, De Gaetano A, Berg JK, Landschulz WH (2013) Double-blind, randomized study evaluating the glycemic and anti-inflammatory effects of subcutaneous LY2189102, a neutralizing IL-1β antibody, in patients with type 2 diabetes. Diabetes Care 36(8):2239–2246

    PubMed  CAS  PubMed Central  Google Scholar 

  • Spindel ON, World C, Berk BC (2012) Thioredoxin interacting protein: redox dependent and independent regulatory mechanisms. Antioxid Redox Signal 16:587–596

    PubMed  CAS  PubMed Central  Google Scholar 

  • Staeva TP, Chatenoud L, Insel R, Atkinson MA (2013) Recent lessons learned from prevention and recent-onset type 1 diabetes immunotherapy trials. Diabetes 62:9–17

    PubMed  CAS  PubMed Central  Google Scholar 

  • Steinberg GR (2007) Inflammation in obesity is the common link between defects in fatty acid metabolism and insulin resistance. Cell Cycle 6:888–894

    PubMed  CAS  Google Scholar 

  • Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, Patel HR, Ahima RS, Lazar MA (2001) The hormone resistin links obesity to diabetes. Nature 409:307–312

    PubMed  CAS  Google Scholar 

  • Stratton IM, Adler AI, Neil HA, Matthews DR, Manley SE, Cull CA, Hadden D, Turner RC, Holman RR (2000) Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ 321:405–412

    PubMed  CAS  PubMed Central  Google Scholar 

  • Su SC, Pei D, Hsieh CH, Hsiao FC, Wu CZ, Hung YJ (2010) Circulating pro-inflammatory cytokines and adiponectin in young men with type 2 diabetes. Acta Diabetol 48:113–119

    PubMed  Google Scholar 

  • Subramanian SL, Hull RL, Zraika S, Aston-Mourney K, Udayasankar J, Kahn SE (2012) cJUN N-terminal kinase (JNK) activation mediates islet amyloid-induced β cell apoptosis in cultured human islet amyloid polypeptide transgenic mouse islets. Diabetologia 55:166–174

    PubMed  CAS  PubMed Central  Google Scholar 

  • Supale S, Li N, Brun T, Maechler P (2012) Mitochondrial dysfunction in pancreatic β cells. Trends Endocrinol Metab: TEM 23:477–487

    PubMed  CAS  Google Scholar 

  • Tanaka S, Maeda S, Hashimoto M, Fujimori C, Ito Y, Teradaira S, Hirota K, Yoshitomi H, Katakai T, Shimizu A, Nomura T, Sakaguchi N, Sakaguchi S (2010) Graded attenuation of TCR signaling elicits distinct autoimmune diseases by altering thymic T cell selection and regulatory T cell function. J Immunol 185:2295–2305

    PubMed  CAS  Google Scholar 

  • Tang C, Naassan AE, Chamson-Reig A, Koulajian K, Goh TT, Yoon F, Oprescu AI, Ghanim H, Lewis GF, Dandona P, Donath MY, Ehses JA, Arany E, Giacca A (2013) Susceptibility to fatty acid-induced β-cell dysfunction is enhanced in prediabetic diabetes-prone biobreeding rats: a potential link between β-cell lipotoxicity and islet inflammation. Endocrinology 154:89–101

    PubMed  CAS  Google Scholar 

  • Taylor-Fishwick D, Pittenger GL (2010) Harnessing the pancreatic stem cell. Endocrinol Metab Clin North Am 39:763

    PubMed  CAS  Google Scholar 

  • Taylor-Fishwick D, Pittenger GL, Vinik AI (2008) Transplantation and beyond. Drug Dev Res 69:165–176

    CAS  Google Scholar 

  • Taylor-Fishwick DA, Weaver JR, Grzesik W, Chakrabarti S, Green-Mitchell S, Imai Y, Kuhn N, Nadler JL (2013) Production and function of IL-12 in islets and β cells. Diabetologia 56:126–135

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tersey SA, Carter JD, Rosenberg L, Taylor-Fishwick DA, Mirmira RG, Nadler JL (2012a) Amelioration of type 1 diabetes following treatment of non-obese diabetic mice with INGAP and lisofylline. J Diabetes Mellitus 2:251

    CAS  Google Scholar 

  • Tersey SA, Nishiki Y, Templin AT, Cabrera SM, Stull ND, Colvin SC, Evans-Molina C, Rickus JL, Maier B, Mirmira RG (2012b) Islet β-cell endoplasmic reticulum stress precedes the onset of type 1 diabetes in the nonobese diabetic mouse model. Diabetes 61:818–827

    PubMed  CAS  PubMed Central  Google Scholar 

  • Thomas HE, Irawaty W, Darwiche R, Brodnicki TC, Santamaria P, Allison J, Kay TW (2004) IL-1 receptor deficiency slows progression to diabetes in the NOD mouse. Diabetes 53:113–121

    PubMed  CAS  Google Scholar 

  • Thorsby E, Ronningen KS (1993) Particular HLA-DQ molecules play a dominant role in determining susceptibility or resistance to type 1 (insulin-dependent) diabetes mellitus. Diabetologia 36:371–377

    PubMed  CAS  Google Scholar 

  • Tilg H, Moschen AR (2008) Inflammatory mechanisms in the regulation of insulin resistance. Mol Med 14:222–231

    PubMed  CAS  PubMed Central  Google Scholar 

  • Timper K, Grisouard J, Sauter NS, Herzog-Radimerski T, Dembinski K, Peterli R, Frey DM, Zulewski H, Keller U, Muller B, Christ-Crain M (2013) Glucose-dependent insulinotropic polypeptide induces cytokine expression, lipolysis, and insulin resistance in human adipocytes. Am J Physiol Endocrinol Metab 304:E1–E13

    PubMed  CAS  Google Scholar 

  • Todd JA (2010) Etiology of type 1 diabetes. Immunity 32:457–467

    PubMed  CAS  Google Scholar 

  • Tree TI, Lawson J, Edwards H, Skowera A, Arif S, Roep BO, Peakman M (2010) Naturally arising human CD4 T-cells that recognize islet autoantigens and secrete interleukin-10 regulate proinflammatory T-cell responses via linked suppression. Diabetes 59:1451–1460

    PubMed  CAS  PubMed Central  Google Scholar 

  • Uchizono Y, Takeya R, Iwase M, Sasaki N, Oku M, Imoto H, Iida M, Sumimoto H (2006) Expression of isoforms of NADPH oxidase components in rat pancreatic islets. Life Sci 80:133–139

    PubMed  CAS  Google Scholar 

  • Vaarala O, Ilonen J, Ruohtula T, Pesola J, Virtanen SM, Harkonen T, Koski M, Kallioinen H, Tossavainen O, Poussa T, Jarvenpaa AL, Komulainen J, Lounamaa R, Akerblom HK, Knip M (2012) Removal of bovine insulin from cow’s milk formula and early initiation of β-cell autoimmunity in the FINDIA Pilot Study. Arch Pediatr Adolesc Med 166:608–614

    PubMed  Google Scholar 

  • Valladares R, Sankar D, Li N, Williams E, Lai KK, Abdelgeliel AS, Gonzalez CF, Wasserfall CH, Larkin J, Schatz D, Atkinson MA, Triplett EW, Neu J, Lorca GL (2010) Lactobacillus johnsonii N6.2 mitigates the development of type 1 diabetes in BB-DP rats. PLoS One 5:e10507

    PubMed  PubMed Central  Google Scholar 

  • van Asseldonk EJ, Stienstra R, Koenen TB, Joosten LA, Netea MG, Tack CJ (2011) Treatment with Anakinra improves disposition index but not insulin sensitivity in nondiabetic subjects with the metabolic syndrome: a randomized, double-blind, placebo-controlled study. J Clin Endocrinol Metab 96:2119–2126

    PubMed  Google Scholar 

  • van der Zijl NJ, Moors CC, Goossens GH, Blaak EE, Diamant M (2012) Does interference with the renin-angiotensin system protect against diabetes? Evidence and mechanisms. Diabetes Obes Metab 14:586–595

    PubMed  Google Scholar 

  • van Raalte DH, Diamant M (2011) Glucolipotoxicity and β cells in type 2 diabetes mellitus: target for durable therapy? Diabetes Res Clin Pract 93(Suppl 1):S37–S46

    PubMed  Google Scholar 

  • Vandanmagsar B, Youm YH, Ravussin A, Galgani JE, Stadler K, Mynatt RL, Ravussin E, Stephens JM, Dixit VD (2011) The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med 17:179–188

    PubMed  CAS  PubMed Central  Google Scholar 

  • Varanasi V, Avanesyan L, Schumann DM, Chervonsky AV (2012) Cytotoxic mechanisms employed by mouse T cells to destroy pancreatic β-cells. Diabetes 61:2862–2870

    PubMed  CAS  PubMed Central  Google Scholar 

  • Velloso LA, Eizirik DL, Cnop M (2013) Type 2 diabetes mellitus-an autoimmune disease? Nat Rev Endocrinol

    Google Scholar 

  • Verbeeten KC, Elks CE, Daneman D, Ong KK (2011) Association between childhood obesity and subsequent Type 1 diabetes: a systematic review and meta-analysis. Diabet Med: J British Diabet Assoc 28:10–18

    CAS  Google Scholar 

  • von Herrath M, Peakman M, Roep B (2013) Progress in immune-based therapies for type 1 diabetes. Clin Exp Immunol 172:186–202

    PubMed Central  Google Scholar 

  • Wallace C, Rotival M, Cooper JD, Rice CM, Yang JH, McNeill M, Smyth DJ, Niblett D, Cambien F, Tiret L, Todd JA, Clayton DG, Blankenberg S (2012) Statistical colocalization of monocyte gene expression and genetic risk variants for type 1 diabetes. Hum Mol Genet 21:2815–2824

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wang L, Liu Y, Yan Lu S, Nguyen KT, Schroer SA, Suzuki A, Mak TW, Gaisano H, Woo M (2010) Deletion of Pten in pancreatic β-cells protects against deficient β-cell mass and function in mouse models of type 2 diabetes. Diabetes 59:3117–3126

    PubMed  CAS  PubMed Central  Google Scholar 

  • Weaver JR, Holman TR, Imai Y, Jadhav A, Kenyon V, Maloney DJ, Nadler JL, Rai G, Simeonov A, Taylor-Fishwick DA (2012) Integration of pro-inflammatory cytokines, 12-lipoxygenase and NOX-1 in pancreatic islet β cell dysfunction. Mol Cell Endocrinol 358:88–95

    PubMed  CAS  Google Scholar 

  • Wei FY, Suzuki T, Watanabe S, Kimura S, Kaitsuka T, Fujimura A, Matsui H, Atta M, Michiue H, Fontecave M, Yamagata K, Suzuki T, Tomizawa K (2011) Deficit of tRNA(Lys) modification by Cdkal1 causes the development of type 2 diabetes in mice. J Clin Invest 121:3598–3608

    PubMed  CAS  PubMed Central  Google Scholar 

  • Weir GC, Bonner-Weir S (2013) Islet β cell mass in diabetes and how it relates to function, birth, and death. Ann N Y Acad Sci 1281:92–105

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wellen KE, Hotamisligil GS (2003) Obesity-induced inflammatory changes in adipose tissue. J Clin Invest 112:1785–1788

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wellen KE, Hotamisligil GS (2005) Inflammation, stress, and diabetes. J Clin Invest 115:1111–1119

    PubMed  CAS  PubMed Central  Google Scholar 

  • Westermark P, Andersson A, Westermark GT (2011) Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol Rev 91:795–826

    PubMed  CAS  Google Scholar 

  • Westwell-Roper C, Dai DL, Soukhatcheva G, Potter KJ, van Rooijen N, Ehses JA, Verchere CB (2011) IL-1 blockade attenuates islet amyloid polypeptide-induced proinflammatory cytokine release and pancreatic islet graft dysfunction. J Immunol 187:2755–2765

    PubMed  CAS  Google Scholar 

  • Wijesekara N, Krishnamurthy M, Bhattacharjee A, Suhail A, Sweeney G, Wheeler MB (2010) Adiponectin-induced ERK and Akt phosphorylation protects against pancreatic β cell apoptosis and increases insulin gene expression and secretion. J Biol Chem 285:33623–33631

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wilkin TJ (2009) The accelerator hypothesis: a review of the evidence for insulin resistance as the basis for type I as well as type II diabetes. Int J Obes (Lond) 33:716–726

    CAS  Google Scholar 

  • Willcox A, Richardson SJ, Bone AJ, Foulis AK, Morgan NG (2009) Analysis of islet inflammation in human type 1 diabetes. Clin Exp Immunol 155:173–181

    PubMed  CAS  PubMed Central  Google Scholar 

  • Winkler C, Raab J, Grallert H, Ziegler AG (2012) Lack of association of type 2 diabetes susceptibility genotypes and body weight on the development of islet autoimmunity and type 1 diabetes. PLoS One 7:e35410

    PubMed  CAS  PubMed Central  Google Scholar 

  • Xu G, Chen J, Jing G, Shalev A (2013) Thioredoxin-interacting protein regulates insulin transcription through microRNA-204. Nat Med 19:1141–1146

    PubMed  CAS  Google Scholar 

  • Xu X, Zheng S, Yang F, Shi Y, Gu Y, Chen H, Zhang M, Yang T (2014) Increased Th22 cells are independently associated with Th17 cells in type 1 diabetes. Endocrine 46:90–98

    PubMed  CAS  Google Scholar 

  • Yang ZD, Chen M, Wu R, McDuffie M, Nadler JL (2002) The anti-inflammatory compound lisofylline prevents Type I diabetes in non-obese diabetic mice. Diabetologia 45:1307–1314

    PubMed  CAS  Google Scholar 

  • Yang Z, Chen M, Fialkow LB, Ellett JD, Wu R, Nadler JL (2003) The novel anti-inflammatory compound, lisofylline, prevents diabetes in multiple low-dose streptozotocin-treated mice. Pancreas 26:e99–e104

    PubMed  Google Scholar 

  • Yang Z, Chen M, Ellett JD, Fialkow LB, Carter JD, McDuffie M, Nadler JL (2004) Autoimmune diabetes is blocked in Stat4-deficient mice. J Autoimmun 22:191–200

    PubMed  CAS  Google Scholar 

  • Yang Z, Chen M, Carter JD, Nunemaker CS, Garmey JC, Kimble SD, Nadler JL (2006) Combined treatment with lisofylline and exendin-4 reverses autoimmune diabetes. Biochem Biophys Res Commun 344:1017–1022

    PubMed  CAS  Google Scholar 

  • Yi P, Park JS, Melton DA (2013) Betatrophin: a hormone that controls pancreatic β cell proliferation. Cell 153:747–758

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yin N, Xu J, Ginhoux F, Randolph GJ, Merad M, Ding Y, Bromberg JS (2012) Functional specialization of islet dendritic cell subsets. J Immunol 188:4921–4930

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ylipaasto P, Smura T, Gopalacharyulu P, Paananen A, Seppanen-Laakso T, Kaijalainen S, Ahlfors H, Korsgren O, Lakey JR, Lahesmaa R, Piemonti L, Oresic M, Galama J, Roivainen M (2012) Enterovirus-induced gene expression profile is critical for human pancreatic islet destruction. Diabetologia 55:3273–3283

    PubMed  CAS  Google Scholar 

  • Youssef-Elabd EM, McGee KC, Tripathi G, Aldaghri N, Abdalla MS, Sharada HM, Ashour E, Amin AI, Ceriello A, O'Hare JP, Kumar S, McTernan PG, Harte AL (2012) Acute and chronic saturated fatty acid treatment as a key instigator of the TLR-mediated inflammatory response in human adipose tissue, in vitro. J Nutr Biochem 23:39–50

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang K, Kaufman RJ (2008) From endoplasmic-reticulum stress to the inflammatory response. Nature 454:455–462

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhong J, Rao X, Rajagopalan S (2013) An emerging role of dipeptidyl peptidase 4 (DPP4) beyond glucose control: potential implications in cardiovascular disease. Atherosclerosis 226:305–314

    PubMed  CAS  Google Scholar 

  • Ziegler AG, Nepom GT (2010) Prediction and pathogenesis in type 1 diabetes. Immunity 32:468–478

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ziegler AG, Rewers M, Simell O, Simell T, Lempainen J, Steck A, Winkler C, Ilonen J, Veijola R, Knip M, Bonifacio E, Eisenbarth GS (2013) Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA: J Am Med Assoc 309:2473–2479

    CAS  Google Scholar 

  • Zraika S, Hull RL, Udayasankar J, Aston-Mourney K, Subramanian SL, Kisilevsky R, Szarek WA, Kahn SE (2009) Oxidative stress is induced by islet amyloid formation and time-dependently mediates amyloid-induced β cell apoptosis. Diabetologia 52:626–635

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgement

Human studies in unpublished data were approved by the Institutional Review Board at EVMS. Human islets in unpublished data were provided by Integrated Islet Distribution Program (IIDP). Funding support for the authors includes Juvenile Research Foundation grant (Nadler, Taylor-Fishwick), American Diabetes Association (Morris), National Institutes of Health (R01-DK090490 to Imai, R15-HL114062 to Dobrian, R01-HL112605 to Nadler), Astra Zeneca (Dobrian, Nadler), and Congressionally Directed Medical Research Program, Department of Defense (PR093521 to Taylor-Fishwick).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yumi Imai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Imai, Y., Morris, M.A., Dobrian, A.D., Taylor-Fishwick, D.A., Nadler, J.L. (2015). Inflammatory Pathways Linked to β Cell Demise in Diabetes. In: Islam, M. (eds) Islets of Langerhans. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6686-0_30

Download citation

Publish with us

Policies and ethics