Skip to main content

Pancreatic β Cells in Metabolic Syndrome

  • Reference work entry
  • First Online:
Islets of Langerhans

Abstract

Obesity is considered a major public health problem worldwide. Metabolic syndrome is a cluster of signs that increases the risk of developing cardiovascular disease and type 2 diabetes mellitus (T2DM). The main characteristics of metabolic syndrome are central obesity, dyslipidemia, hypertension, hyperinsulinemia, and insulin resistance. It is clear that the progression of metabolic syndrome to T2DM depends on the environment and the genetic traits of individuals.

Pancreatic β cells are fundamental for nutrient homeostasis. They are the unique cells in the organisms that produce and secrete insulin. The actions of insulin are anabolic, stimulating glucose entry to adipose tissue and skeletal muscle, and promoting nutrient storage.

However, insulin receptors are present in every mammalian cell, and not all the physiological effects of this hormone are completely understood. Nutrients, other hormones, and neurotransmitters regulate insulin secretion, and the main ones will be discussed in this chapter. We will summarize how metabolic changes modify β-cell physiology and the actions of insulin in metabolic syndrome, eventually leading to the development of T2DM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACh:

Acetylcholine

acyl-CoA:

Acyl coenzyme A

ADP:

Adenosine diphosphate

AMPK:

5′ adenosine monophosphate-activated protein kinase

AR:

Adrenoreceptor

ATP:

Adenosine triphosphate

BDNF:

Brain-derived neurotrophic factor

BMI:

Body mass index

cAMP:

Cyclic adenosine monophosphate

CAP:

Cbl-associated protein

Cbl:

Casitas B-lineage lymphoma proto-oncogene

Cytokine R:

R Cytokine receptor

DAG:

Diacylglycerol

DPP-4:

Enzyme dipeptidylpeptidase-4

ER:

Endoplasmic reticulum

ERK:

Extracellular signal-regulated kinase

GK:

Glucokinase

GLP-1:

Glucagon-like peptide-1

GLUT2:

Glucose transporters type 2

GSIS:

Glucose-stimulated insulin secretion

IGF1R:

Insulin-like growth factor 1 receptor

IKK:

Kinase of IKB (inhibitor of KB)

IL-6:

Interleukin-6

IR:

Insulin receptor

IRS:

Insulin receptor substrate

JAKs:

Kinases of the Janus family

JNK:

c-Jun N-terminal kinase

KATP :

ATP-sensitive potassium channel

MAPK:

Mitogen-activated protein kinase

MODY:

Maturity onset diabetes of the young

MS:

Metabolic syndrome

mTOR:

Mammalian target of rapamycin

NEFAs:

Nonesterified fatty acids

NGF:

Nerve growth factor

PDK:

Phosphoinositide-dependent kinase

PHHI:

Persistent hypoglycemic hyperinsulinemia of the infancy

PI3K:

Phosphoinositol-3 kinase

PKA:

Protein kinase A

PKB/Akt:

Protein kinase B

PKC:

Protein kinase C

PPAR gamma:

Peroxisome-proliferation-activated receptor gamma

PTPs:

Protein tyrosine phosphatases

Ras:

Rat sarcoma protein family

RBP4:

Retinol binding protein-4

ROS:

Reactive oxygen species

SNARE:

Soluble NSF attachment protein receptor

SOCS:

Suppressor of cytokine signaling

SREBP:

Sterol regulatory element-binding protein

T2DM:

Type 2 diabetes mellitus

TLR4:

Toll-like receptor 4

TNFa:

Tumor necrosis factor α

TNFR:

Tumor necrosis factor receptor

TrkA:

Tyrosine kinase receptor A

TRP:

Transient receptor channels

WAT:

White adipose tissue

References

  • Abedini A, Schmidt AM (2013) Mechanisms of islet amyloidosis toxicity in type 2 diabetes. FEBS Lett 587(8):1119–1127

    PubMed  CAS  Google Scholar 

  • Ahren B (2009) Islet G protein-coupled receptors as potential targets for treatment of type 2 diabetes. Nat Rev Drug Discov 8(5):369–385

    PubMed  CAS  Google Scholar 

  • Ahren B (2012) Islet nerves in focus – defining their neurobiological and clinical role. Diabetologia 55(12):3152–3154

    PubMed  CAS  Google Scholar 

  • Ahren B, Lundquist I (1981) Effects of selective and non-selective β-adrenergic agents on insulin secretion in vivo. Eur J Pharmacol 71(1):93–104

    PubMed  CAS  Google Scholar 

  • Alberti KG, Eckel RH et al (2009) Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120(16):1640–1645

    PubMed  CAS  Google Scholar 

  • Aloe L (2011) Rita Levi-Montalcini and the discovery of NGF, the first nerve cell growth factor. Arch Ital Biol 149(2):175–181

    PubMed  Google Scholar 

  • Asante-Appiah E, Kennedy BP (2003) Protein tyrosine phosphatases: the quest for negative regulators of insulin action. Am J Physiol Endocrinol Metab 284(4):E663–E670

    PubMed  CAS  Google Scholar 

  • Bagger JI, Knop FK et al (2011) Glucagon antagonism as a potential therapeutic target in type 2 diabetes. Diabetes Obes Metab 13(11):965–971

    PubMed  CAS  Google Scholar 

  • Bays H, Mandarino L et al (2004) Role of the adipocyte, free fatty acids, and ectopic fat in pathogenesis of type 2 diabetes mellitus: peroxisomal proliferator-activated receptor agonists provide a rational therapeutic approach. J Clin Endocrinol Metab 89(2):463–478

    PubMed  CAS  Google Scholar 

  • Braun M, Ramracheya R et al (2010) Gamma-aminobutyric acid (GABA) is an autocrine excitatory transmitter in human pancreatic β-cells. Diabetes 59(7):1694–1701

    PubMed  CAS  PubMed Central  Google Scholar 

  • Braun M, Wendt A et al (2004) Regulated exocytosis of GABA-containing synaptic-like microvesicles in pancreatic β-cells. J Gen Physiol 123(3):191–204

    PubMed  CAS  PubMed Central  Google Scholar 

  • Byrne CD (2012) Dorothy Hodgkin Lecture 2012: non-alcoholic fatty liver disease, insulin resistance and ectopic fat: a new problem in diabetes management. Diabet Med 29(9):1098–1107

    PubMed  CAS  Google Scholar 

  • Cabrera O, Berman DM et al (2006) The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc Natl Acad Sci USA 103(7):2334–2339

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cabrera-Vasquez S, Navarro-Tableros V et al (2009) Remodelling sympathetic innervation in rat pancreatic islets ontogeny. BMC Dev Biol 9:34

    PubMed  PubMed Central  Google Scholar 

  • Cai K, Qi D et al (2011) TNF-α acutely upregulates amylin expression in murine pancreatic β cells. Diabetologia 54(3):617–626

    PubMed  CAS  Google Scholar 

  • Chakraborty S, Mukherjee B et al (2013) Pinpointing proline substitution to be responsible for the loss of amyloidogenesis in IAPP. Chem Biol Drug Des 82(4):446–452

    PubMed  CAS  Google Scholar 

  • Chaldakov G (2011) The metabotrophic NGF and BDNF: an emerging concept. Arch Ital Biol 149(2):257–263

    PubMed  Google Scholar 

  • Chaldakov GN, Fiore M et al (2010) Neuroadipology: a novel component of neuroendocrinology. Cell Biol Int 34(10):1051–1053

    PubMed  Google Scholar 

  • Chaldakov GN, Tonchev AB et al (2009) NGF and BDNF: from nerves to adipose tissue, from neurokines to metabokines. Riv Psichiatr 44(2):79–87

    PubMed  Google Scholar 

  • Charlton B, Bacelj A et al (1989) Cyclophosphamide-induced diabetes in NOD/WEHI mice. Evidence for suppression in spontaneous autoimmune diabetes mellitus. Diabetes 38(4):441–447

    PubMed  CAS  Google Scholar 

  • Cheng Z, Tseng Y et al (2010) Insulin signaling meets mitochondria in metabolism. Trends Endocrinol Metab 21(10):589–598

    PubMed  CAS  PubMed Central  Google Scholar 

  • Covey SD, Wideman RD et al (2006) The pancreatic β cell is a key site for mediating the effects of leptin on glucose homeostasis. Cell Metab 4(4):291–302

    PubMed  CAS  Google Scholar 

  • DeFronzo RA, Okerson T et al (2008) Effects of exenatide versus sitagliptin on postprandial glucose, insulin and glucagon secretion, gastric emptying, and caloric intake: a randomized, cross-over study. Curr Med Res Opin 24(10):2943–2952

    PubMed  CAS  Google Scholar 

  • Denroche HC, Huynh FK et al (2012) The role of leptin in glucose homeostasis. Journal of Diabetes Investigation 3(2):115–129

    PubMed  CAS  PubMed Central  Google Scholar 

  • Diaz-Garcia CM (2013) The TRPA1 channel and oral hypoglycemic agents: Is there complicity in β-cell exhaustion? Channels (Austin) 7(6):420–422

    CAS  Google Scholar 

  • Dong H, Kumar M et al (2006) Gamma-aminobutyric acid up- and downregulates insulin secretion from β cells in concert with changes in glucose concentration. Diabetologia 49(4):697–705

    PubMed  CAS  Google Scholar 

  • Drews G, Krippeit-Drews P et al (2010) Electrophysiology of islet cells. Adv Exp Med Biol 654:115–163

    PubMed  CAS  Google Scholar 

  • Evans JL, Maddux BA et al (2005) The molecular basis for oxidative stress-induced insulin resistance. Antioxid Redox Signal 7(7–8):1040–1052

    PubMed  CAS  Google Scholar 

  • Expert Panel on Detection, E., and Treatment of High Blood Cholesterol in Adults (2002) Third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III) final report. Circulation 106(25):3143–3421

    Google Scholar 

  • Fadini GP, de Kreutzenberg SV et al (2011) The metabolic syndrome influences the response to incretin-based therapies. Acta Diabetol 48(3):219–225

    PubMed  CAS  Google Scholar 

  • Faradji V, Sotelo J (1990) Low serum levels of nerve growth factor in diabetic neuropathy. Acta Neurol Scand 81(5):402–406

    PubMed  CAS  Google Scholar 

  • Gautam D, Han SJ et al (2006) A critical role for β cell M3 muscarinic acetylcholine receptors in regulating insulin release and blood glucose homeostasis in vivo. Cell Metab 3(6):449–461

    PubMed  CAS  Google Scholar 

  • Gebre-Medhin S, Olofsson C et al (2000) Islet amyloid polypeptide in the islets of Langerhans: friend or foe? Diabetologia 43(6):687–695

    PubMed  CAS  Google Scholar 

  • Gezginci-Oktayoglu S, Bolkent S (2009) Exendin-4 exerts its effects through the NGF/p75NTR system in diabetic mouse pancreas. Biochem Cell Biol 87(4):641–651

    PubMed  CAS  Google Scholar 

  • Gezginci-Oktayoglu S, Karatug A et al (2012) The relation among NGF, EGF and insulin is important for triggering pancreatic β cell apoptosis. Diabetes Metab Res Rev 28(8):654–662

    PubMed  CAS  Google Scholar 

  • Graciano MF, Valle MM et al (2011) Regulation of insulin secretion and reactive oxygen species production by free fatty acids in pancreatic islets. Islets 3(5):213–223

    PubMed  Google Scholar 

  • Gromada J, Franklin I et al (2007) α-cells of the endocrine pancreas: 35 years of research but the enigma remains. Endocr Rev 28(1):84–116

    PubMed  CAS  Google Scholar 

  • Harwood HJ Jr (2012) The adipocyte as an endocrine organ in the regulation of metabolic homeostasis. Neuropharmacology 63(1):57–75

    PubMed  CAS  Google Scholar 

  • Henquin JC (2000) Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes 49(11):1751–1760

    PubMed  CAS  Google Scholar 

  • Henquin JC (2011) The dual control of insulin secretion by glucose involves triggering and amplifying pathways in β-cells. Diabetes Res Clin Pract 93(Suppl 1):S27–S31

    PubMed  CAS  Google Scholar 

  • Henquin JC, Meissner HP (1984) Significance of ionic fluxes and changes in membrane potential for stimulus-secretion coupling in pancreatic β-cells. Experientia 40(10):1043–1052

    PubMed  CAS  Google Scholar 

  • Hiriart M, Aguilar-Bryan L (2008) Channel regulation of glucose sensing in the pancreatic β-cell. Am J Physiol Endocrinol Metab 295(6):E1298–E1306

    PubMed  CAS  Google Scholar 

  • Hiriart M, Vidaltamayo R et al (2001) Nerve and fibroblast growth factors as modulators of pancreatic β cell plasticity and insulin secretion. Isr Med Assoc J 3(2):114–116

    PubMed  CAS  Google Scholar 

  • Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444(7121):860–807

    PubMed  CAS  Google Scholar 

  • Hotamisligil GS, Arner P et al (1995) Increased adipose tissue expression of tumor necrosis factor-α in human obesity and insulin resistance. J Clin Invest 95(5):2409–2415

    PubMed  CAS  PubMed Central  Google Scholar 

  • Howard JK, Flier JS (2006) Attenuation of leptin and insulin signaling by SOCS proteins. Trends Endocrinol Metab 17(9):365–371

    PubMed  CAS  Google Scholar 

  • Hristova M, Aloe L (2006) Metabolic syndrome – neurotrophic hypothesis. Med Hypotheses 66(3):545–549

    PubMed  CAS  Google Scholar 

  • Hunt KJ, Resendez RG et al (2004) National Cholesterol Education Program versus World Health Organization metabolic syndrome in relation to all-cause and cardiovascular mortality in the San Antonio Heart Study. Circulation 110(10):1251–1257

    PubMed  Google Scholar 

  • Huypens PR, Huang M et al (2012) Overcoming the spatial barriers of the stimulus secretion cascade in pancreatic β-cells. Islets 4(1):1–9

    PubMed  Google Scholar 

  • Imai Y, Dobrian AD et al (2013) Islet inflammation: a unifying target for diabetes treatment? Trends Endocrinol Metab 24(7):351–360

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jensen MV, Joseph JW et al (2008) Metabolic cycling in control of glucose-stimulated insulin secretion. Am J Physiol Endocrinol Metab 295(6):E1287–E1297

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jewell JL, Oh E et al (2010) Exocytosis mechanisms underlying insulin release and glucose uptake: conserved roles for Munc18c and syntaxin 4. Am J Physiol Regul Integr Comp Physiol 298(3):R517–R531

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jezek P, Dlaskova A et al (2012) Redox homeostasis in pancreatic β cells. Oxid Med Cell Longev 2012:932838

    PubMed  PubMed Central  Google Scholar 

  • Kim SJ, Nian C et al (2012) GIP-overexpressing mice demonstrate reduced diet-induced obesity and steatosis, and improved glucose homeostasis. PLoS One 7(7):e40156

    PubMed  CAS  PubMed Central  Google Scholar 

  • Koh DS, Cho JH et al (2012) Paracrine interactions within islets of Langerhans. J Mol Neurosci 48(2):429–440

    PubMed  CAS  Google Scholar 

  • Krabbe KS, Nielsen AR et al (2007) Brain-derived neurotrophic factor (BDNF) and type 2 diabetes. Diabetologia 50(2):431–438

    PubMed  CAS  Google Scholar 

  • Kristiansen OP, Mandrup-Poulsen T (2005) Interleukin-6 and diabetes: the good, the bad, or the indifferent? Diabetes 54(Suppl 2):S114–S124

    PubMed  CAS  Google Scholar 

  • Larqué C, Velasco M et al (2011) Early endocrine and molecular changes in metabolic syndrome models. IUBMB Life 63(10):831–839

    PubMed  Google Scholar 

  • Larrieta ME, Vital P et al (2006) Nerve growth factor increases in pancreatic β cells after streptozotocin-induced damage in rats. Exp Biol Med (Maywood) 231(4):396–402

    CAS  Google Scholar 

  • Leavens KF, Birnbaum MJ (2011) Insulin signaling to hepatic lipid metabolism in health and disease. Crit Rev Biochem Mol Biol 46(3):200–215

    PubMed  CAS  Google Scholar 

  • Lee YH, Magkos F et al (2011) Effects of leptin and adiponectin on pancreatic β-cell function. Metabolism 60(12):1664–1672

    PubMed  CAS  Google Scholar 

  • Leibiger IB, Leibiger B et al (2008) Insulin signaling in the pancreatic β-cell. Annu Rev Nutr 28:233–251

    PubMed  CAS  Google Scholar 

  • Li C, Matschinsky FM et al (2012) Amino acid-stimulated insulin secretion: the role of the glutamine-glutamate-α-ketoglutarate axis. Monogenic hyperinsulinemic hypoglycemia disorders. S. C. A. and D. L. D. D., Philadelphia, p 21

    Google Scholar 

  • Lorenzo A, Razzaboni B et al (1994) Pancreatic islet cell toxicity of amylin associated with type-2 diabetes mellitus. Nature 368(6473):756–760

    PubMed  CAS  Google Scholar 

  • MacDonald PE, Wheeler MB (2003) Voltage-dependent K+ channels in pancreatic β cells: role, regulation and potential as therapeutic targets. Diabetologia 46(8):1046–1062

    PubMed  CAS  Google Scholar 

  • Maffei M, Halaas J et al (1995) Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med 1(11):1155–1161

    PubMed  CAS  Google Scholar 

  • Matthews DR, Cull CA et al (1998) UKPDS 26: sulphonylurea failure in non-insulin-dependent diabetic patients over six years. UK Prospective Diabetes Study (UKPDS) Group. Diabet Med 15(4):297–303

    PubMed  CAS  Google Scholar 

  • Mlinar B, Marc J et al (2007) Molecular mechanisms of insulin resistance and associated diseases. Clin Chim Acta 375(1–2):20–35

    PubMed  CAS  Google Scholar 

  • Navarro-Tableros V, Fiordelisio T et al (2007) Nerve growth factor promotes development of glucose-induced insulin secretion in rat neonate pancreatic β cells by modulating calcium channels. Channels (Austin) 1(6):408–416

    Google Scholar 

  • Newsholme P, Bender K et al (2007) Amino acid metabolism, insulin secretion and diabetes. Biochem Soc Trans 35(Pt 5):1180–1186

    PubMed  CAS  Google Scholar 

  • Nishizawa M, Nakabayashi H et al (2013) Intraportal GLP-1 stimulates insulin secretion predominantly through the hepatoportal-pancreatic vagal reflex pathways. Am J Physiol Endocrinol Metab 305(3):E376–E387

    PubMed  CAS  Google Scholar 

  • Nolan CJ, Leahy JL et al (2006) β cell compensation for insulin resistance in Zucker fatty rats: increased lipolysis and fatty acid signalling. Diabetologia 49(9):2120–2130

    PubMed  CAS  Google Scholar 

  • Nolan CJ, Prentki M (2008) The islet β-cell: fuel responsive and vulnerable. Trends Endocrinol Metab 19(8):285–291

    PubMed  CAS  Google Scholar 

  • Nyman LR, Wells KS et al (2008) Real-time, multidimensional in vivo imaging used to investigate blood flow in mouse pancreatic islets. J Clin Invest 118(11):3790–3797

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ohara-Imaizumi M, Fujiwara T et al (2007) Imaging analysis reveals mechanistic differences between first- and second-phase insulin exocytosis. J Cell Biol 177(4):695–705

    PubMed  CAS  PubMed Central  Google Scholar 

  • Osundiji MA, Evans ML (2013) Brain control of insulin and glucagon secretion. Endocrinol Metab Clin North Am 42(1):1–14

    PubMed  Google Scholar 

  • Phillips LK, Prins JB (2011) Update on incretin hormones. Ann N Y Acad Sci 1243:E55–E74

    PubMed  Google Scholar 

  • Pillay K, Govender P (2013) Amylin uncovered: a review on the polypeptide responsible for type II diabetes. Biomed Res Int 2013:826706

    PubMed  PubMed Central  Google Scholar 

  • Polak M, Scharfmann R et al (1993) Nerve growth factor induces neuron-like differentiation of an insulin-secreting pancreatic β cell line. Proc Natl Acad Sci U S A 90(12):5781–5785

    PubMed  CAS  PubMed Central  Google Scholar 

  • Prentki M, Matschinsky FM (1987) Ca2+, cAMP, and phospholipid-derived messengers in coupling mechanisms of insulin secretion. Physiol Rev 67(4):1185–248

    PubMed  CAS  Google Scholar 

  • Prentki M, Matschinsky FM et al (2013) Metabolic signaling in fuel-induced insulin secretion. Cell Metab 18(2):162–85

    PubMed  CAS  Google Scholar 

  • Rask-Madsen C, Kahn CR (2012) Tissue-specific insulin signaling, metabolic syndrome, and cardiovascular disease. Arterioscler Thromb Vasc Biol 32(9):2052–2059

    PubMed  CAS  PubMed Central  Google Scholar 

  • Reetz A, Solimena M et al (1991) GABA and pancreatic β-cells: colocalization of glutamic acid decarboxylase (GAD) and GABA with synaptic-like microvesicles suggests their role in GABA storage and secretion. EMBO J 10(5):1275–1284

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rhodes CJ, White MF et al (2013) Direct autocrine action of insulin on β-cells: does it make physiological sense? Diabetes 62(7):2157–2163

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rodriguez-Diaz R, Caicedo A (2013) Novel approaches to studying the role of innervation in the biology of pancreatic islets. Endocrinol Metab Clin North Am 42(1):39–56

    PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Diaz R, Dando R et al (2011) α cells secrete acetylcholine as a non-neuronal paracrine signal priming β cell function in humans. Nat Med 17(7):888–8892

    PubMed  CAS  PubMed Central  Google Scholar 

  • Romanatto T, Roman EA et al (2009) Deletion of tumor necrosis factor-α receptor 1 (TNFR1) protects against diet-induced obesity by means of increased thermogenesis. J Biol Chem 284(52):36213–36222

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rorsman P, Renstrom E (2003) Insulin granule dynamics in pancreatic β cells. Diabetologia 46(8):1029–1045

    PubMed  CAS  Google Scholar 

  • Rosas-Vargas H, Martinez-Ezquerro JD et al (2011) Brain-derived neurotrophic factor, food intake regulation, and obesity. Arch Med Res 42(6):482–494

    PubMed  CAS  Google Scholar 

  • Rosenbaum T, Castanares DT et al (2002) Nerve growth factor increases L-type calcium current in pancreatic β cells in culture. J Membr Biol 186(3):177–184

    PubMed  CAS  Google Scholar 

  • Rosenbaum T, Sanchez-Soto MC et al (2001) Nerve growth factor increases insulin secretion and barium current in pancreatic β-cells. Diabetes 50(8):1755–1762

    PubMed  CAS  Google Scholar 

  • Rosenbaum T, Vidaltamayo R et al (1998) Pancreatic β cells synthesize and secrete nerve growth factor. Proc Natl Acad Sci U S A 95(13):7784–7788

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rosengren AH, Jokubka R et al (2010) Overexpression of α2A-adrenergic receptors contributes to type 2 diabetes. Science 327(5962):217–220

    PubMed  CAS  Google Scholar 

  • Ruiz de Azua I, Gautam D et al (2012) Critical metabolic roles of β-cell M3 muscarinic acetylcholine receptors. Life Sci 91(21–22):986–991

    PubMed  CAS  Google Scholar 

  • Ruohonen ST, Ruohonen S et al (2012) Involvement of α2-adrenoceptor subtypes A and C in glucose homeostasis and adrenaline-induced hyperglycaemia. Neuroendocrinology 96(1):51–59

    PubMed  CAS  Google Scholar 

  • Saltiel AR, Kahn CR (2001) Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414(6865):799–806

    PubMed  CAS  Google Scholar 

  • Sawada F, Inoguchi T et al (2008) Differential effect of sulfonylureas on production of reactive oxygen species and apoptosis in cultured pancreatic β-cell line, MIN6. Metabolism 57(8):1038–1045

    PubMed  CAS  Google Scholar 

  • Smismans A, Schuit F et al (1997) Nutrient regulation of gamma-aminobutyric acid release from islet β cells. Diabetologia 40(12):1411–1415

    PubMed  CAS  Google Scholar 

  • Somesh BP, Verma MK et al (2013) Chronic glucolipotoxic conditions in pancreatic islets impair insulin secretion due to dysregulated calcium dynamics, glucose responsiveness and mitochondrial activity. BMC Cell Biol 14:31

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sornelli F, Fiore M et al (2009) Adipose tissue-derived nerve growth factor and brain-derived neurotrophic factor: results from experimental stress and diabetes. Gen Physiol Biophys 28 Spec No:179–183

    Google Scholar 

  • Stein DT, Stevenson BE et al (1997) The insulinotropic potency of fatty acids is influenced profoundly by their chain length and degree of saturation. J Clin Invest 100(2):398–403

    PubMed  CAS  PubMed Central  Google Scholar 

  • Straub SG, Shanmugam G et al (2004) Stimulation of insulin release by glucose is associated with an increase in the number of docked granules in the β-cells of rat pancreatic islets. Diabetes 53(12):3179–3183

    PubMed  CAS  Google Scholar 

  • Straub SG, Sharp GW (2012) Evolving insights regarding mechanisms for the inhibition of insulin release by norepinephrine and heterotrimeric G proteins. Am J Physiol Cell Physiol 302(12):C1687–C1698

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sumara G, Formentini I et al (2009) Regulation of PKD by the MAPK p38delta in insulin secretion and glucose homeostasis. Cell 136(2):235–248

    PubMed  CAS  PubMed Central  Google Scholar 

  • Taborsky GJ Jr, Ahren B et al (2002) Autonomic mechanism and defects in the glucagon response to insulin-induced hypoglycaemia. Diabetes Nutr Metab 15(5):318–322, discussion 322–323

    PubMed  CAS  Google Scholar 

  • Taniguchi CM, Emanuelli B et al (2006) Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 7(2):85–96

    PubMed  CAS  Google Scholar 

  • Togashi K, Hara Y et al (2006) TRPM2 activation by cyclic ADP-ribose at body temperature is involved in insulin secretion. EMBO J 25(9):1804–1815

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tomas E, Wood JA et al (2011) Glucagon-like peptide-1(9–36)amide metabolite inhibits weight gain and attenuates diabetes and hepatic steatosis in diet-induced obese mice. Diabetes Obes Metab 13(1):26–33

    PubMed  CAS  Google Scholar 

  • Tuduri E, Bruin JE et al (2013) Impaired Ca2+ Signaling in β-Cells Lacking Leptin Receptors by Cre-loxP Recombination. PLoS One 8(8):e71075

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ullrich S, Wollheim CB (1985) Expression of both α 1- and α 2-adrenoceptors in an insulin-secreting cell line. Parallel studies of cytosolic free Ca2+ and insulin release. Mol Pharmacol 28(2):100–106

    PubMed  CAS  Google Scholar 

  • Velasco M, Larque C et al (2012) Metabolic syndrome induces changes in KATP-channels and calcium currents in pancreatic β-cells. Islets 4(4):302–311

    PubMed  PubMed Central  Google Scholar 

  • Vidaltamayo R, Sanchez-Soto MC et al (2002) Nerve growth factor increases sodium channel expression in pancreatic β cells: implications for insulin secretion. FASEB J 16(8):891–892

    PubMed  CAS  Google Scholar 

  • Vollenweider P (2003) Insulin resistant states and insulin signaling. Clin Chem Lab Med 41(9):1107–1119

    PubMed  CAS  Google Scholar 

  • Wang Q, Jin T (2009) The role of insulin signaling in the development of β-cell dysfunction and diabetes. Islets 1(2):95–101

    PubMed  Google Scholar 

  • Westermark P, Andersson A et al (2011) Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol Rev 91(3):795–826

    PubMed  CAS  Google Scholar 

  • White MF (2003) Insulin signaling in health and disease. Science 302(5651):1710–1711

    PubMed  CAS  Google Scholar 

  • Xu XJ, Gauthier MS et al (2012) Insulin sensitive and resistant obesity in humans: AMPK activity, oxidative stress, and depot-specific changes in gene expression in adipose tissue. J Lipid Res 53(4):792–801

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yamanaka M, Itakura Y et al (2006) Protective effect of brain-derived neurotrophic factor on pancreatic islets in obese diabetic mice. Metabolism 55(10):1286–1292

    PubMed  CAS  Google Scholar 

  • Yi P, Park JS et al (2013) Betatrophin: a hormone that controls pancreatic β cell proliferation. Cell 153(4):747–758

    PubMed  CAS  PubMed Central  Google Scholar 

  • Youos JG (2011) The role of α-, δ- and F cells in insulin secretion and action. Diabetes Res Clin Pract 93(Suppl 1):S25–S26

    PubMed  CAS  Google Scholar 

  • Zhang T, Li C (2013) Mechanisms of amino acid-stimulated insulin secretion in congenital hyperinsulinism. Acta Biochim Biophys Sin (Shanghai) 45(1):36–43

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcia Hiriart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Hiriart, M. et al. (2015). Pancreatic β Cells in Metabolic Syndrome. In: Islam, M. (eds) Islets of Langerhans. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6686-0_27

Download citation

Publish with us

Policies and ethics