Skip to main content

IGF-1 and Insulin-Receptor Signalling in Insulin-Secreting Cells: From Function to Survival

  • Reference work entry
  • First Online:
  • 1681 Accesses

Abstract

Insulin and insulin-like growth factor 1 (IGF-1) receptors are ubiquitously expressed and regulate cell growth, survival, and function. In insulin-secreting cells, they contribute to proper insulin synthesis and secretion, as well as to overall pancreatic β-cell survival. The most convincing proof of the importance of these signalling pathways came from mice deficient in insulin receptors, IGF-1 receptors, or insulin receptor substrate-2 (IRS-2). Knockout of the insulin receptor or IRS-2 leads to life-threatening hyperglycemia and is prevented by β-cell-specific expression of IRS-2. Pancreatic β-cells exist in an insulin-rich environment, and therefore, the regulation and activation of their receptors must differ from cells in peripheral insulin-sensitive tissues. Intriguingly, the downstream signalling of these receptors diverges towards anti- and proapoptotic pathways: receptor activation improves cell function and growth but also induces feedback inhibition and apoptosis. This chapter summarizes current understanding of insulin and IGF-1 receptor regulation; signalling and function in β-cells with special emphasis on the regulation of insulin receptor substrates, IRS-1 and IRS-2; downstream kinases; and feedback mechanisms that impair β-cell function.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Accili D (1995) Molecular defects of the insulin receptor gene. Diabetes Metab Rev 11:47–62

    PubMed  CAS  Google Scholar 

  • Accili D, Drago J, Lee EJ, Johnson MD, Cool MH, Salvatore P, Asico LD, Jose PA, Taylor SI, Westphal H (1996) Early neonatal death in mice homozygous for a null allele of the insulin receptor gene. Nat Genet 12:106–109

    PubMed  CAS  Google Scholar 

  • Alejandro EU, Kalynyak TB, Taghizadeh F, Gwiazda KS, Rawstron EK, Jacob KJ, Johnson JD (2010) Acute insulin signaling in pancreatic β-cells is mediated by multiple Raf-1 dependent pathways. Endocrinology 151:502–512

    PubMed  CAS  PubMed Central  Google Scholar 

  • Alenzi FQ (2004) Links between apoptosis, proliferation and the cell cycle. Br J Biomed Sci 61:99–102

    PubMed  CAS  Google Scholar 

  • Alliouachene S, Tuttle RL, Boumard S, Lapointe T, Berissi S, Germain S, Jaubert F, Tosh D, Birnbaum MJ, Pende M (2008) Constitutively active Akt1 expression in mouse pancreas requires S6 kinase 1 for insulinoma formation. J Clin Invest 118:3629–3638

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ammon HP, Reiber C, Verspohl EJ (1991) Indirect evidence for short-loop negative feedback of insulin secretion in the rat. J Endocrinol 128:27–34

    PubMed  CAS  Google Scholar 

  • Aoyagi K, Ohara-Imaizumi M, Nishiwaki C, Nakamichi Y, Ueki K, Kadowaki T, Nagamatsu S (2012) Acute inhibition of PI3K-PDK1-Akt pathway potentiates insulin secretion through upregulation of newcomer granule fusions in pancreatic β-cells. PLoS One 7(10):e47381

    PubMed  CAS  PubMed Central  Google Scholar 

  • Argoud GM, Schade DS, Eaton RP (1987) Insulin suppresses its own secretion in vivo. Diabetes 36:959–962

    PubMed  CAS  Google Scholar 

  • Aspinwall CA, Lakey JR, Kennedy RT (1999a) Insulin-stimulated insulin secretion in single pancreatic β cells. J Biol Chem 274:6360–6365

    PubMed  CAS  Google Scholar 

  • Aspinwall CA, Huang L, Lakey JR, Kennedy RT (1999b) Comparison of amperometric methods for detection of exocytosis from single pancreatic β-cells of different species. Anal Chem 71:5551–5556

    PubMed  CAS  Google Scholar 

  • Aspinwall CA, Qian WJ, Roper MG, Kulkarni RN, Kahn CR, Kennedy RT (2000) Roles of insulin receptor substrate-1, phosphatidylinositol 3-kinase, and release of intracellular Ca2+ stores in insulin-stimulated insulin secretion in β -cells. J Biol Chem 275:22331–22338

    PubMed  CAS  Google Scholar 

  • Avram D, Ranta F, Hennige AM, Berchtold S, Hopp S, Häring HU, Lang F, Ullrich S (2008) IGF-1 protects against dexamethasone-induced cell death in insulin secreting INS-1 cells independent of AKT/PKB phosphorylation. Cell Physiol Biochem 21:455–462

    PubMed  CAS  Google Scholar 

  • Benes C, Poitout V, Marie JC, Martin-Perez J, Roisin MP, Fagard R (1999) Mode of regulation of the extracellular signal-regulated kinases in the pancreatic β-cell line MIN6 and their implication in the regulation of insulin gene transcription. Biochem J 340:219–225

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bennett RG, Hamel FG, Duckworth WC (2003) An insulin-degrading enzyme inhibitor decreases amylin degradation, increases amylin-induced cytotoxicity, and increases amyloid formation in insulinoma cell cultures. Diabetes 52:2315–2320

    PubMed  CAS  Google Scholar 

  • Bernal-Mizrachi E, Fatrai S, Johnson JD, Ohsugi M, Otani K, Han Z, Polonsky KS, Permutt MA (2004) Defective insulin secretion and increased susceptibility to experimental diabetes are induced by reduced Akt activity in pancreatic islet β cells. J Clin Invest 114:928–936

    PubMed  CAS  PubMed Central  Google Scholar 

  • Borge PD Jr, Wolf BA (2003) Insulin receptor substrate 1 regulation of sarco-endoplasmic reticulum calcium ATPase 3 in insulin-secreting β-cells. J Biol Chem 278:11359–11368

    PubMed  CAS  Google Scholar 

  • Bouche C, Lopez X, Fleischman A, Cypess AM, O’Shea S, Stefanovski D, Bergman RN, Rogatsky E, Stein DT, Kahn CR, Kulkarni RN, Goldfine AB (2010) Insulin enhances glucose-stimulated insulin secretion in healthy humans. Proc Natl Acad Sci USA 107:4770–4775

    PubMed  CAS  PubMed Central  Google Scholar 

  • Braun M, Ramracheya R, Johnson PR, Rorsman P (2009) Exocytotic properties of human pancreatic β-cells. Ann N Y Acad Sci 1152:187–193

    PubMed  CAS  Google Scholar 

  • Briaud I, Lingohr MK, Dickson LM, Wrede CE, Rhodes CJ (2003) Differential activation mechanisms of Erk-1/2 and p70(S6K) by glucose in pancreatic β-cells. Diabetes 52:974–983

    PubMed  CAS  Google Scholar 

  • Briaud I, Dickson LM, Lingohr MK, McCuaig JF, Lawrence JC, Rhodes CJ (2005) Insulin receptor substrate-2 proteasomal degradation mediated by a mammalian target of rapamycin (mTOR)-induced negative feedback down-regulates protein kinase B-mediated signaling pathway in β-cells. J Biol Chem 280:2282–2293

    PubMed  CAS  Google Scholar 

  • Brüning JC, Winnay J, Bonner-Weir S, Taylor SI, Accili D, Kahn CR (1997) Development of a novel polygenic model of NIDDM in mice heterozygous for IR and IRS-1 null alleles. Cell 88:561–572

    PubMed  Google Scholar 

  • Buteau J, Accili D (2007) Regulation of pancreatic β-cell function by the forkhead protein FoxO1. Diabetes Obes Metab 9(Suppl 2):140–146

    PubMed  CAS  Google Scholar 

  • Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC (2003) β-cell deficit and increased β-cell apoptosis in humans with type 2 diabetes. Diabetes 52:102–110

    PubMed  CAS  Google Scholar 

  • Cantley J, Choudhury AI, Asare-Anane H, Selman C, Lingard S, Heffron H, Herrera P, Persaud SJ, Withers DJ (2007) Pancreatic deletion of insulin receptor substrate 2 reduces β and α cell mass and impairs glucose homeostasis in mice. Diabetologia 50:1248–1256

    PubMed  CAS  Google Scholar 

  • Cantley J, Boslem E, Laybutt DR, Cordery DV, Pearson G, Carpenter L, Leitges M, Biden TJ (2011) Deletion of protein kinase Cdelta in mice modulates stability of inflammatory genes and protects against cytokine-stimulated β cell death in vitro and in vivo. Diabetologia 54:380–389

    PubMed  CAS  Google Scholar 

  • Carpentier JL (1994) Insulin receptor internalization: molecular mechanisms and physiopathological implications. Diabetologia 37(Suppl 2):S117–S124

    PubMed  CAS  Google Scholar 

  • Chambard JC, Lefloch R, Pouyssegur J, Lenormand P (2007) ERK implication in cell cycle regulation. Biochim Biophys Acta 1773:1299–1310

    PubMed  CAS  Google Scholar 

  • Copps KD, White MF (2012) Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia 55:2565–2582

    PubMed  CAS  PubMed Central  Google Scholar 

  • da Silva X, Varadi A, Ainscow EK, Rutter GA (2000) Regulation of gene expression by glucose in pancreatic β-cells (MIN6) via insulin secretion and activation of phosphatidylinositol 3′-kinase. J Biol Chem 275:36269–36277

    Google Scholar 

  • da Silva X, Qian Q, Cullen PJ, Rutter GA (2004) Distinct roles for insulin and insulin-like growth factor-1 receptors in pancreatic β-cell glucose sensing revealed by RNA silencing. Biochem J 377:149–158

    Google Scholar 

  • Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91:231–241

    PubMed  CAS  Google Scholar 

  • De Meyts P (1994) The structural basis of insulin and insulin-like growth factor-I receptor binding and negative co-operativity, and its relevance to mitogenic versus metabolic signalling. Diabetologia 37(Suppl 2):S135–S148

    PubMed  Google Scholar 

  • Demozay D, Tsunekawa S, Briaud I, Shah R, Rhodes CJ (2011) Specific glucose-induced control of insulin receptor substrate-2 expression is mediated via Ca2+-dependent calcineurin/NFAT signaling in primary pancreatic islet β-cells. Diabetes 60:2892–2902

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dominguez V, Raimondi C, Somanath S, Bugliani M, Loder MK, Edling CE, Divecha N, da Silva-Xavier G, Marselli L, Persaud SJ, Turner MD, Rutter GA, Rutter GA, Falasca M, Maffucci T (2011) Class II phosphoinositide 3-kinase regulates exocytosis of insulin granules in pancreatic β cells. J Biol Chem 286:4216–4225

    PubMed  CAS  PubMed Central  Google Scholar 

  • Düfer M, Haspel D, Krippeit-Drews P, Aguilar-Bryan L, Bryan J, Drews G (2009) Activation of the Na+/K+-ATPase by insulin and glucose as a putative negative feedback mechanism in pancreatic β-cells. Pflugers Arch 457:1351–1360

    PubMed  Google Scholar 

  • Elahi D, Nagulesparan M, Hershcopf RJ, Müller DC, Tobin JD, Blix PM, Rubenstein AH, Unger RH, Andres R (1982) Feedback inhibition of insulin secretion by insulin: relation to the hyperinsulinemia of obesity. N Engl J Med 306:1196–1202

    PubMed  CAS  Google Scholar 

  • Elghazi L, Rachdi L, Weiss AJ, Cras-Meneur C, Bernal-Mizrachi E (2007) Regulation of β-cell mass and function by the Akt/protein kinase B signalling pathway. Diabetes Obes Metab 9(Suppl 2):147–157

    PubMed  CAS  Google Scholar 

  • Elghazi L, Bernal-Mizrachi E (2009) Akt and PTEN: β-cell mass and pancreas plasticity. Trends Endocrinol Metab 20:243–251

    PubMed  CAS  Google Scholar 

  • Elghazi L, Balcazar N, Blandino-Rosano M, Cras-Meneur C, Fatrai S, Gould AP, Chi MM, Moley KH, Bernal-Mizrachi E (2010) Decreased IRS signaling impairs β-cell cycle progression and survival in transgenic mice overexpressing S6K in β-cells. Diabetes 59:2390–2399

    PubMed  CAS  PubMed Central  Google Scholar 

  • Eto K, Yamashita T, Tsubamoto Y, Terauchi Y, Hirose K, Kubota N, Yamashita S, Taka J, Satoh S, Sekihara H, Tobe K, Iino M, Noda M, Kimura S, Kadowaki T (2002) Phosphatidylinositol 3-kinase suppresses glucose-stimulated insulin secretion by affecting post-cytosolic [Ca2+] elevation signals. Diabetes 51:87–97

    PubMed  CAS  Google Scholar 

  • Farris W, Mansourian S, Chang Y, Lindsley L, Eckman EA, Frosch MP, Eckman CB, Tanzi RE, Selkoe DJ, Guenette S (2003) Insulin-degrading enzyme regulates the levels of insulin, amyloid β-protein, and the β-amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci USA 100:4162–4167

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fatrai S, Elghazi L, Balcazar N, Cras-Meneur C, Krits I, Kiyokawa H, Bernal-Mizrachi E (2006) Akt induces β-cell proliferation by regulating cyclin D1, cyclin D2, and p21 levels and cyclin-dependent kinase-4 activity. Diabetes 55:318–325

    PubMed  CAS  Google Scholar 

  • Federici M, Hribal ML, Ranalli M, Marselli L, Porzio O, Lauro D, Borboni P, Lauro R, Marchetti P, Melino G, Sesti G (2001) The common Arg972 polymorphism in insulin receptor substrate-1 causes apoptosis of human pancreatic islets. FASEB J 15:22–24

    PubMed  CAS  Google Scholar 

  • Fei H, Zhao B, Zhao S, Wang Q (2008) Requirements of calcium fluxes and ERK kinase activation for glucose- and interleukin-1β-induced β-cell apoptosis. Mol Cell Biochem 315:75–84

    PubMed  CAS  Google Scholar 

  • Florez JC, Wiltshire S, Agapakis CM, Burtt NP, de Bakker PI, Almgren P, Bengtsson BK, Tuomi T, Gaudet D, Daly MJ, Hirschhorn JN, McCarthy MI, Altshuler D, Groop L (2006) High-density haplotype structure and association testing of the insulin-degrading enzyme (IDE) gene with type 2 diabetes in 4,206 people. Diabetes 55:128–135

    PubMed  CAS  Google Scholar 

  • Folli F, Okada T, Perego C, Gunton J, Liew CW, Akiyama M, D’Amico A, La Rosa S, Placidi C, Lupi R, Marchetti P, Sesti G, Hellerstein M, Perego L, Kulkarni RN (2011) Altered insulin receptor signalling and β-cell cycle dynamics in type 2 diabetes mellitus. PLoS ONE 6:e28050

    PubMed  CAS  PubMed Central  Google Scholar 

  • Frerichs H, Reich U, Creutzfeldt W (1965) Insulin secretion in vitro. I. Inhibition of glucose-induced insulin release by insulin. Klin Wochenschr 43:136–140

    PubMed  CAS  Google Scholar 

  • Freychet P, Roth J, Neville DM Jr (1971) Insulin receptors in the liver: specific binding of (125 I) insulin to the plasma membrane and its relation to insulin bioactivity. Proc Natl Acad Sci USA 68:1833–1837

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fritsche L, Neukamm SS, Lehmann R, Kremmer E, Hennige AM, Hunder-Gugel A, Schenk M, Häring HU, Schleicher ED, Weigert C (2011) Insulin-induced serine phosphorylation of IRS-2 via ERK1/2 and mTOR: studies on the function of Ser675 and Ser907. Am J Physiol Endocrinol Metab 300:E824–E836

    PubMed  CAS  Google Scholar 

  • German MS, Moss LG, Rutter WJ (1990) Regulation of insulin gene expression by glucose and calcium in transfected primary islet cultures. J Biol Chem 265:22063–22066

    PubMed  CAS  Google Scholar 

  • Giraud J, Leshan R, Lee YH, White MF (2004) Nutrient-dependent and insulin-stimulated phosphorylation of insulin receptor substrate-1 on serine 302 correlates with increased insulin signaling. J Biol Chem 279:3447–3454

    PubMed  CAS  Google Scholar 

  • Glebov K, Schutze S, Walter J (2011) Functional relevance of a novel SlyX motif in non-conventional secretion of insulin-degrading enzyme. J Biol Chem 286:22711–22715

    PubMed  CAS  PubMed Central  Google Scholar 

  • Goldfine AB, Kulkarni RN (2012) Modulation of β-cell function: a translational journey from the bench to the bedside. Diabetes Obes Metab 14(Suppl 3):152–160

    PubMed  CAS  Google Scholar 

  • Gual P, Gremeaux T, Gonzalez T, Marchand-Brustel Y, Tanti JF (2003) MAP kinases and mTOR mediate insulin-induced phosphorylation of insulin receptor substrate-1 on serine residues 307, 612 and 632. Diabetologia 46:1532–1542

    PubMed  CAS  Google Scholar 

  • Gual P, Marchand-Brustel Y, Tanti JF (2005) Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie 87:99–109

    PubMed  CAS  Google Scholar 

  • Guillen C, Navarro P, Robledo M, Valverde AM, Benito M (2006) Differential mitogenic signaling in insulin receptor-deficient fetal pancreatic β-cells. Endocrinol 147:1959–1968

    CAS  Google Scholar 

  • Gunton JE, Kulkarni RN, Yim S, Okada T, Hawthorne WJ, Tseng YH, Roberson RS, Ricordi C, O’Connell PJ, Gonzalez FJ, Kahn CR (2005) Loss of ARNT/HIF1β mediates altered gene expression and pancreatic-islet dysfunction in human type 2 diabetes. Cell 122:337–349

    PubMed  CAS  Google Scholar 

  • Hagiwara S, Sakurai T, Tashiro F, Hashimoto Y, Matsuda Y, Nonomura Y, Miyazaki J (1995) An inhibitory role for phosphatidylinositol 3-kinase in insulin secretion from pancreatic β cell line MIN6. Biochem Biophys Res Commun 214:51–59

    PubMed  CAS  Google Scholar 

  • Harbeck MC, Louie DC, Howland J, Wolf BA, Rothenberg PL (1996) Expression of insulin receptor mRNA and insulin receptor substrate 1 in pancreatic islet β-cells. Diabetes 45:711–717

    PubMed  CAS  Google Scholar 

  • Häring HU (1991) The insulin receptor: signalling mechanism and contribution to the pathogenesis of insulin resistance. Diabetologia 34:848–861

    PubMed  Google Scholar 

  • Hartley D, Cooper GM (2002) Role of mTOR in the degradation of IRS-1: regulation of PP2A activity. J Cell Biochem 85:304–314

    PubMed  CAS  Google Scholar 

  • Heit JJ, Karnik SK, Kim SK (2006) Intrinsic regulators of pancreatic β-cell proliferation. Annu Rev Cell Dev Biol 22:311–338

    PubMed  CAS  Google Scholar 

  • Hennige AM, Fritsche A, Strack V, Weigert C, Mischak H, Borboni P, Renn W, Häring HU, Kellerer M (2002) PKC ζ enhances insulin-like growth factor 1-dependent mitogenic activity in the rat clonal β cell line RIN 1046-38. Biochem Biophys Res Commun 290:85–90

    PubMed  CAS  Google Scholar 

  • Hennige AM, Burks DJ, Ozcan U, Kulkarni RN, Ye J, Park S, Schubert M, Fisher TL, Dow MA, Leshan R, Zakaria M, Mossa-Basha M, White MF (2003) Upregulation of insulin receptor substrate-2 in pancreatic β cells prevents diabetes. J Clin Invest 112:1521–1532

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hennige AM, Ozcan U, Okada T, Jhala US, Schubert M, White MF, Kulkarni RN (2005) Alterations in growth and apoptosis of IRS-1 deficient β-cells. Am J Physiol Endocrinol Metab 289:E337–E346

    PubMed  CAS  Google Scholar 

  • Hennige AM, Stefan N, Kapp K, Lehmann R, Weigert C, Beck A, Moeschel K, Mushack J, Schleicher E, Häring HU (2006) Leptin down-regulates insulin action through phosphorylation of serine-318 in insulin receptor substrate 1. FASEB J 20:1206–1208

    PubMed  CAS  Google Scholar 

  • Hennige AM, Ranta F, Heinzelmann I, Düfer M, Michael D, Braumüller H, Lutz SZ, Lammers R, Drews G, Bosch F, Häring HU, Ullrich S (2010) Overexpression of kinase-negative protein kinase Cdelta in pancreatic β-cells protects mice from diet-induced glucose intolerance and β-cell dysfunction. Diabetes 59:119–127

    PubMed  CAS  PubMed Central  Google Scholar 

  • Higashi Y, Sukhanov S, Parthasarathy S, Delafontaine P (2008) The ubiquitin ligase Nedd4 mediates oxidized low-density lipoprotein-induced downregulation of insulin-like growth factor-1 receptor. Am J Physiol Heart Circ Physiol 295:H1684–H1689

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hou N, Mogami H, Kubota-Murata C, Sun M, Takeuchi T, Torii S (2012) Preferential release of newly synthesized insulin assessed by a multi-label reporter system using pancreatic β-cell line MIN6. PLoS ONE 7:e47921

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hribal ML, Perego L, Lovari S, Andreozzi F, Menghini R, Perego C, Finzi G, Usellini L, Placidi C, Capella C, Guzzi V, Lauro D, Bertuzzi F, Davalli A, Pozza G, Pontiroli A, Federici M, Lauro R, Brunetti A, Folli F, Sesti G (2003) Chronic hyperglycemia impairs insulin secretion by affecting insulin receptor expression, splicing, and signaling in RIN β cell line and human islets of Langerhans. FASEB J 17:1340–1342

    PubMed  CAS  Google Scholar 

  • Hubbard SR (1997) Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog. EMBO J 16:5572–5581

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hughes KJ, Meares GP, Hansen PA, Corbett JA (2011) FoxO1 and SIRT1 regulate β-cell responses to nitric oxide. J Biol Chem 286:8338–8348

    PubMed  CAS  PubMed Central  Google Scholar 

  • Iversen J, Miles DW (1971) Evidence for a feedback inhibition of insulin on insulin secretion in the isolated, perfused canine pancreas. Diabetes 20:1–9

    PubMed  CAS  Google Scholar 

  • Iype T, Francis J, Garmey JC, Schisler JC, Nesher R, Weir GC, Becker TC, Newgard CB, Griffen SC, Mirmira RG (2005) Mechanism of insulin gene regulation by the pancreatic transcription factor Pdx-1: application of pre-mRNA analysis and chromatin immunoprecipitation to assess formation of functional transcriptional complexes. J Biol Chem 280:16798–16807

    PubMed  CAS  Google Scholar 

  • Jakobsen SN, Hardie DG, Morrice N, Tornqvist HE (2001) 5′-AMP-activated protein kinase phosphorylates IRS-1 on Ser-789 in mouse C2C12 myotubes in response to 5-aminoimidazole-4-carboxamide riboside. J Biol Chem 276:46912–46916

    PubMed  CAS  Google Scholar 

  • Jhala US, Canettieri G, Screaton RA, Kulkarni RN, Krajewski S, Reed J, Walker J, Lin X, White M, Montminy M (2003) cAMP promotes pancreatic β-cell survival via CREB-mediated induction of IRS2. Genes Dev 17:1575–1580

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jiang G, Dallas-Yang Q, Liu F, Moller DE, Zhang BB (2003) Salicylic acid reverses phorbol 12-myristate-13-acetate (PMA)- and tumor necrosis factor α (TNFα)-induced insulin receptor substrate 1 (IRS1) serine 307 phosphorylation and insulin resistance in human embryonic kidney 293 (HEK293) cells. J Biol Chem 278:180–186

    PubMed  CAS  Google Scholar 

  • Kaiser G, Gerst F, Michael D, Berchtold S, Friedrich B, Strutz-Seebohm N, Lang F, Häring HU, Ullrich S (2013) Regulation of forkhead box O1 (FOXO1) by protein kinase B and glucocorticoids: different mechanisms of induction of β cell death in vitro. Diabetologia 56:1587–1595

    PubMed  CAS  Google Scholar 

  • Kaneto H, Miyatsuka T, Kawamori D, Yamamoto K, Kato K, Shiraiwa T, Katakami N, Yamasaki Y, Matsuhisa M, Matsuoka TA (2008) PDX-1 and MafA play a crucial role in pancreatic β-cell differentiation and maintenance of mature β-cell function. Endocr J 55:235–252

    PubMed  CAS  Google Scholar 

  • Kanety H, Feinstein R, Papa MZ, Hemi R, Karasik A (1995) Tumor necrosis factor α-induced phosphorylation of insulin receptor substrate-1 (IRS-1). Possible mechanism for suppression of insulin-stimulated tyrosine phosphorylation of IRS-1. J Biol Chem 270:23780–23784

    PubMed  CAS  Google Scholar 

  • Kang G, Leech CA, Chepurny OG, Coetzee WA, Holz GG (2008) Role of the cAMP sensor Epac as a determinant of KATP channel ATP sensitivity in human pancreatic β-cells and rat INS-1 cells. J Physiol 586:1307–1319

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kawamori D, Kaneto H, Nakatani Y, Matsuoka TA, Matsuhisa M, Hori M, Yamasaki Y (2006) The forkhead transcription factor Foxo1 bridges the JNK pathway and the transcription factor PDX-1 through its intracellular translocation. J Biol Chem 281:1091–1098

    PubMed  CAS  Google Scholar 

  • Khan FA, Goforth PB, Zhang M, Satin LS (2001) Insulin activates ATP-sensitive K+ channels in pancreatic β-cells through a phosphatidylinositol 3-kinase-dependent pathway. Diabetes 50:2192–2198

    PubMed  CAS  Google Scholar 

  • Kharroubi I, Ladriere L, Cardozo AK, Dogusan Z, Cnop M, Eizirik DL (2004) Free fatty acids and cytokines induce pancreatic β-cell apoptosis by different mechanisms: role of nuclear factor-kappaB and endoplasmic reticulum stress. Endocrinology 145:5087–5096

    PubMed  CAS  Google Scholar 

  • Khoo S, Cobb MH (1997) Activation of mitogen-activating protein kinase by glucose is not required for insulin secretion. Proc Natl Acad Sci USA 94:5599–5604

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kishi K, Mawatari K, Sakai-Wakamatsu K, Yuasa T, Wang M, Ogura-Sawa M, Nakaya Y, Hatakeyama S, Ebina Y (2007) APS-mediated ubiquitination of the insulin receptor enhances its internalization, but does not induce its degradation. Endocr J 54:77–88

    PubMed  CAS  Google Scholar 

  • Kitamura T, Nakae J, Kitamura Y, Kido Y, Biggs WH III, Wright CV, White MF, Arden KC, Accili D (2002) The forkhead transcription factor Foxo1 links insulin signaling to Pdx1 regulation of pancreatic β cell growth. J Clin Invest 110:1839–1847

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kitamura YI, Kitamura T, Kruse JP, Raum JC, Stein R, Gu W, Accili D (2005) FoxO1 protects against pancreatic β cell failure through NeuroD and MafA induction. Cell Metab 2:153–163

    PubMed  CAS  Google Scholar 

  • Kitamura T, Ido KY (2007) Role of FoxO Proteins in Pancreatic β Cells. Endocr J 54:507–515

    PubMed  CAS  Google Scholar 

  • Kloppel G, Lohr M, Habich K, Oberholzer M, Heitz PU (1985) Islet pathology and the pathogenesis of type 1 and type 2 diabetes mellitus revisited. Surv Synth Pathol Res 4:110–125

    PubMed  CAS  Google Scholar 

  • Kobayashi M, Kikuchi O, Sasaki T, Kim HJ, Yokota-Hashimoto H, Lee YS, Amano K, Kitazumi T, Susanti VY, Kitamura YI, Kitamura T (2012) FoxO1 as a double-edged sword in the pancreas: analysis of pancreas- and β-cell-specific FoxO1 knockout mice. Am J Physiol Endocrinol Metab 302:E603–E613

    PubMed  CAS  Google Scholar 

  • Kohler CU, Olewinski M, Tannapfel A, Schmidt WE, Fritsch H, Meier JJ (2011) Cell cycle control of β-cell replication in the prenatal and postnatal human pancreas. Am J Physiol Endocrinol Metab 300:E221–E230

    PubMed  Google Scholar 

  • Kraegen EW, Lazarus L, Campbell LV (1983) Failure of insulin infusion during euglycemia to influence endogenous basal insulin secretion. Metabolism 32:622–627

    PubMed  CAS  Google Scholar 

  • Krupp MN, Lane MD (1982) Evidence for different pathways for the degradation of insulin and insulin receptor in the chick liver cell. J Biol Chem 257:1372–1377

    PubMed  CAS  Google Scholar 

  • Kubota N, Tobe K, Terauchi Y, Eto K, Yamauchi T, Suzuki R, Tsubamoto Y, Komeda K, Nakano R, Miki H, Satoh S, Sekihara H, Sciacchitano S, Lesniak M, Aizawa S, Nagai R, Kimura S, Akanuma Y, Taylor SI, Kadowaki T (2000) Disruption of insulin receptor substrate 2 causes type 2 diabetes because of liver insulin resistance and lack of compensatory β-cell hyperplasia. Diabetes 49:1880–1889

    PubMed  CAS  Google Scholar 

  • Kulkarni RN, Brüning JC, Winnay JN, Postic C, Magnuson MA, Kahn CR (1999a) Tissue-specific knockout of the insulin receptor in pancreatic β cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell 96:329–339

    PubMed  CAS  Google Scholar 

  • Kulkarni RN, Winnay JN, Daniels M, Brüning JC, Flier SN, Hanahan D, Kahn CR (1999b) Altered function of insulin receptor substrate-1-deficient mouse islets and cultured β-cell lines. J Clin Invest 104:R69–R75

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kulkarni RN, Holzenberger M, Shih DQ, Ozcan U, Stoffel M, Magnuson MA, Kahn CR (2002) β-cell-specific deletion of the IGF1 receptor leads to hyperinsulinemia and glucose intolerance but does not alter β-cell mass. Nat Genet 31:111–115

    PubMed  CAS  Google Scholar 

  • Kwak YD, Wang B, Li JJ, Wang R, Deng Q, Diao S, Chen Y, Xu R, Masliah E, Xu H, Sung JJ, Liao FF (2012) Upregulation of the E3 ligase NEDD4-1 by oxidative stress degrades IGF-1 receptor protein in neurodegeneration. J Neurosci 32:10971–10981

    PubMed  CAS  PubMed Central  Google Scholar 

  • Leibiger IB, Leibiger B, Moede T, Berggren PO (1998) Exocytosis of insulin promotes insulin gene transcription via the insulin receptor/PI-3 kinase/p70 s6 kinase and CaM kinase pathways. Mol Cell 1:933–938

    PubMed  CAS  Google Scholar 

  • Leibiger B, Wahlander K, Berggren PO, Leibiger IB (2000) Glucose-stimulated insulin biosynthesis depends on insulin-stimulated insulin gene transcription. J Biol Chem 275:30153–30156

    PubMed  CAS  Google Scholar 

  • Leibiger B, Leibiger IB, Moede T, Kemper S, Kulkarni RN, Kahn CR, de Vargas LM, Berggren PO (2001) Selective insulin signaling through A and B insulin receptors regulates transcription of insulin and glucokinase genes in pancreatic β cells. Mol Cell 7:559–570

    PubMed  CAS  Google Scholar 

  • Leibiger IB, Leibiger B, Berggren PO (2008) Insulin signaling in the pancreatic β-cell. Annu Rev Nutr 28:233–251

    PubMed  CAS  Google Scholar 

  • Leibiger B, Moede T, Uhles S, Barker CJ, Creveaux M, Domin J, Berggren PO, Leibiger IB (2010) Insulin-feedback via PI3K-C2α activated PKBα/Akt1 is required for glucose-stimulated insulin secretion. FASEB J 24:1824–1837

    PubMed  CAS  Google Scholar 

  • LeRoith D, Accili D (2008) Mechanisms of disease: using genetically altered mice to study concepts of type 2 diabetes. Nat Clin Pract Endocrinol Metab 4:164–172

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lingohr MK, Briaud I, Dickson LM, McCuaig JF, Alarcon C, Wicksteed BL, Rhodes CJ (2006) Specific regulation of IRS-2 expression by glucose in rat primary pancreatic islet β -cells. J Biol Chem 281:15884–15892

    PubMed  CAS  Google Scholar 

  • Liu YF, Paz K, Herschkovitz A, Alt A, Tennenbaum T, Sampson SR, Ohba M, Kuroki T, LeRoith D, Zick Y (2001) Insulin stimulates PKCζ -mediated phosphorylation of insulin receptor substrate-1 (IRS-1). A self-attenuated mechanism to negatively regulate the function of IRS proteins. J Biol Chem 276:14459–14465

    PubMed  CAS  Google Scholar 

  • Liu YF, Herschkovitz A, Boura-Halfon S, Ronen D, Paz K, LeRoith D, Zick Y (2004) Serine phosphorylation proximal to its phosphotyrosine binding domain inhibits insulin receptor substrate 1 function and promotes insulin resistance. Mol Cell Biol 24:9668–9681

    PubMed  CAS  PubMed Central  Google Scholar 

  • Longuet C, Broca C, Costes S, Hani EH, Bataille D, Dalle S (2005) Extracellularly regulated kinases 1/2 (p44/42 mitogen-activated protein kinases) phosphorylate synapsin I and regulate insulin secretion in the MIN6 β-cell line and islets of Langerhans. Endocrinol 146:643–654

    CAS  Google Scholar 

  • Lopez-Avalos MD, Duvivier-Kali VF, Xu G, Bonner-Weir S, Sharma A, Weir GC (2006) Evidence for a role of the ubiquitin-proteasome pathway in pancreatic islets. Diabetes 55:1223–1231

    PubMed  CAS  Google Scholar 

  • Luo RZ, Beniac DR, Fernandes A, Yip CC, Ottensmeyer FP (1999) Quaternary structure of the insulin-insulin receptor complex. Science 285:1077–1080

    PubMed  CAS  Google Scholar 

  • MacDonald PE, Joseph JW, Yau D, Diao J, Asghar Z, Dai F, Oudit GY, Patel MM, Backx PH, Wheeler MB (2004) Impaired glucose-stimulated insulin secretion, enhanced IP insulin tolerance and increased β-cell mass in mice lacking the p110gamma isoform of PI3-kinase. Endocrinol 145:4078–4083

    CAS  Google Scholar 

  • MacFarlane WM, Read ML, Gilligan M, Bujalska I, Docherty K (1994) Glucose modulates the binding activity of the β-cell transcription factor IUF1 in a phosphorylation-dependent manner. Biochem J 303:625–631

    PubMed  CAS  PubMed Central  Google Scholar 

  • MacFarlane WM, Smith SB, James RF, Clifton AD, Doza YN, Cohen P, Docherty K (1997) The p38/reactivating kinase mitogen-activated protein kinase cascade mediates the activation of the transcription factor insulin upstream factor 1 and insulin gene transcription by high glucose in pancreatic β-cells. J Biol Chem 272:20936–20944

    PubMed  CAS  Google Scholar 

  • MacFarlane WM, McKinnon CM, Felton-Edkins ZA, Cragg H, James RF, Docherty K (1999) Glucose stimulates translocation of the homeodomain transcription factor PDX1 from the cytoplasm to the nucleus in pancreatic β-cells. J Biol Chem 274:1011–1016

    PubMed  CAS  Google Scholar 

  • Malaisse WJ, Malaisse-Lagae F, Lacy PE, Wright PH (1967) Insulin secretion by isolated islets in presence of glucose, insulin and anti-insulin serum. Proc Soc Exp Biol Med 124:497–500

    PubMed  CAS  Google Scholar 

  • Marshak S, Totary H, Cerasi E, Melloul D (1996) Purification of the β-cell glucose-sensitive factor that transactivates the insulin gene differentially in normal and transformed islet cells. Proc Natl Acad Sci USA 93:15057–15062

    PubMed  CAS  PubMed Central  Google Scholar 

  • Martinez SC, Cras-Meneur C, Bernal-Mizrachi E, Permutt MA (2006) Glucose regulates Foxo1 through insulin receptor signaling in the pancreatic islet β-cell. Diabetes 55:1581–1591

    PubMed  CAS  Google Scholar 

  • Massague J, Pilch PF, Czech MP (1980) Electrophoretic resolution of three major insulin receptor structures with unique subunit stoichiometries. Proc Natl Acad Sci USA 77:7137–7141

    PubMed  CAS  PubMed Central  Google Scholar 

  • Melloul D, Marshak S, Cerasi E (2002) Regulation of insulin gene transcription. Diabetologia 45:309–326

    PubMed  CAS  Google Scholar 

  • Melloul D (2004) Transcription factors in islet development and physiology: role of PDX-1 in β-cell function. Ann N Y Acad Sci 1014:28–37

    PubMed  CAS  Google Scholar 

  • Menting JG, Whittaker J, Margetts MB, Whittaker LJ, Kong GK, Smith BJ, Watson CJ, Zakova L, Kletvikova E, Jiracek J, Chan SJ, Steiner DF, Dodson GG, Brzozowski AM, Weiss MA, Ward CW, Lawrence MC (2013) How insulin engages its primary binding site on the insulin receptor. Nature 493:241–245

    PubMed  CAS  PubMed Central  Google Scholar 

  • Moeschel K, Beck A, Weigert C, Lammers R, Kalbacher H, Voelter W, Schleicher ED, Häring HU, Lehmann R (2004) Protein kinase C-ζ-induced phosphorylation of Ser318 in insulin receptor substrate-1 (IRS-1) attenuates the interaction with the insulin receptor and the tyrosine phosphorylation of IRS-1. J Biol Chem 279:25157–25163

    PubMed  CAS  Google Scholar 

  • Monami G, Emiliozzi V, Morrione A (2008) Grb10/Nedd4-mediated multiubiquitination of the insulin-like growth factor receptor regulates receptor internalization. J Cell Physiol 216:426–437

    PubMed  CAS  Google Scholar 

  • Morino K, Neschen S, Bilz S, Sono S, Tsirigotis D, Reznick RM, Moore I, Nagai Y, Samuel V, Sebastian D, White M, Philbrick W, Shulman GI (2008) Muscle-specific IRS-1 Ser- > Ala transgenic mice are protected from fat-induced insulin resistance in skeletal muscle. Diabetes 57:2644–2651

    PubMed  CAS  PubMed Central  Google Scholar 

  • Neukamm SS, Toth R, Morrice N, Campbell DG, Mackintosh C, Lehmann R, Häring HU, Schleicher ED, Weigert C (2012) Identification of the amino acids 300–600 of IRS-2 as 14-3-3 binding region with the importance of IGF-1/insulin-regulated phosphorylation of Ser-573. PLoS ONE 7:e43296

    PubMed  CAS  PubMed Central  Google Scholar 

  • Norquay LD, D’Aquino KE, Opare-Addo LM, Kuznetsova A, Haas M, Bluestone JA, White MF (2009) Insulin receptor substrate-2 in β-cells decreases diabetes in nonobese diabetic mice. Endocrinology 150:4531–4540

    PubMed  CAS  PubMed Central  Google Scholar 

  • Okada T, Liew CW, Hu J, Hinault C, Michael MD, Kürtzfeldt J, Yin C, Holzenberger M, Stoffel M, Kulkarni RN (2007) Insulin receptors in β-cells are critical for islet compensatory growth response to insulin resistance. Proc Natl Acad Sci USA 104:8977–8982

    PubMed  CAS  PubMed Central  Google Scholar 

  • Okamoto H, Hribal ML, Lin HV, Bennett WR, Ward A, Accili D (2006) Role of the forkhead protein FoxO1 in β cell compensation to insulin resistance. J Clin Invest 116:775–782

    PubMed  CAS  PubMed Central  Google Scholar 

  • O’Malley D, Shanley LJ, Harvey J (2003) Insulin inhibits rat hippocampal neurones via activation of ATP-sensitive K+ and large conductance Ca2+-activated K+ channels. Neuropharmacology 44:855–863

    PubMed  Google Scholar 

  • Parnaud G, Bosco D, Berney T, Pattou F, Kerr-Conte J, Donath MY, Bruun C, Mandrup-Poulsen T, Billestrup N, Halban PA (2008) Proliferation of sorted human and rat β cells. Diabetologia 51:91–100

    PubMed  CAS  Google Scholar 

  • Pavlovic D, Andersen NA, Mandrup-Poulsen T, Eizirik DL (2000) Activation of extracellular signal-regulated kinase (ERK)1/2 contributes to cytokine-induced apoptosis in purified rat pancreatic β-cells. Eur Cytokine Netw 11:267–274

    PubMed  CAS  Google Scholar 

  • Paz K, Hemi R, LeRoith D, Karasik A, Elhanany E, Kanety H, Zick Y (1997) A molecular basis for insulin resistance. Elevated serine/threonine phosphorylation of IRS-1 and IRS-2 inhibits their binding to the juxtamembrane region of the insulin receptor and impairs their ability to undergo insulin-induced tyrosine phosphorylation. J Biol Chem 272:29911–29918

    PubMed  CAS  Google Scholar 

  • Pigeau GM, Kolic J, Ball BJ, Hoppa MB, Wang YW, Rückle T, Woo M, Manning Fox JE, MacDonald PE (2009) Insulin granule recruitment and exocytosis is dependent on p110gamma in insulinoma and human β-cells. Diabetes 58:2084–2092

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pirola L, Johnston AM, Van Obberghen E (2004) Modulation of insulin action. Diabetologia 47:170–184

    PubMed  CAS  Google Scholar 

  • Rhodes CJ, Halban PA (1987) Newly synthesized proinsulin/insulin and stored insulin are released from pancreatic B cells predominantly via a regulated, rather than a constitutive, pathway. J Cell Biol 105:145–153

    PubMed  CAS  Google Scholar 

  • Rhodes CJ (2000) IGF-I and GH post-receptor signaling mechanisms for pancreatic β-cell replication. J Mol Endocrinol 24:303–311

    PubMed  CAS  Google Scholar 

  • Rhodes CJ (2005) Type 2 diabetes-a matter of β-cell life and death? Science 307:380–384

    PubMed  CAS  Google Scholar 

  • Roper MG, Qian WJ, Zhang BB, Kulkarni RN, Kahn CR, Kennedy RT (2002) Effect of the insulin mimetic L-783,281 on intracellular Ca2+ and insulin secretion from pancreatic β-cells. Diabetes 51(Suppl 1):S43–S49

    PubMed  CAS  Google Scholar 

  • Rui L, Fisher TL, Thomas J, White MF (2001a) Regulation of insulin/insulin-like growth factor-1 signaling by proteasome-mediated degradation of insulin receptor substrate-2. J Biol Chem 276:40362–40367

    PubMed  CAS  Google Scholar 

  • Rui L, Aguirre V, Kim JK, Shulman GI, Lee A, Corbould A, Dunaif A, White MF (2001b) Insulin/IGF-1 and TNF-α stimulate phosphorylation of IRS-1 at inhibitory Ser307 via distinct pathways. J Clin Invest 107:181–189

    PubMed  CAS  PubMed Central  Google Scholar 

  • Samani AA, Yakar S, LeRoith D, Brodt P (2007) The role of the IGF system in cancer growth and metastasis: overview and recent insights. Endocr Rev 28:20–47

    PubMed  CAS  Google Scholar 

  • Schmitz-Peiffer C, Whitehead JP (2003) IRS-1 regulation in health and disease. IUBMB Life 55:367–374

    PubMed  CAS  Google Scholar 

  • Seino S, Bell GI (1989) Alternative splicing of human insulin receptor messenger RNA. Biochem Biophys Res Commun 159:312–316

    PubMed  CAS  Google Scholar 

  • Shah OJ, Wang Z, Hunter T (2004) Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies. Curr Biol 14:1650–1656

    PubMed  CAS  Google Scholar 

  • Shibasaki T, Sunaga Y, Fujimoto K, Kashima Y, Seino S (2004) Interaction of ATP sensor, cAMP sensor, Ca2+ sensor, and voltage-dependent Ca2+ channel in insulin granule exocytosis. J Biol Chem 279:7956–7961

    PubMed  CAS  Google Scholar 

  • Smith BJ, Huang K, Kong G, Chan SJ, Nakagawa S, Menting JG, Hu SQ, Whittaker J, Steiner DF, Katsoyannis PG, Ward CW, Weiss MA, Lawrence MC (2010) Structural resolution of a tandem hormone-binding element in the insulin receptor and its implications for design of peptide agonists. Proc Natl Acad Sci USA 107:6771–6776

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sodoyez JC, Sodoyez-Goffaux F, Foa PP (1969) Evidence for an insulin-induced inhibition of insulin release by isolated islets of Langerhans. Proc Soc Exp Biol Med 130:568–571

    PubMed  CAS  Google Scholar 

  • Spanswick D, Smith MA, Mirshamsi S, Routh VH, Ashford ML (2000) Insulin activates ATP-sensitive K+ channels in hypothalamic neurons of lean, but not obese rats. Nat Neurosci 3:757–758

    PubMed  CAS  Google Scholar 

  • Srinivasan S, Bernal-Mizrachi E, Ohsugi M, Permutt MA (2002) Glucose promotes pancreatic islet β-cell survival through a PI 3-kinase/Akt-signaling pathway. Am J Physiol Endocrinol Metab 283:E784–E793

    PubMed  CAS  Google Scholar 

  • Steneberg P, Bernardo L, Edfalk S, Backlund F, Lundberg L, Stenson CG, Edlund H (2013) The type 2 diabetes associated gene Ide is required for insulin secretion and suppression of α-synuclein levels in β-cells. Diabetes 62:2004–2014

    PubMed  CAS  PubMed Central  Google Scholar 

  • Takamoto I, Terauchi Y, Kubota N, Ohsugi M, Ueki K, Kadowaki T (2008) Crucial role of insulin receptor substrate-2 in compensatory β-cell hyperplasia in response to high fat diet-induced insulin resistance. Diabetes Obes Metab 10(Suppl 4):147–156

    PubMed  CAS  Google Scholar 

  • Talchai C, Lin HV, Kitamura T, Accili D (2009) Genetic and biochemical pathways of β-cell failure in type 2 diabetes. Diabetes Obes Metab 11(Suppl 4):38–45

    PubMed  CAS  Google Scholar 

  • Taylor SI (1992) Lilly lecture: molecular mechanisms of insulin resistance. Lessons from patients with mutations in the insulin-receptor gene. Diabetes 41:1473–1490

    PubMed  CAS  Google Scholar 

  • Tsunekawa S, Demozay D, Briaud I, McCuaig J, Accili D, Stein R, Rhodes CJ (2011) FoxO feedback control of basal IRS-2 expression in pancreatic β-cells is distinct from that in hepatocytes. Diabetes 60:2883–2891

    PubMed  CAS  PubMed Central  Google Scholar 

  • Uhles S, Moede T, Leibiger B, Berggren PO, Leibiger IB (2003) Isoform-specific insulin receptor signaling involves different plasma membrane domains. J Cell Biol 163:1327–1337

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ullrich A, Bell JR, Chen EY, Herrera R, Petruzzelli LM, Dull TJ, Gray A, Coussens L, Liao YC, Tsubokawa M (1985) Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature 313:756–761

    PubMed  CAS  Google Scholar 

  • van Haeften TW, Twickler TB (2004) Insulin-like growth factors and pancreas β cells. Eur J Clin Invest 34:249–255

    PubMed  Google Scholar 

  • Van Schravendijk CF, Foriers A, Van den Brande JL, Pipeleers DG (1987) Evidence for the presence of type I insulin-like growth factor receptors on rat pancreatic A and B cells. Endocrinol 121:1784–1788

    Google Scholar 

  • Vecchione A, Marchese A, Henry P, Rotin D, Morrione A (2003) The Grb10/Nedd4 complex regulates ligand-induced ubiquitination and stability of the insulin-like growth factor I receptor. Mol Cell Biol 23:3363–3372

    PubMed  CAS  PubMed Central  Google Scholar 

  • Velloso LA, Carneiro EM, Crepaldi SC, Boschero AC, Saad MJ (1995) Glucose- and insulin-induced phosphorylation of the insulin receptor and its primary substrates IRS-1 and IRS-2 in rat pancreatic islets. FEBS Lett 377:353–357

    PubMed  CAS  Google Scholar 

  • Verspohl EJ, Ammon HP (1980) Evidence for presence of insulin receptors in rat islets of Langerhans. J Clin Invest 65:1230–1237

    PubMed  CAS  PubMed Central  Google Scholar 

  • Vogt B, Carrascosa JM, Ermel B, Ullrich A, Häring HU (1991) The two isotypes of the human insulin receptor (HIR-A and HIR-B) follow different internalization kinetics. Biochem Biophys Res Commun 177:1013–1018

    PubMed  CAS  Google Scholar 

  • Wang H, Brun T, Kataoka K, Sharma AJ, Wollheim CB (2007) MafA controls genes implicated in insulin biosynthesis and secretion. Diabetologia 50:348–358

    PubMed  CAS  PubMed Central  Google Scholar 

  • Waraich RS, Weigert C, Kalbacher H, Hennige AM, Lutz S, Häring HU, Schleicher ED, Voelter W, Lehmann R (2008) Phosphorylation of Ser357of rat insulin receptor substrate-1 mediates adverse effects of protein kinase C-delta on insulin action in skeletal muscle cells. J Biol Chem 283:11226–11233

    PubMed  CAS  Google Scholar 

  • Watada H, Kajimoto Y, Miyagawa J, Hanafusa T, Hamaguchi K, Matsuoka T, Yamamoto K, Matsuzawa Y, Kawamori R, Yamasaki Y (1996) PDX-1 induces insulin and glucokinase gene expressions in αTC1 clone 6 cells in the presence of betacellulin. Diabetes 45:1826–1831

    PubMed  CAS  Google Scholar 

  • Watson ML, Macrae K, Marley AE, Hundal HS (2011) Chronic effects of palmitate overload on nutrient-induced insulin secretion and autocrine signalling in pancreatic MIN6 β cells. PLoS ONE 6:e25975

    PubMed  CAS  PubMed Central  Google Scholar 

  • Weigert C, Hennige AM, Brischmann T, Beck A, Moeschel K, Schauble M, Brodbeck K, Häring HU, Schleicher ED, Lehmann R (2005) The phosphorylation of Ser318 of insulin receptor substrate 1 is not per se inhibitory in skeletal muscle cells but is necessary to trigger the attenuation of the insulin-stimulated signal. J Biol Chem 280:37393–37399

    PubMed  CAS  Google Scholar 

  • Werner ED, Lee J, Hansen L, Yuan M, Shoelson SE (2004) Insulin resistance due to phosphorylation of insulin receptor substrate-1 at serine 302. J Biol Chem 279:35298–35305

    PubMed  CAS  Google Scholar 

  • White MF, Maron R, Kahn CR (1985) Insulin rapidly stimulates tyrosine phosphorylation of a Mr-185,000 protein in intact cells. Nature 318:183–186

    PubMed  CAS  Google Scholar 

  • White MF (2006) Regulating insulin signaling and β-cell function through IRS proteins. Can J Physiol Pharmacol 84:725–737

    PubMed  CAS  Google Scholar 

  • Withers DJ, Gutierrez JS, Towery H, Burks DJ, Ren JM, Previs S, Zhang Y, Bernal D, Pons S, Shulman GI, Bonner-Weir S, White MF (1998) Disruption of IRS-2 causes type 2 diabetes in mice. Nature 391:900–904

    PubMed  CAS  Google Scholar 

  • Wu H, MacFarlane WM, Tadayyon M, Arch JR, James RF, Docherty K (1999) Insulin stimulates pancreatic-duodenal homoeobox factor-1 (PDX1) DNA-binding activity and insulin promoter activity in pancreatic β cells. Biochem J 344:813–818

    PubMed  CAS  PubMed Central  Google Scholar 

  • Xuan S, Kitamura T, Nakae J, Politi K, Kido Y, Fisher PE, Morroni M, Cinti S, White MF, Herrera PL, Accili D, Efstratiadis A (2002) Defective insulin secretion in pancreatic β cells lacking type 1 IGF receptor. J Clin Invest 110:1011–1019

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yasui S, Mawatari K, Kawano T, Morizumi R, Hamamoto A, Furukawa H, Koyama K, Nakamura A, Hattori A, Nakano M, Harada N, Hosaka T, Takahashi A, Oshita S, Nakaya Y (2008) Insulin activates ATP-sensitive potassium channels via phosphatidylinositol 3-kinase in cultured vascular smooth muscle cells. J Vasc Res 45:233–243

    PubMed  CAS  Google Scholar 

  • Yoon KH, Ko SH, Cho JH, Lee JM, Ahn YB, Song KH, Yoo SJ, Kang MI, Cha BY, Lee KW, Son HY, Kang SK, Kim HS, Lee IK, Bonner-Weir S (2003) Selective β-cell loss and α-cell expansion in patients with type 2 diabetes mellitus in Korea. J Clin Endocrinol Metab 88:2300–2308

    PubMed  CAS  Google Scholar 

  • Zawalich WS, Zawalich KC (2000) A link between insulin resistance and hyperinsulinemia: inhibitors of phosphatidylinositol 3-kinase augment glucose-induced insulin secretion from islets of lean, but not obese, rats. Endocrinology 141:3287–3295

    PubMed  CAS  Google Scholar 

  • Zhao AZ, Zhao H, Teague J, Fujimoto W, Beavo JA (1997) Attenuation of insulin secretion by insulin-like growth factor 1 is mediated through activation of phosphodiesterase 3B. Proc Natl Acad Sci USA 94:3223–3228

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhao J, Li L, Leissring MA (2009) Insulin-degrading enzyme is exported via an unconventional protein secretion pathway. Mol Neurodegener 4:4

    PubMed  PubMed Central  Google Scholar 

  • Zhu J, Kahn CR (1997) Analysis of a peptide hormone-receptor interaction in the yeast two-hybrid system. Proc Natl Acad Sci USA 94:13063–13068

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Ullrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Ullrich, S. (2015). IGF-1 and Insulin-Receptor Signalling in Insulin-Secreting Cells: From Function to Survival. In: Islam, M. (eds) Islets of Langerhans. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6686-0_26

Download citation

Publish with us

Policies and ethics