Skip to main content

Molecular Basis of cAMP Signaling in Pancreatic β Cells

  • Reference work entry
  • First Online:
Islets of Langerhans

Abstract

Recent advances in conditional gene targeting and cyclic nucleotide research further our understanding of how the incretin hormone GLP-1 exerts a therapeutically important action to restore pancreatic insulin secretion in patients with type 2 diabetes mellitus (T2DM). These studies demonstrate that the pancreatic β-cell GLP-1 receptor has the capacity to signal through two distinct branches of the adenosine 3′,5′-cyclic monophosphate (cAMP) signal transduction network; one branch activates protein kinase A (PKA), and the second engages a cAMP-regulated guanine nucleotide exchange factor designated as Epac2. Under normal dietary conditions, specific activation of the cAMP-PKA branch in mice dramatically augments glucose-stimulated insulin secretion (GSIS). However, under conditions of diet-induced insulin resistance, cAMP-Epac2 signaling in the control of GSIS becomes prominent. This chapter provides an update on GLP-1 receptor signaling in the islets of Langerhans, with special emphasis on key molecular events that confer “plasticity” in the β-cell cAMP signal transduction network. The reader is reminded that an excellent review of β-cell cAMP signaling can also be found in the prior first edition of this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Halim SM, Guenifi A, Khan A, Larsson O, Berggren PO, Ostenson CG, Efendić S (1996) Impaired coupling of glucose signal to the exocytotic machinery in diabetic GK rats: a defect ameliorated by cAMP. Diabetes 45:934–940

    PubMed  Google Scholar 

  • Ahlkvist L, Brown K, Ahrén B (2013) Upregulated insulin secretion in insulin-resistant mice: evidence of increased islet GLP-1 receptor levels and GPR119-activated GLP-1 secretion. Endocr Connect 2:69–78

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ahrén B (2000) Autonomic regulation of islet hormone secretion – implications for health and disease. Diabetologia 43:393–410

    PubMed  Google Scholar 

  • Ahrén B (2008) Role of pituitary adenylate cyclase-activating polypeptide in the pancreatic endocrine system. Ann N Y Acad Sci 1144:28–35

    PubMed  Google Scholar 

  • Ahrén B (2009) Islet G protein-coupled receptors as potential targets for treatment of type 2 diabetes. Nat Rev Drug Discov 8:369–385

    PubMed  Google Scholar 

  • Altarejos JY, Montminy M (2011) CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nat Rev Mol Cell Biol 12:141–151

    PubMed  CAS  Google Scholar 

  • Ämmälä C, Ashcroft FM, Rorsman P (1993) Calcium-independent potentiation of insulin release by cyclic AMP in single β-cells. Nature 363:356–358

    PubMed  Google Scholar 

  • Arnette D, Gibson TB, Lawrence MC, January B, Khoo S, McGlynn K, Vanderbilt CA, Cobb MH (2003) Regulation of ERK1 and ERK2 by glucose and peptide hormones in pancreatic β cells. J Biol Chem 278:32517–32525

    PubMed  CAS  Google Scholar 

  • Baggio LL, Drucker DJ (2007) Biology of incretins: GLP-1 and GIP. Gastroenterology 132:2131–2157

    PubMed  CAS  Google Scholar 

  • Barnett DW, Pressel DM, Chern HT, Scharp DW, Misler S (1994) cAMP-enhancing agents “permit” stimulus-secretion coupling in canine pancreatic islet β-cells. J Membr Biol 138:113–120

    PubMed  CAS  Google Scholar 

  • Bastien-Dionne PO, Valenti L, Kon N, Gu W, Buteau J (2011) Glucagon-like peptide-1 inhibits the sirtuin deacetylase SirT1 to stimulate pancreatic β-cell mass expansion. Diabetes 60:3217–3222

    PubMed  CAS  PubMed Central  Google Scholar 

  • Betz A, Ashery U, Rickmann M, Augustin I, Neher E, Südhof TC, Retting J, Brose N (1998) Munc13-1 is a presynaptic phorbol ester receptor that enhances neurotransmitter release. Neuron 21:123–136

    PubMed  CAS  Google Scholar 

  • Bode HP, Moormann B, Dabew R, Göke B (1999) Glucagon-like peptide-1 elevates cytosolic calcium in pancreatic β-cells independently of protein kinase A. Endocrinology 140:3919–3927

    PubMed  CAS  Google Scholar 

  • Bourron O, Chebbi F, Halbron M, Saint-Martin C, Bellanné-Chantelot C, Abed A, Charbit B, Magnan C, Lacorte JM, Hartemann A (2012) Incretin effect of glucagon-like peptide-1 receptor agonist is preserved in presence of ABCC8/SUR1 mutation in β-cell. Diabetes Care 35:e76

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brozzi F, Lajus S, Diraison F, Rajatileka S, Hayward K, Regazzi R, Molnár E, Váradi A (2012) MyRIP interaction with MyoVa on secretory granules is controlled by the cAMP-PKA pathway. Mol Biol Cell 23:4444–4455

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brunzell JD, Robertson RP, Lerner RL, Hazzard WR, Ensinck JW, Biermal FL, Porte D Jr (1976) Relationships between fasting plasma glucose levels and insulin secretion during intravenous glucose tolerance tests. J Clin Endocrinol Metab 42:222–229

    PubMed  CAS  Google Scholar 

  • Burcelin R (2010) The gut-brain axis: a major glucoregulatory player. Diabetes Metab 36(Suppl 3):S54–S58

    PubMed  CAS  Google Scholar 

  • Buteau J, Roduit R, Susini S, Prentki M (1999) Glucagon-like peptide-1 promotes DNA synthesis, activates phosphatidylinositol 3-kinase and increases transcription factor pancreatic and duodenal homeobox gene 1 (PDX-1) DNA binding activity in β (INS-1)-cells. Diabetologia 42:856–864

    PubMed  CAS  Google Scholar 

  • Buteau J, Foisy S, Rhodes CJ, Carpenter L, Biden TJ, Prentki M (2001) Protein kinase Cζ activation mediates glucagon-like peptide-1-induced pancreatic β-cell proliferation. Diabetes 50:2237–2243

    PubMed  CAS  Google Scholar 

  • Buteau J, Foisy S, Joly E, Prentki M (2003) Glucagon-like peptide-1 induces pancreatic β-cell proliferation via transactivation of the epidermal growth factor receptor. Diabetes 52:124–132

    PubMed  CAS  Google Scholar 

  • Buteau J, Spatz ML, Accili D (2006) Transcription factor FoxO1 mediates glucagon-like peptide-1 effects on pancreatic β-cell mass. Diabetes 55:1190–1196

    PubMed  CAS  Google Scholar 

  • Butler AE, Campbell-Thompson M, Gurlo T, Dawson DW, Atkinson M, Butler PC (2013) Marked expansion of exocrine and endocrine pancreas with incretin therapy in humans with increased exocrine pancreas dysplasia and the potential for glucagon-producing neuroendocrine tumors. Diabetes 62:2595–2604

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cha CY, Powell T, Noma A (2011) Analyzing electrical activities of pancreatic β cells using mathematical models. Prog Biophys Mol Biol 107:265–273

    PubMed  Google Scholar 

  • Charles MA, Lawecki J, Pictet R, Grodsky GM (1975) Insulin secretion. Interrelationships of glucose, cyclic adenosine 3′:5′-monophosphate, and calcium. J Biol Chem 250:6134–6140

    PubMed  CAS  Google Scholar 

  • Chen H, Tsalkova T, Chepurny OG, Mei FC, Holz GG, Cheng X, Zhou J (2013) Identification and characterization of small molecules as potent and specific EPAC2 antagonists. J Med Chem 56:952–962

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chepurny OG, Hussain MA, Holz GG (2002) Exendin-4 as a stimulator of rat insulin I gene promoter activity via bZIP/CRE interactions sensitive to serine/threonine protein kinase inhibitor Ro 31–8220. Endocrinology 143:2303–2313

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chepurny OG, Leech CA, Kelley GG, Dzhura I, Dzhura E, Li X, Rindler MJ, Schwede F, Genieser HG, Holz GG (2009) Enhanced Rap1 activation and insulin secretagogue properties of an acetoxymethyl ester of an Epac-selective cyclic AMP analog in rat INS-1 cells: studies with 8-pCPT-2′–O-Me-cAMP-AM. J Biol Chem 284:10728–10736

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chepurny OG, Kelley GG, Dzhura I, Leech CA, Roe MW, Dzhura E, Li X, Schwede F, Genieser HG, Holz GG (2010) PKA-dependent potentiation of glucose-stimulated insulin secretion by Epac activator 8-pCPT-2′–O-Me-cAMP-AM in human islets of Langerhans. Am J Physiol Endocrinol Metab 298:E622–E633

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chheda MG, Ashery U, Thakur P, Rettig J, Sheng ZH (2001) Phosphorylation of snapin by PKA modulates its interaction with the SNARE complex. Nat Cell Biol 3:331–338

    PubMed  CAS  Google Scholar 

  • Chu ZL, Jones RM, He H, Carroll C, Gutierrez V, Lucman A, Moloney M, Gao H, Mondala H, Bagnol D, Unett D, Liang Y, Demarest K, Semple G, Behan DP, Leonard J (2007) A role for β-cell-expressed G protein-coupled receptor 119 in glycemic control by enhancing glucose-dependent insulin release. Endocrinology 148:2601–2609

    PubMed  CAS  Google Scholar 

  • Chu ZL, Carroll C, Alfonso J, Gutierrez V, He H, Lucman A, Pedraza M, Mondala H, Gao H, Bagnol D, Chen R, Jones RM, Behan DP, Leonard J (2008) A role for intestinal endocrine cell-expressed G protein-coupled receptor 119 in glycemic control by enhancing glucagon-like peptide-1 and glucose-dependent insulinotropic peptide release. Endocrinology 149:2038–2047

    PubMed  CAS  Google Scholar 

  • Clardy-James S, Chepurny OG, Leech CA, Holz GG, Doyle RP (2013) Synthesis, characterization and pharmacodynamics of vitamin-B12-conjugated glucagon-like peptide-1. ChemMedChem 8:582–586

    PubMed  CAS  PubMed Central  Google Scholar 

  • Couvineau A, Laburthe M (2012) The family B1 GPCR: structural aspects and interaction with accessory proteins. Curr Drug Targets 13:103–115

    PubMed  CAS  Google Scholar 

  • Creutzfeldt W (2005) The [pre]-history of the incretin concept. Regul Pept 128:87–91

    PubMed  CAS  Google Scholar 

  • Dachicourt N, Serradas P, Giroix MH, Gangnerau MN, Portha B (1996) Decreased glucose-induced cAMP and insulin release in islets of diabetic rats: reversal by IBMX, glucagon, GIP. Am J Physiol 271:E725–E732

    PubMed  CAS  Google Scholar 

  • Dalle S, Ravier MA, Bertrand G (2011a) Emerging roles of β-arrestin-1 in the control of the pancreatic β-cell function and mass: new therapeutic strategies and consequences for drug screening. Cell Signal 23:522–528

    PubMed  CAS  Google Scholar 

  • Dalle S, Quoyer J, Varin E, Costes S (2011b) Roles and regulation of the transcription factor CREB in pancreatic β-cells. Curr Mol Pharmacol 4:187–195

    PubMed  CAS  Google Scholar 

  • Dalle S, Burcelin R, Gourdy P (2013) Specific actions of GLP-1 receptor agonists and DPP4 inhibitors for the treatment of pancreatic β-cell impairments in type 2 diabetes. Cell Signal 25:570–579

    PubMed  CAS  Google Scholar 

  • De Leon DD, Li C, Delson MI, Matschinsky FM, Stanley CA, Stoffers DA (2008) Exendin-(9–39) corrects fasting hypoglycemia in SUR-1−/− mice by lowering cAMP in pancreatic β-cells and inhibiting insulin secretion. J Biol Chem 283:25786–25793

    PubMed  PubMed Central  Google Scholar 

  • de Rooij J, Zwartkruis FJ, Verheijen MH, Cool RH, Nijman SM, Wittinghofer A, Bos JL (1998) Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature 396:474–477

    PubMed  Google Scholar 

  • Delmeire D, Flamez D, Hinke SA, Cali JJ, Pipeleers D, Schuit F (2003) Type VIII adenylyl cyclase in rat β cells: coincidence signal detector/generator for glucose and GLP-1. Diabetologia 46:1383–1393

    PubMed  CAS  Google Scholar 

  • Ding WG, Kitasato H, Matsuura H (2001) Involvement of calmodulin in glucagon-like peptide 1(7–36)amide-induced inhibition of the ATP-sensitive K+ channel in mouse pancreatic β-cells. Exp Physiol 86:331–339

    PubMed  CAS  Google Scholar 

  • Ding SY, Nkobena A, Kraft CA, Markwardt ML, Rizzo MA (2011) Glucagon-like peptide-1 stimulates post-translational activation of glucokinase in pancreatic β cells. J Biol Chem 286:16768–16774

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dolenšek J, Skelin M, Rupnik MS (2011) Calcium dependencies of regulated exocytosis in different endocrine cells. Physiol Res 60(Suppl 1):S29–S38

    PubMed  Google Scholar 

  • Doliba NM, QinW NH, Liu C, Buettger CW, Sotiris J, Collins HW, Li C, Stanley CA, Wilson DF, Grimsby J, Sarabu R, Naji A, Matschinsky FM (2012a) Glucokinase activation repairs defective bioenergetics of islets of Langerhans isolated from type 2 diabetics. Am J Physiol Endocrinol Metab 302:E87–E102

    PubMed  CAS  PubMed Central  Google Scholar 

  • Doliba NM, Fenner D, Zelent B, Bass J, Sarabu R, Matschinsky FM (2012b) Repair of diverse diabetic defects of β-cells in man and mouse by pharmacological glucokinase activation. Diabetes Obes Metab 14(Suppl 3):109–119

    PubMed  CAS  Google Scholar 

  • Dolz M, Movassat J, Balbé D, Le Stunff H, Giroix MH, Fradet M, Kergoat M, Portha B (2011) cAMP-secretion coupling is impaired in diabetic GK/Par rat β-cells: a defect counteracted by GLP-1. Am J Physiol Endocrinol Metab 301:E797–E806

    PubMed  CAS  Google Scholar 

  • Donelan MJ, Morfini G, Julyan R, Sommers S, Hays L, Kajo H, Braud I, Easom RA, Molkentin JD, Brady ST, Rhodes CJ (2002) Ca2+-dependent dephosphorylation of kinesin heavy chain on β-granules in pancreatic β-cells. Implications for regulated β-granule transport and insulin exocytosis. J Biol Chem 277:24232–24242

    PubMed  CAS  Google Scholar 

  • Drucker DJ, Nauck MA (2006) The incretin system: glucagon-like peptide-1 agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 368:1696–1705

    PubMed  CAS  Google Scholar 

  • Drucker DJ, Philippe J, Mojsov S, Chick WL, Habener JF (1987) Glucagon-like peptide-1 stimulates insulin gene expression and increases cyclic AMP levels in a rat islet cell line. Proc Natl Acad Sci USA 84:3434–3438

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dyachock O, Gylfe E (2004) Ca2+-Induced Ca2+ release via inositol 1,4,5-trisphosphate receptors is amplified by protein kinase A and triggers exocytosis in pancreatic β-cells. J Biol Chem 279:45455–45461

    Google Scholar 

  • Dyachock O, Isakov Y, Sågetorp J, Tengholm A (2006) Oscillations of cyclic AMP in hormone-stimulated insulin-secreting β-cells. Nature 439:349–352

    Google Scholar 

  • Dyachock O, Idevall-Hagren O, Sågetorp J, Tian J, Wuttke A, Arrieumerlou C, Akusjärvi G, Gylfe E, Tengholm A (2008) Glucose-induced cyclic AMP oscillations regulate pulsatile insulin secretion. Cell Metab 8:26–37

    Google Scholar 

  • Dzhura I, Chepurny OG, Kelley GG, Leech CA, Roe MW, Dzhura E, Afshri P, Malik S, Rindler MJ, Xu X, Lu Y, Smrcka AV, Holz GG (2010) Epac2-dependent mobilization of intracellular Ca2+ by glucagon-like peptide-1 receptor agonist exendin-4 is disrupted in β-cells of phospholipase Cε knockout mice. J Physiol 588:4871–4889

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dzhura I, Chepurny OG, Leech CA, Roe MW, Dzhura E, Xu X, Lu Y, Schwede F, Genieser HG, Smrcka AV, Holz GG (2011) Phospholipase Cε links Epac2 activation of the potentiation of glucose-stimulated insulin secretion from mouse islets of Langerhans. Islets 3:121–128

    PubMed  PubMed Central  Google Scholar 

  • Eddlestone GT, Oldham SB, Lipson LG, Premdas FH, Beigelman PM (1985) Electrical activity, cAMP concentration, and insulin release in mouse islets of Langerhans. Am J Physiol 248:C145–C153

    PubMed  CAS  Google Scholar 

  • Eliasson L, Renström E, Ämmälä C, Berggren PO, Bertorello AM, Bokvist K, Chibalin A, Deeney JT, Flatt PR, Gäbel J, Gromada J, Larsson O, Lindström P, Rhodes CJ, Rorsman P (1996) PKC-dependent stimulation of exocytosis by sulfonylureas in pancreatic β cells. Science 271:813–815

    PubMed  CAS  Google Scholar 

  • Eliasson L, Ma S, Renström E, Barg S, Berggren PO, Galvanovskis J, Gromada J, Jing X, Lundquist I, Salehi A, Sewing S, Rorsman P (2003) SUR1 regulates PKA-independent cAMP-induced granule priming in mouse pancreatic β-cells. J Gen Physiol 121:181–197

    PubMed  CAS  PubMed Central  Google Scholar 

  • Emilsson V, Liu YL, Cawthorne MA, Morton NM, Davenport M (1997) Expression of the functional leptin receptor mRNA in pancreatic islets and direct inhibitory action of leptin on insulin secretion. Diabetes 46:313–316

    PubMed  CAS  Google Scholar 

  • Farilla L, Bulotta A, Hirshberg B, Li Calzi S, Khoury N, Noushmehr H, Bertolotto C, Di Mario U, Harlan DM, Perfetti R (2003) Glucagon-like peptide 1 inhibits cell apoptosis and improves glucose responsiveness of freshly isolated human islets. Endocrinology 144:5149–5158

    PubMed  CAS  Google Scholar 

  • Fehmann HC, Habener JF (1992) Insulinotropic hormone glucagon-like peptide-1(7–37) stimulation of proinsulin gene expression and proinsulin biosynthesis in insulinoma β TC-1 cells. Endocrinology 130:159–166

    PubMed  CAS  Google Scholar 

  • Fehse F, Trautmann M, Holst JJ, Halseth AE, Nanayakkara N, Nielsen LL, Fineman MS, Kim DD, Nauck MA (2005) Exenatide augments first- and second-phase insulin secretion in response to intravenous glucose in subjects with type 2 diabetes. J Clin Endocrinol Metabol 90:5991–5997

    CAS  Google Scholar 

  • Fernandez J, Valdeolmillos M (1999) Glucose-dependent stimulatory effect of glucagon-like peptide 1(7–36) amide on the electrical activity of pancreatic β-cells recorded in vivo. Diabetes 48:754–757

    PubMed  CAS  Google Scholar 

  • Fonseca SG, Urano F, Weir GC, Gromada J, Burcin M (2012) Wolfram syndrome 1 and adenylyl cyclase 8 interact at the plasma membrane to regulate insulin production and secretion. Nat Cell Biol 14:1105–1112

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fraser IDC, Tavalin SJ, Lester LB, Langeberg LK, Westphal AM, Dean RA, Marrion NV, Scott JD (1998) A novel lipid-anchored A-kinase anchoring protein facilitates cAMP-responsive membrane events. EMBO J 17:2261–2272

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fridlyand LE, Harbeck MC, Roe MW, Philipson LH (2007) Regulation of cAMP dynamics by Ca2+ and G protein-coupled receptors in the pancreatic β-cell: a computational approach. Am J Physiol Cell Physiol 293:C1924–C1933

    PubMed  CAS  Google Scholar 

  • Friedrichsen BN, Neubauer N, Lee YC, Gram VK, Blume N, Petersen JS, Nielsen JH, Mǿldrap A (2006) Stimulation of pancreatic β-cell replication by incretin involves transcriptional induction of cyclin D1 via multiple signaling pathways. J Endocrinol 188:481–492

    PubMed  CAS  Google Scholar 

  • Fujimoto K, Shibasaki T, Yokoi N, Kashima Y, Matsumoto M, Sasaki T, Tajima N, Iwanaga T, Seino S (2002) Piccolo, a Ca2+ sensor in pancreatic β-cells. Involvement of cAMP-GEFII.Rim2.Piccolo complex in cAMP-dependent exocytosis. J Biol Chem 277:50497–50502

    PubMed  CAS  Google Scholar 

  • Furman B, Ong WK, Pyne NJ (2010) Cyclic AMP signaling in pancreatic islets. Adv Exp Med Biol 654:281–304

    PubMed  CAS  Google Scholar 

  • Geng X, Li L, Watkins S, Robbins PD, Drain P (2003) The insulin secretory granule is the major site of KATP channels of the endocrine pancreas. Diabetes 52:767–776

    PubMed  CAS  Google Scholar 

  • Gillis KD, Misler S (1993) Enhancers of cytosolic cAMP augment depolarization-induced exocytosis from pancreatic β-cells: evidence for effects distal to Ca2+ entry. Pflugers Arch 424:195–197

    PubMed  CAS  Google Scholar 

  • Goehring AS, Pedroja BS, Hinke SA, Langeberg LK, Scott JD (2007) MyRIP anchors protein kinase A to the exocyst complex. J Biol Chem 282:33155–33167

    PubMed  CAS  PubMed Central  Google Scholar 

  • Goldfine ID, Perlman R, Roth J (1971) Inhibition of cyclic 3′,5′-AMP phosphodiesterases in islet cells and other tissues by tolbutamide. Nature 234:295–297

    PubMed  CAS  Google Scholar 

  • Gromada J, Bokvist K, Ding WG, Holst JJ, Nielsen JH, Rorsman P (1998a) Glucagon-like peptide 1(7–36) amide stimulates exocytosis in human pancreatic β-cells by both proximal and distal regulatory steps in stimulus-secretion coupling. Diabetes 47:57–65

    PubMed  CAS  Google Scholar 

  • Gromada J, Holst JJ, Rorsman P (1998b) Cellular regulation of islet hormone secretion by the incretin hormone glucagon-like peptide 1. Pflugers Arch 435:583–594

    PubMed  CAS  Google Scholar 

  • Gu G, Dubauskaite J, Melton DA (2002) Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development 129:2447–2457

    PubMed  CAS  Google Scholar 

  • Gutniak M, Ǿrskov C, Holst JJ, Ahrén B, Efendić S (1992) Antidiabetic effect of glucagon-like peptide-1 (7–36) amide in normal subjects and patients with diabetes mellitus. N Engl J Med 326:1316–1322

    PubMed  CAS  Google Scholar 

  • Hansen HS, Rosenkilde MM, Knop FK, Wellner N, Diep TA, Rehfeld JF, Andersen UB, Holst JJ, Hansen HS (2011) 2-Oleoyl glycerol is a GPR119 agonist and signals GLP-1 release in humans. J Clin Endocrinol Metab 96:E1409–E1417

    PubMed  CAS  Google Scholar 

  • Hansen HS, Rosenkilde MM, Holst JJ, Schwartz TW (2012) GPR119 as a fat sensor. Trends Pharmacol Sci 33:374–381

    PubMed  CAS  Google Scholar 

  • Hashiguchi H, Nakazaki M, Koriyama N, Fukudome M, Aso K, Tei C (2006) Cyclic AMP/cAMP-GEF pathway amplifies insulin exocytosis induced by Ca2+ and ATP in rat islet β-cells. Diabetes Metab Res Rev 22:64–71

    PubMed  CAS  Google Scholar 

  • Hatakeyama H, Kishimoto T, Nemoto T, Kasai H, Takahashi N (2006) Rapid glucose sensing by protein kinase A for insulin exocytosis in mouse pancreatic islets. J Physiol 570:271–282

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hatakeyama H, Takahashi N, Kishimoto T, Nemoto T, Kasai H (2007) Two cAMP-dependent pathways differentially regulate exocytosis of large dense-core and small vesicles in mouse β-cells. J Physiol 582:1087–1098

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hay CW, Sinclair EM, Bermano G, Durward E, Tadayyon M, Docherty K (2005) Glucagon-like peptide-1 stimulates human insulin promoter activity in part through cAMP-responsive elements that lie upstream and downstream of the transcription start site. J Endocrinol 186:353–365

    PubMed  CAS  Google Scholar 

  • Hayes MR (2012) Neuronal and intracellular signaling pathways mediating GLP-1 energy balance and glycemic effects. Physiol Behav 106:413–416

    PubMed  CAS  PubMed Central  Google Scholar 

  • He LP, Mears D, Atwater I, Kitasato H (1998) Glucagon induces suppression of ATP-sensitive K+ channel activity through a Ca2+/calmodulin-dependent pathway in mouse pancreatic β-cells. J Membr Biol 166:237–244

    PubMed  CAS  Google Scholar 

  • Henquin JC (2000) Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes 49:1751–1760

    PubMed  CAS  Google Scholar 

  • Henquin JC, Meissner HP (1983) Dibutyryl cyclic AMP triggers Ca2+ influx and Ca2+-dependent electrical activity in pancreatic B cells. Biochem Biophys Res Commun 112:614–620

    PubMed  CAS  Google Scholar 

  • Henquin JC, Meissner HP (1984a) Effects of theophylline and dibutyryl cyclic adenosine monophosphate on the membrane potential of mouse pancreatic β-cells. J Physiol 351:595–612

    PubMed  CAS  PubMed Central  Google Scholar 

  • Henquin JC, Meissner HP (1984b) The ionic, electrical, and secretory effects of endogenous cyclic adenosine monophosphate in mouse pancreatic B cells: studies with forskolin. Endocrinology 115:1125–1134

    PubMed  CAS  Google Scholar 

  • Henquin JC, Schmeer W, Meissner HP (1983) Forskolin, an activator of adenylate cyclases, increases Ca2+-dependent electrical activity induced by glucose in mouse pancreatic B cells. Endocrinology 112:2218–2220

    PubMed  CAS  Google Scholar 

  • Herbst KJ, Coltharp C, Amzel LM, Zhang J (2011) Direct activation of Epac by sulfonylurea is isoform selective. Chem Biol 18:243–251

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hinke SA, Hellemans K, Schuit FC (2004) Plasticity of the β cell insulin secretory competence: preparing the pancreatic β cell for the next meal. J Physiol 558:369–380

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hinke SA, Navedo MF, Ulman A, Whiting JL, Nygren PJ, Tian G, Jimenez-Caliani AJ, Langeberg LK, Cirulli V, Tengholm A, Dell’Acqua ML, Santana LF, Scott JD (2012) Anchored phosphatases modulate glucose homeostasis. EMBO J 31:3991–4004

    PubMed  CAS  PubMed Central  Google Scholar 

  • Holst JJ (2007) The physiology of glucagon-like peptide 1. Physiol Rev 87:1409–1439

    PubMed  CAS  Google Scholar 

  • Holz GG (2004a) Epac: a new cAMP-binding protein in support of glucagon-like peptide-1 receptor-mediated signal transduction in the pancreatic β-cell. Diabetes 53:5–13

    PubMed  CAS  PubMed Central  Google Scholar 

  • Holz GG (2004b) New insights concerning the glucose-dependent insulin secretagogue action of glucagon-like peptide-1 in pancreatic β-cells. Horm Metab Res 36:787–794

    PubMed  CAS  PubMed Central  Google Scholar 

  • Holz GG, Chepurny OG (2005) Diabetes outfoxed by GLP-1? Sci STKE 268:pe2

    Google Scholar 

  • Holz GG, Habener JF (1992) Signal transduction crosstalk in the endocrine system: pancreatic β-cells and the glucose competence concept. Trends Biochem Sci 17:388–393

    PubMed  CAS  PubMed Central  Google Scholar 

  • Holz GG, Habener JF (1998) Black widow spider α-latrotoxin: a presynaptic neurotoxin that shares structural homology with the glucagon-like peptide-1 family of insulin secretagogic hormones. Comp Biochem Physiol B Biochem Mol Biol 121:177–184

    PubMed  CAS  PubMed Central  Google Scholar 

  • Holz GG 4th, Kuhtreiber WM, Habener JF (1993) Pancreatic β-cells are rendered glucose-competent by the insulinotropic hormone glucagon-like peptide-1(7–37). Nature 361:362–365

    PubMed  CAS  PubMed Central  Google Scholar 

  • Holz GG, Leech CA, Habener JF (1995) Activation of a cAMP-regulated Ca2+-signaling pathway in pancreatic β-cells by the insulinotropic hormone glucagon-like peptide-1. J Biol Chem 270:17749–17757

    PubMed  CAS  PubMed Central  Google Scholar 

  • Holz GG, Leech CA, Heller RS, Castonguay M, Habener JF (1999) cAMP-dependent mobilization of intracellular Ca2+ stores by activation of ryanodine receptors in pancreatic β-cells. A Ca2+ signaling system stimulated by the insulinotropic hormone glucagon-like peptide-1-(7–37). J Biol Chem 274:14147–14156

    PubMed  CAS  PubMed Central  Google Scholar 

  • Holz GG, Leech CA, Habener JF (2000) Insulinotropic toxins as molecular probes for analysis of glucagon-like peptide-1 receptor-mediated signal transduction in pancreatic β-cells. Biochimie 82:915–926

    PubMed  CAS  PubMed Central  Google Scholar 

  • Holz GG, Kang G, Harbeck M, Roe MW, Chepurny OG (2006) Cell physiology of cAMP sensor Epac. J Physiol 577:5–15

    PubMed  CAS  PubMed Central  Google Scholar 

  • Holz GG, Chepurny OG, Schwede F (2008a) Epac-selective cAMP analogs: new tools with which to evaluate the signal transduction properties of cAMP-regulated guanine nucleotide exchange factors. Cell Signal 20:10–20

    PubMed  CAS  PubMed Central  Google Scholar 

  • Holz GG, Heart E, Leech CA (2008b) Synchronizing Ca2+ and cAMP oscillations in pancreatic β-cells: a role for glucose metabolism and GLP-1 receptors? Focus on “regulation of cAMP dynamics by Ca2+ and G protein-coupled receptors in the pancreatic β-cell: a computational approach”. Am J Physiol Cell Physiol 294:C4–C6

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hong K, Lou L, Gupta S, Ribeiro-Neto F, Altschuler DL (2008) A novel Epac-Rap-PP2A signaling module controls cAMP-dependent Akt regulation. J Biol Chem 283:23129–23138

    PubMed  CAS  PubMed Central  Google Scholar 

  • Howell SL, Jones PM, Persaud SJ (1994) Regulation of insulin secretion: the role of second messengers. Diabetologia 37(Suppl 2):S30–S35

    PubMed  CAS  Google Scholar 

  • Hugill A, Shimomura K, Ashcroft FM, Cox RD (2010) A mutation in KCNJ11 causing human hyperinsulinism (Y12X) results in a glucose-intolerant phenotype in the mouse. Diabetologia 53:2352–2356

    PubMed  CAS  Google Scholar 

  • Hussain MA, Stratakis C, Kirschner L (2012) Prkar1a in the regulation of the insulin secretion. Horm Metab Res 44:759–765

    PubMed  CAS  PubMed Central  Google Scholar 

  • Idevall-Hagren O, Barg S, Gylfe E, Tengholm A (2010) cAMP mediators of pulsatile insulin secretion from glucose-stimulated single β-cells. J Biol Chem 285:23007–23018

    PubMed  CAS  PubMed Central  Google Scholar 

  • Idevall-Hagren O, Jakobsson I, Xu Y, Tengholm A (2013) Spatial control of Epac2 activity by cAMP and Ca2+-mediated activation of Ras in pancreatic β cells. Sci Signal 6:ra29

    PubMed  Google Scholar 

  • Islam MS, Leibiger I, Leibiger B, Rossi D, Sorrentino V, Ekström TJ, Westerblad H, Andrade FH, Berggren PO (1998) In situ activation of the type 2 ryanodine receptor in pancreatic β cells requires cAMP-dependent phosphorylation. Proc Natl Acad Sci USA 95:6145–6160

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jarrard RE, Wang Y, Salyer AE, Pratt EP, Soderling IM, Guerra ML, Lange AM, Broderick HJ, Hockerman GH (2013) Potentiation of sulfonylurea action by an EPAC-selective cAMP analog in INS-1 cells: comparison of tolbutamide and gliclazide and a potential role for EPAC activation of a 2-APB-sensitive Ca2+ influx. Mol Pharmacol 83:191–205

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jhala US, Canettieri G, Screaton RA, Kulkarni RN, Krajewski S, Reed J, Walker J, Lin X, White M, Montminy M (2003) cAMP promotes pancreatic β-cell survival via CREB-mediated induction of IRS2. Genes Dev 17:1575–1580

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jones RM, Leonard JN, Buzard DJ, Lehmann J (2009) GPR119 agonists for the treatment of type 2 diabetes. Expert Opin Ther Pat 19:1339–1359

    PubMed  CAS  Google Scholar 

  • Jǿrgensen NB, Dirksen C, Bojsen-Mǿller KN, Jacobsen SH, Worm D, Hansen DL, Kristiansen VB, Naver L, Madsbad S, Holst JJ (2013) The exaggerated glucagon-like peptide-1 response is important for the improved β-cell function and glucose tolerance after Roux-en-Y gastric bypass in patients with type 2 diabetes. Diabetes 62:3044–3052

    PubMed  PubMed Central  Google Scholar 

  • Kaihara KA, Dickson LM, Jacobson DA, Tamarina N, Roe MW, Philipson LH, Wicksteed B (2013) β-cell-specific protein kinase A activation enhances the efficiency of glucose control by increasing acute-phase insulin secretion. Diabetes 62:1527–1536

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kang G, Holz GG (2003) Amplification of exocytosis by Ca2+-induced Ca2+ release in INS-1 pancreatic β cells. J Physiol 546:175–189

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kang G, Chepurny OG, Holz GG (2001) cAMP-regulated guanine nucleotide exchange factor II (Epac2) mediates Ca2+-induced Ca2+ release in INS-1 pancreatic β-cells. J Physiol 536:375–385

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kang G, Joseph JW, Chepurny OG, Monaco M, Wheeler MB, Bos JL, Schwede F, Genieser HG, Holz GG (2003) Epac-selective cAMP analog 8-pCPT-2′–O-Me-cAMP as a stimulus for Ca2+-induced Ca2+ release and exocytosis in pancreatic β-cells. J Biol Chem 278:8279–8285

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kang G, Chepurny OG, Rindler MJ, Collis L, Chepurny Z, Li WH, Harbeck M, Roe MW, Holz GG (2005) A cAMP and Ca2+ coincidence detector in support of Ca2+-induced Ca2+ release in mouse pancreatic β cells. J Physiol 566:173–188

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kang G, Chepurny OG, Malester B, Rindler MJ, Rehmann H, Bos JL, Schwede F, Coetzee WA, Holz GG (2006) cAMP sensor Epac as a determinant of ATP-sensitive potassium channel activity in human pancreatic β cells and rat INS-1 cells. J Physiol 573:595–609

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kang G, Leech CA, Chepurny OG, Coetzee WA, Holz GG (2008) Role of the cAMP sensor Epac as a determinant of KATP channel ATP sensitivity in human pancreatic β cells and rat INS-1 cells. J Physiol 586:1307–1319

    PubMed  CAS  PubMed Central  Google Scholar 

  • Karagiannis T, Paschos P, Paletas K, Matthews DR, Tsapas A (2012) Dipeptidyl peptidase-4 inhibitors for treatment of type 2 diabetes mellitus in the clinical setting: systematic review and meta-analysis. BMJ 344:e1369

    PubMed  Google Scholar 

  • Kasai H, Suzuki T, Liu TT, Kishimoto T, Takahashi N (2002) Fast and cAMP-sensitive mode of Ca2+-dependent exocytosis in pancreatic β-cells. Diabetes 51(Suppl 1):S19–S24

    PubMed  CAS  Google Scholar 

  • Kasai H, Hatakeyama H, Ohno M, Takahashi N (2010) Exocytosis in islet β-cells. Adv Exp Med Biol 654:305–338

    PubMed  CAS  Google Scholar 

  • Kasai H, Takahashi N, Tokumaru H (2012) Distinct initial SNARE configurations underlying the diversity of exocytosis. Physiol Rev 92:1915–1964

    PubMed  CAS  Google Scholar 

  • Kashima Y, Miki T, Shibasaki T, Ozaki N, Miyazaki M, Yano H, Seino S (2001) Critical role of cAMP-GEFII-Rim2 complex in incretin-potentiated insulin secretion. J Biol Chem 276:46046–46053

    PubMed  CAS  Google Scholar 

  • Kawasaki H, Springett GM, Mochizuki N, Toki S, Nakaya M, Matsuda M, Housman DE, Graybiel AM (1998) A family of cAMP-binding proteins that directly activate Rap1. Science 282:2275–2279

    PubMed  CAS  Google Scholar 

  • Kelley GG, Chepurny OG, Schwede F, Genieser HG, Leech CA, Roe MW, Li X, Dzhura I, Dzhura E, Afshari P, Holz GG (2009) Glucose-dependent potentiation of mouse islet insulin secretion by Epac activator 8-pCPT-2′–O-Me-cAMP-AM. Islets 1:260–265

    PubMed  PubMed Central  Google Scholar 

  • Kelly P, Bailey CL, Fueger PT, Newgard CB, Casey PJ, Kimple ME (2008) Rap1 promotes multiple pancreatic islet cell functions and signals through mammalian target of rapamycin complex 1 to enhance proliferation. J Biol Chem 285(21):15777–15785

    Google Scholar 

  • Kieffer TJ, Habener JF (1999) The glucagon-like peptides. Endocr Rev 20:876–913

    PubMed  CAS  Google Scholar 

  • Kieffer TJ, McIntosh CH, Pederson RA (1995) Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV. Endocrinology 136:3585–3596

    PubMed  CAS  Google Scholar 

  • Kieffer TJ, Heller RS, Leech CA, Holz GG, Habener JF (1997) Leptin suppression of insulin secretion by activation of ATP-sensitive K+ channels in pancreatic β-cells. Diabetes 46:1087–1093

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kim MJ, Kang JH, Park YG, Ryu GR, Ko SH, Jeong IK, Koh KH, RhieDJ YSH, Hahn SJ, Kim MS, Jo YH (2006) Exendin-4 induction of cyclin D1 expression in INS-1 β-cells: involvement of cAMP-responsive element. J Endocrinol 188:623–633

    PubMed  CAS  Google Scholar 

  • Kim JW, Roberts CD, Berg SA, Caicedo A, Roper SD, Chaudhari N (2008a) Imaging cyclic AMP changes in pancreatic islets of transgenic reporter mice. PLoS One 3:e2127

    PubMed  PubMed Central  Google Scholar 

  • Kim BJ, Park KH, Yim CY, Takasawa S, Okamoto H, Im MJ, Kim UH (2008b) Generation of nicotinic acid adenine dinucleotide phosphate and cyclic ADP-ribose by glucagon-like peptide-1 evokes Ca2+ signal that is essential for insulin secretion in mouse pancreatic islets. Diabetes 57:868–878

    PubMed  CAS  Google Scholar 

  • Kim M, Platt MJ, Shibasaki T, Quaggin SE, Backx PH, Seino S, Simpson JA, Drucker DJ (2013) GLP-1 receptor activation and Epac2 link atrial natriuretic peptide secretion to control of blood pressure. Nat Med 19:567–575

    PubMed  CAS  Google Scholar 

  • Kinard TA, Satin LS (1995) An ATP-sensitive Cl channel current that is activated by cell swelling, cAMP, and glyburide in insulin-secreting cells. Diabetes 44:1461–1466

    PubMed  CAS  Google Scholar 

  • Kirschner LS, Kuzewitt DF, Matyakhina L, Towns WH 2nd, Carney JA, Westphal H, Stratakis CA (2005) A mouse model for the Carney complex tumor syndrome develops neoplasia in AMP-responsive tissues. Cancer Res 65:4506–4514

    PubMed  CAS  Google Scholar 

  • Koole C, Wootten D, Simms J, Valant C, Sridhar R, Woodman OL, Miller LJ, Summers RJ, Christopoulos A, Sexton PM (2010) Allosteric ligands of the glucagon-like peptide 1 receptor (GLP-1R) differentially modulate endogenous and exogenous peptide responses in a pathway-selective manner: implications for drug screening. Mol Pharmacol 78:456–465

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kulkarni RN, Wang ZL, Wang RM, Hurley JD, Smith DM, Ghatei MA, Withers DJ, Gardiner JV, Bailey CJ, Bloom SR (1997) Leptin rapidly suppresses insulin release from insulinoma cells, rat and human islets and, in vivo, in mice. J Clin Invest 100:2729–2736

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kumar DP, Rajagopal S, Mahavadi S, Mirshahi F, Grider JR, Murthy KS, Sanyal AJ (2012) Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in pancreatic β-cells. Biochem Biophys Res Commun 427:600–6005

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kwan EP, Gaisano HY (2007) New insights into the molecular mechanisms of priming of insulin exocytosis. Diabetes Obes Metab Suppl 2:99–108

    Google Scholar 

  • Kwan EP, Gao X, LeungYM GHY (2007) Activation of exchange protein directly activated by cyclic adenosine monophosphate and protein kinase A regulate common and distinct steps in promoting plasma membrane exocytic and granule-to-granule fusion in rat islet β cells. Pancreas 35:e45–e54

    PubMed  Google Scholar 

  • Lamont BJ, Li Y, Kwan E, Brown TJ, Gaisano H, Drucker DJ (2012) Pancreatic GLP-1 receptor activation is sufficient for incretin control of glucose metabolism in mice. J Clin Invest 122:388–402

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lan H, Vassileva G, Corona A, Liu L, Baker H, Golovko A, Abbondanzo SJ, Hu W, Yang S, Ning Y, Del Vecchio RA, Poulet F, Laverty M, Gustafson EL, Hedrick JA, Kowalski TJ (2009) GPR119 is required for physiological regulation glucagon-like peptide-1 secretion but not for metabolic homeostasis. J Endocrinol 201:219–230

    PubMed  CAS  Google Scholar 

  • Lan H, Lin HV, Wang CF, Wright MJ, Xu S, Kang L, Juhl K, Hedrick JA, Kowalski TJ (2012) Agonists at GPR119 mediate secretion of GLP-1 from mouse enteroendocrine cells through glucose-independent pathways. Br J Pharmacol 165:2799–2807

    PubMed  CAS  PubMed Central  Google Scholar 

  • Landa LR Jr, Harbeck M, Kaihara K, Chepurny O, Kitiphongspattana K, Graf O, Nikolaev VO, Lohse MJ, Holz GG, Roe MW (2005) Interplay of Ca2+ and cAMP signaling in the insulin-secreting MIN6 β-cell line. J Biol Chem 280:31294–31302

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lavine JA, Attie AD (2010) Gastrointestinal hormones and the regulation of β-cell mass. Ann N Y Acad Sci 1212:41–58

    PubMed  CAS  Google Scholar 

  • Lee H, Jaffe AE, Feinberg JI, Tryggvadottir R, Brown S, Montano C, Aryee MJ, Irizarry RA, Herbstman J, Witter FR, Goldman LR, Feinberg AP, Fallin MD (2012) DNA methylation shows genome-wide association of NFIX, RAPGEF2 and MSRB3 with gestational age at birth. Int J Epidemiol 41:188–199

    PubMed  PubMed Central  Google Scholar 

  • Leech CA, Habener JF (1997) Insulinotropic glucagon-like peptide-1-mediated activation of non-selective cation currents in insulinoma cells is mimicked by maitotoxin. J Biol Chem 272:17987–17993

    PubMed  CAS  Google Scholar 

  • Leech CA, Holz GG, Chepurny OG, Habener JF (2000) Expression of cAMP-regulated guanine nucleotide exchange factors in pancreatic β-cells. Biochem Biophys Res Commun 278:44–47

    PubMed  CAS  PubMed Central  Google Scholar 

  • Leech CA, Chepurny OG, Holz GG (2010a) Epac2-dependent Rap1 activation and the control of islet insulin secretion by glucagon-like peptide-1. Vitam Horm 84:279–302

    PubMed  CAS  PubMed Central  Google Scholar 

  • Leech CA, Dzhura I, Chepurny OG, Schwede F, Genieser HG, Holz GG (2010b) Facilitation of β-cell KATP channel sulfonylurea sensitivity by a cAMP analog selective for the cAMP-regulated guanine nucleotide exchange factor Epac. Islets 2:72–81

    PubMed  PubMed Central  Google Scholar 

  • Leech CA, Dzhura I, Chepurny OG, Kang G, Schwede F, Genieser HG, Holz GG (2011) Molecular physiology of glucagon-like peptide-1 insulin secretagogue action in pancreatic β cells. Prog Biophys Mol Biol 107:236–247

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lester LB, Langeberg LK, Scott JD (1997) Anchoring of protein kinase A facilitates hormone-mediated insulin secretion. Proc Natl Acad Sci USA 94:14942–14947

    PubMed  CAS  PubMed Central  Google Scholar 

  • Li Y, Hansotia T, Yusta B, Ris F, Halban PA, Drucker DJ (2003) Glucagon-like peptide-1 receptor signaling modulates β cell apoptosis. J Biol Chem 278:471–478

    PubMed  CAS  Google Scholar 

  • Light PE, Manning Fox JE, Riedel MJ, Wheeler MB (2002) Glucagon-like peptide-1 inhibits pancreatic ATP-sensitive potassium channels via a protein kinase A- and ADP-dependent mechanism. Mol Endocrinol 16:2135–2144

    PubMed  CAS  Google Scholar 

  • Liu Z, Habener JF (2008) Glucagon-like peptide-1 activation of TCF7L2-dependent Wnt signaling enhances pancreatic β cell proliferation. J Biol Chem 283:8723–8735

    PubMed  CAS  PubMed Central  Google Scholar 

  • Liu Z, Stanojevic V, Brindamour LJ, Habener JF (2012) GLP1-derived nonapeptide GLP1(28–36)amide protects pancreatic β-cells from glucolipotoxicity. J Endocrinol 213:143–154

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lovshin JA, Drucker DJ (2009) Incretin-based therapies for type 2 diabetes mellitus. Nat Rev Endocrinol 5:262–269

    PubMed  CAS  Google Scholar 

  • Lupi R, Mancarella R, Del Guerra S, Bugliani M, Del Prato S, Boggi U, Mosca F, Filipponi F, Marchetti P (2008) Effects of exendin-4 on islets from type 2 diabetes patients. Diabetes Obes Metab 10:515–519

    PubMed  CAS  Google Scholar 

  • Lynn FC, Pamir N, Ng EH, McIntosh CH, Kieffer TJ, Pederson RA (2001) Defective glucose-dependent insulinotropic polypeptide receptor expression in diabetic fatty Zucker rats. Diabetes 50:1004–1011

    PubMed  CAS  Google Scholar 

  • MacDonald PE, Wang X, Xia F, El-kholy W, Targonsky ED, Tsushima RG, Wheeler MB (2003) Antagonism of rat β-cell voltage-dependent K+ currents by exendin 4 requires dual activation of the cAMP/protein kinase A and phosphatidylinositol 3-kinase signaling pathways. J Biol Chem 278:52446–52453

    PubMed  CAS  Google Scholar 

  • Mancini AD, Poitout V (2013) The fatty acid receptor FFA1/GPR40 a decade later: how much we know? Trends Endocrinol Metab 24:398–407

    PubMed  CAS  Google Scholar 

  • McIntosh CH, Widenmaier S, Kim SJ (2010) Pleiotropic actions of the incretin hormones. Vitam Horm 84:21–79

    PubMed  CAS  Google Scholar 

  • McQuaid TS, Saleh MC, Joseph JW, GyukhandanyanA M-FJE, MacLellan JD, Wheeler MB, Chan CB (2006) cAMP-mediated signaling normalizes glucose-stimulated insulin secretion in uncoupling protein-2 overexpressing β-cells. J Endocrinol 190:669–680

    PubMed  CAS  Google Scholar 

  • Miki T, Minami K, Shinozaki H, Matsumura K, Saraya A, Ikeda H, Yamada Y, Holst JJ, Seino S (2005) Distinct effects of glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 on insulin secretion and gut motility. Diabetes 54:1056–1063

    PubMed  CAS  Google Scholar 

  • Mojsov S, Weir GC, Habener JF (1987) Insulinotropin: glucagon-like peptide I (7–37) co-encoded in the glucagon gene is a potent stimulator of insulin release in the perfused rat pancreas. J Clin Invest 79:616–619

    PubMed  CAS  PubMed Central  Google Scholar 

  • Morioka T, Dishinger JF, Reid KR, Liew CW, Zhang T, Inaba M, Kennedy RT, Kulkarni RN (2012) Enhanced GLP-1- and sulfonylurea-induced insulin secretion in islets lacking leptin signaling. Mol Endocrinol 26:967–976

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mudler H, Ling C (2009) Mitochondrial dysfunction in pancreatic β-cells in type 2 diabetes. Mol Cell Endocrinol 297:34–40

    Google Scholar 

  • Mukai E, Fujimoto S, Sato H, Oneyama C, Kominato R, Sato Y, Sasaki M, Nishi Y, Okada M, Inagaki N (2011) Exendin-4 suppresses Src activation and reactive oxygen species production in diabetic Goko-Kakizaki rat islets in an Epac-dependent manner. Diabetes 60:218–226

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nakazaki M, Crane A, Hu M, Seghers V, Ullrich S, Aguilar-Bryan L, Bryan J (2002) cAMP-activated protein kinase-independent potentiation of insulin secretion by cAMP is impaired in SUR1 null islets. Diabetes 51:3440–3449

    PubMed  CAS  Google Scholar 

  • Nathan DM, Schreiber E, Fogel H, Mojsov S, Habener JF (1992) Insulinotropic action of glucagonlike peptide-I-(7–37) in diabetic and nondiabetic subjects. Diabetes Care 15:270–276

    PubMed  CAS  Google Scholar 

  • Nauck MA, Heimesaat MM, Orskov C, Holst JJ, Ebert R, Creutzfeldt W (1993) Preserved incretin activity of glucagon-like peptide 1 [7–36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J Clin Invest 91:301–307

    PubMed  CAS  PubMed Central  Google Scholar 

  • Naylor E, Arredouani A, Vasudevan SR, Lewis AM, Parkesh R, Mizote A, Rosen D, Thomas JM, Izumi M, Ganesan A, Galione A, Churchill GC (2009) Identification of a chemical probe for NAADP by virtual screening. Nat Chem Biol 5:220–226

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ni Q, Ganesan A, Aye-Han NN, Gao X, Allen MD, Levchenko A, Zhang J (2011) Signaling diversity of PKA achieved via a Ca2+-cAMP-PKA oscillatory circuit. Nat Chem Biol 7:34–40

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nie J, Lilley BN, Pan YA, Faruque O, Liu X, Zhang W, Sanes JR, Han X, Shi Y (2013) SAD-A kinase enhances insulin secretion as a downstream target of GLP-1 signaling in pancreatic β-cells. Mol Cell Biol 13:2527–2534

    Google Scholar 

  • Niimura M, MikiT ST, Fujimoto W, Iwanaga T, Seino S (2009) Critical role of the N-terminal cyclic AMP-binding domain of Epac2 in its subcellular localization and function. J Cell Physiol 219:652–658

    PubMed  CAS  Google Scholar 

  • Nijholt IM, Dolga AM, Ostroveanu A, Luiten PG, Schmidt M, Eisel UL (2008) Neuronal AKAP150 coordinates PKA and Epac-mediated PKB/Akt phosphorylation. Cell Signal 20:1715–1724

    PubMed  CAS  Google Scholar 

  • Oestreich EA, Wang H, Malik S, Kaproth-Joslin KA, Blaxall BC, Kelley GG, Dirksen RT, Smrcka AV (2007) Epac-mediated activation of phospholipase Cε plays a critical role in β-adrenergic receptor-dependent enhancement of Ca2+ mobilization in cardiac myocytes. J Biol Chem 282:5488–5495

    PubMed  CAS  Google Scholar 

  • Oestreich EA, Malik S, Goonasekera SA, Blaxall BC, Kelley GG, Dirksen RT, Smrcka AV (2009) Epac and phospholipase Cε regulate Ca2+ release in the heart by activation of protein kinase Cε and calcium-calmodulin kinase II. J Biol Chem 284:1514–1522

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ǿrskov C, Holst JJ, Nielsen OV (1988) Effect of truncated glucagon-like peptide-1 [proglucagon-(78–107) amide] on endocrine secretion from pig pancreas, antrum, and nonantral stomach. Endocrinology 123:2009–2013

    PubMed  Google Scholar 

  • Overton HA, Fyfe MC, Reynet C (2008) GPR119, a novel G protein-coupled receptor target for the treatment of type 2 diabetes and obesity. Br J Pharmacol 153(Suppl 1):S76–S81

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ozaki N, Shibasaki T, Kashima Y, Miki T, Takahashi K, Ueno H, Sunaga Y, Yano H, Matsuura Y, Iwanaga T, Takai Y, Seino S (2000) cAMP-GEFII is a direct target of cAMP in regulated exocytosis. Nat Cell Biol 2:805–811

    PubMed  CAS  Google Scholar 

  • Park S, Dong X, Fisher TL, Dunn S, Omer AK, Weir G, White MF (2006) Exendin-4 uses Irs2 signaling to mediate pancreatic β cell growth and function. J Biol Chem 281:1159–1168

    PubMed  CAS  Google Scholar 

  • Park JH, Kim SJ, Park SH, Son DG, Bae JH, Kim HK, Han J, Song DK (2012) Glucagon-like peptide-1 enhances glucokinase activity in pancreatic β-cells through the association of Epac2 with Rim2 and Rab3A. Endocrinology 153:574–582

    PubMed  CAS  Google Scholar 

  • Patti ME, Corvera S (2010) The role of mitochondria in the pathogenesis of type 2 diabetes. Endocr Rev 31:364–395

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pereira L, Cheng H, Lao DH, Na L, van Oort RJ, Brown JH, Wehrens XH, Chen J, Bers DM (2013) Epac2 mediates cardiac β1-adrenergic-dependent sarcoplasmic reticulum Ca2+ leak and arrhythmia. Circulation 127:913–922

    PubMed  CAS  PubMed Central  Google Scholar 

  • Petyuk VA, Qian WJ, Hinault C, Gritsenko MA, Singhal M, Monroe ME, Camp DG 2nd, Kulkarni RN, Smith RD (2008) Characterization of the mouse pancreatic islet proteome and comparative analysis with other mouse tissues. J Proteome Res 7:3114–3126

    PubMed  CAS  PubMed Central  Google Scholar 

  • Peyot ML, Gray JP, Lamontagne J, Smith PJ, Holz GG, Madiraju SR, Prentki M, Heart E (2009) Glucagon-like peptide-1 induced signaling and insulin secretion do not drive fuel and energy metabolism in primary rodent pancreatic β-cells. PLoS One 4:e6221

    PubMed  PubMed Central  Google Scholar 

  • Prentki M, Matschinsky FM (1987) Ca2+, cAMP, and phospholipid-derived messengers in coupling mechanisms of insulin secretion. Physiol Rev 67:1185–1248

    PubMed  CAS  Google Scholar 

  • Pyne NJ, Furman BL (2003) Cyclic nucleotide phosphodiesterases in pancreatic islets. Diabetologia 46:1179–1189

    PubMed  CAS  Google Scholar 

  • Quoyer J, Longuet C, Broca C, Linck N, Costes S, Varin E, Brockaert J, Bertrand G, Dalle S (2010) GLP-1 mediates antiapoptotic effect by phosphorylating Bad through a β arrestin 1-mediated ERK1/2 activation in pancreatic β-cells. J Biol Chem 285:1989–2002

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ramos LS, Zippin JH, Kamenetsky M, Buck J, Levin LR (2008) Glucose and GLP-1 stimulate cAMP production via distinct adenylyl cyclases in INS-1E insulinoma cells. J Gen Physiol 132:329–338

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rehmann H (2012) Epac2: a sulfonylurea receptor? Biochem Soc Trans 40:6–10

    PubMed  CAS  Google Scholar 

  • Renström E, Eliasson L, Rorsman P (1997) Protein kinase A-dependent and independent stimulation of exocytosis by cAMP in mouse pancreatic β-cells. J Physiol 502:105–118

    PubMed  PubMed Central  Google Scholar 

  • Roger B, Papin J, Vacher P, Raoux M, Mulot A, Dubois M, Kerr-Conte J, Voy BH, Pattou F, Charpentier G, Jonas JC, Moustaïd-Moussa N, Lang J (2011) Adenylyl cyclase 8 is central to glucagon-like peptide 1 signalling and effects of chronically elevated glucose in rat and human pancreatic β cells. Diabetologia 54:390–402

    PubMed  CAS  Google Scholar 

  • Scott JD, Santana LF (2010) A-kinase anchoring proteins: getting to the heart of the matter. Circulation 121:1264–1271

    PubMed  CAS  PubMed Central  Google Scholar 

  • Seino S, Shibasaki T (2005) PKA-dependent and PKA-independent pathways for cAMP-regulated exocytosis. Physiol Rev 85:1303–1342

    PubMed  CAS  Google Scholar 

  • Seino S, Takahashi H, Fujimoto W, Shibasaki T (2009) Roles of cAMP signalling in insulin granule exocytosis. Diabetes Obes Metab 11(Suppl 4):180–188

    PubMed  CAS  Google Scholar 

  • Seino S, Shibasaki T, Minami K (2011) Dynamics of insulin secretion and the clinical implications for obesity and diabetes. J Clin Invest 121:2118–2125

    PubMed  CAS  PubMed Central  Google Scholar 

  • Shah U, Kowalski TJ (2010) GPR119 agonists for the potential treatment of type 2 diabetes and related metabolic disorders. Vitam Horm 84:415–448

    PubMed  CAS  Google Scholar 

  • Shao W, Yu Z, Fantus IG, Jin T (2010) Cyclic AMP signaling stimulates proteasome degradation of thioredoxin interacting protein (TxNIP) in pancreatic β-cells. Cell Signal 22:1240–1246

    PubMed  CAS  Google Scholar 

  • Shao W, Wang Z, Ip W, Chiang YT, Xiong X, Chai T, Xu C, Wang Q, Jin T (2013) GLP-1(28–36) improves β-cell mass and glucose disposal in streptozotocin induced diabetes mice and activates PKA-β-catenin signaling in β-cells in vitro. Am J Physiol Endocrinol Metab 304:E1263–E1272

    PubMed  CAS  Google Scholar 

  • Sharp GW (1996) Mechanisms of inhibition of insulin release. Am J Physiol 271:C1781–C1799

    PubMed  CAS  Google Scholar 

  • Shibasaki T, Sunaga Y, Seino S (2004) Integration of ATP, cAMP, and Ca2+ signals in insulin granule exocytosis. Diabetes 53(Suppl 3):S59–S62

    PubMed  CAS  Google Scholar 

  • Shibasaki T, Takahashi H, Miki T, Sunaga Y, Matsumura K, Yamanaka M, Zhang C, Tamamoto A, Satoh T, Miyazaki J, Seino S (2007) Essential role of Epac2/Rap1 signaling in regulation of insulin granule dynamics by cAMP. Proc Natl Acad Sci USA 104:19333–19338

    PubMed  CAS  PubMed Central  Google Scholar 

  • Shiota C, Larsson O, Shelton KD, Shiota M, Efanov AM, Hoy M, Lindner J, Kooptiwut S, Juntti-Berggren L, Gromada J, Berggren PO, Magnuson MA (2002) Sulfonylurea receptor type 1 knock-out mice have intact feeding-stimulated insulin secretion despite marked impairment in their response to glucose. J Biol Chem 277:37176–37183

    PubMed  CAS  Google Scholar 

  • Singh S, Chang HY, Richards TM, Weiner JP, Clark JM, Segal JB (2013) Glucagonlike peptide 1-based therapies and risk of hospitalization for acute pancreatitis in type 2 diabetes mellitus: a population-based matched case–control study. JAMA Intern Med 173:534–539

    PubMed  CAS  Google Scholar 

  • Skelin M, Rupnik M (2011) cAMP increases the sensitivity of exocytosis to Ca2+ primary through protein kinase A in mouse pancreatic β cells. Cell Calcium 49:89–99

    PubMed  CAS  Google Scholar 

  • Skoglund G, Hussain MA, Holz GG (2000) Glucagon-like peptide 1 stimulates insulin gene promoter activity by protein kinase A-independent activation of the rat insulin I gene cAMP response element. Diabetes 49:1156–1164

    PubMed  CAS  PubMed Central  Google Scholar 

  • Smrcka AV, Brown JH, Holz GG (2012) Role of phospholipase Cε in physiological phosphoinositide signaling networks. Cell Signal 24:1333–1343

    PubMed  CAS  PubMed Central  Google Scholar 

  • Soga T, Ohishi T, Matsui T, Saito T, Matsumoto M, Takasaki J, Kamohara M, Hiyama H, Yoshida S, Momose K, Ueda Y, Matsushime H, Kobori M, Furuichi K (2005) Lysophosphatidylcholine enhances glucose-dependent insulin secretion via an orphan G-protein-coupled receptor. Biochem Biophys Res Commun 326:744–751

    PubMed  CAS  Google Scholar 

  • Song WJ, Schreiber WE, Zhong E, Liu FF, Kornfeld BD, Wondisford FE, Hussain MA (2008) Exendin-4 stimulation of cyclin A2 in β-cell proliferation. Diabetes 57:2371–2381

    PubMed  CAS  PubMed Central  Google Scholar 

  • Song WJ, Seshadri M, Ashraf U, Mdluli T, Mondal P, Keil M, Azevedo M, Kirschner LS, Stratakis CA, Hussain MA (2011) Snapin mediates incretin action and augments glucose-dependent insulin secretion. Cell Metab 13:308–319

    PubMed  CAS  PubMed Central  Google Scholar 

  • Song WJ, Mondal P, Li Y, Lee SE, Hussain MA (2013) Pancreatic β-cell response to increased metabolic demand and to pharmacologic secretagogues requires EPAC2A. Diabetes 62:2796–2807

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sonoda N, Imamura T, Yoshizaki T, Babendure JL, Lu JC, Olefsky JM (2008) β-arrestin-1 mediates glucagon-like peptide-1 signaling to insulin secretion in cultured pancreatic β cells. Proc Natl Acad Sci USA 105:6614–6619

    PubMed  CAS  PubMed Central  Google Scholar 

  • Straub SG, Sharp GW (2012) Evolving insights regarding mechanisms for the inhibition of insulin release by norepinephrine and heterotrimeric G proteins. Am J Physiol Cell Physiol 302:C1687–C1698

    PubMed  CAS  PubMed Central  Google Scholar 

  • Suga S, Kanno T, Ogawa Y, Takeo T, Kamimura N, Wakui M (2000) cAMP-independent decrease of ATP-sensitive K+ channel activity by GLP-1 in rat pancreatic β-cells. Pflugers Arch 440:566–572

    PubMed  CAS  Google Scholar 

  • Takahashi N, Kadowaki T, Yazaki Y, Ellis-Davies GC, Miyashita Y, Kasai H (1999) Post-priming actions of ATP on Ca2+-dependent exocytosis in pancreatic β cells. Proc Natl Acad Sci USA 96:760–765

    PubMed  CAS  PubMed Central  Google Scholar 

  • Takeda Y, Amano A, Noma A, Nakamura Y, Fujimoto S, Inagaki N (2011) Systems analysis of GLP-1 receptor signaling in pancreatic β-cells. Am J Physiol Cell Physiol 301:C792–C803

    PubMed  CAS  Google Scholar 

  • Talbot J, Joly E, Prentki M, Buteau J (2012) β-arrestin 1-mediated recruitment of c-Src underlies the proliferative action of glucagon-like peptide-1 in pancreatic β INS832/13 cells. Mol Cell Endocrinol 364:65–70

    PubMed  CAS  Google Scholar 

  • Tarasov AI, Semplici F, Li D, Rizzuto R, Ravier MA, Gilon P, Rutter GA (2013) Frequency-dependent mitochondrial Ca2+ accumulation regulates ATP synthesis in pancreatic β-cells. Pflugers Arch 465:543–554

    PubMed  CAS  PubMed Central  Google Scholar 

  • Taylor SS, Kim C, Cheng CY, Brown SH, Wu J, Kannan N (2008) Signaling through cAMP and cAMP-dependent protein kinase: diverse strategies for drug design. Biochim Biophys Acta 1784:16–26

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tengholm A (2012) Cyclic AMP dynamics in the pancreatic β-cell. Ups J Med Sci 117:365–369

    Google Scholar 

  • Thams P, Anwar MR, Capito K (2005) Glucose triggers protein kinase A-dependent insulin secretion in mouse pancreatic islets through activation of the K-ATP channel-dependent pathway. Eur J Endocrinol 152:671–677

    PubMed  CAS  Google Scholar 

  • Thorens B (1992) Expression cloning of the pancreatic β cell receptor for the gluco-incretin hormone glucagon-like peptide 1. Proc Natl Acad Sci USA 89:8641–8645

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tian G, Sandler S, Gylfe E, Tengholm A (2011) Glucose- and hormone-induced cAMP oscillations in α- and β-cells within intact pancreatic islets. Diabetes 60:1535–1543

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tian G, Tepikin AV, Tengholm A, Gylfe E (2012) cAMP induces stromal interaction molecule 1 (STIM1) puncta but neither Orai1 protein clustering nor store-operated Ca2+ entry (SOCE) in islet cells. J Biol Chem 287:9862–9872

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tourrel C, Bailbe D, Meile MJ, Kergoat M, Portha B (2001) Glucagon-like peptide-1 and exendin-4 stimulate β-cell neogenesis in streptozotocin-treated newborn rats resulting in persistently improved glucose homeostasis at adult age. Diabetes 50:1562–1570

    PubMed  CAS  Google Scholar 

  • Tsalkova T, Gribenko AV, Cheng X (2011) Exchange protein directly activated by cyclic AMP isoform 2 is not a direct target of sulfonylurea drugs. Assay Drug Dev Technol 9:88–91

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tsalkova T, Mei FC, Li S, Chepurny OG, Leech CA, Liu T, Holz GG, Woods VL, Cheng X (2012) Isoform-specific antagonists of exchange proteins directly activated by cAMP. Proc Natl Acad Sci USA 109:18613–18618

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tschen SI, Georgia S, Dhawan S, Bhushan A (2011) Skp2 is required for incretin hormone-mediated β-cell proliferation. Mol Endocrinol 25:2134–2143

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tsuboi T, da Silva Xavier G, Holz GG, Jouaville LS, Thomas AP, Rutter GA (2003) Glucagon-like peptide-1 mobilizes intracellular Ca2+ and stimulates mitochondrial ATP synthesis in pancreatic MIN6 β-cells. Biochem J 369:287–299

    PubMed  CAS  PubMed Central  Google Scholar 

  • Vikman J, Svensson H, Huang YC, Kang Y, Andersson SA, Gaisano HY, Eliasson L (2009) Truncation of SNAP-25 reduces the stimulatory action of cAMP on rapid exocytosis in insulin-secreting cells. Am J Physiol Endocrinol Metab 297:E452–E461

    PubMed  CAS  Google Scholar 

  • Vliem MJ, Ponsioen B, Schwede F, Pannekoek WJ, Riedl J, Jalink K, Genieser HG, Bos JL, Rehmann H (2008) 8-pCPT-2′-O-Me-cAMP-AM: an improved Epac-selective cAMP analogue. Chembiochem 9:2052–2054

    PubMed  CAS  Google Scholar 

  • Wan QF, Dong Y, Yang H, Lou X, Ding J, Xu T (2004) Protein kinase activation increases insulin secretion by sensitizing the secretory machinery to Ca2+. J Gen Physiol 124:653–662

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wang X, Zhou J, Doyle ME, Egan JM (2001) Glucagon-like peptide-1 causes pancreatic duodenal homeobox-1 protein translocation from the cytoplasm to the nucleus of pancreatic β-cells by a cyclic adenosine monophosphate/protein kinase A-dependent mechanism. Endocrinology 142:1820–1827

    PubMed  CAS  Google Scholar 

  • Wang Q, Li L, Xu E, Wong V, Rhodes C, Brubaker PL (2004) Glucagon-like peptide-1 regulates proliferation and apoptosis via activation of protein kinase B in pancreatic INS-1 β cells. Diabetologia 47:478–487

    PubMed  CAS  Google Scholar 

  • Welch EJ, Jones BW, Scott JD (2010) Networking with AKAPs: context-dependent regulation of anchored enzymes. Mol Interv 10:86–97

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wice BM, Wang S, Crimmins DL, Diggs-Anrews KA, Althage MC, Ford EL, Tran H, Ohlendorf M, Griest TA, Wang Q, Fisher SJ, Ladenson JH, Polonsky KS (2010) Xenin-25 potentiates glucose-dependent insulinotropic polypeptide action via a novel cholinergic relay mechanism. J Biol Chem 285:19842–19853

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wice BM, Reeds DN, Tran H, Crimmins DL, Patterson BW, Dunai J, Wallendorf MJ, Ladenson JH, Villareal DT, Polonsky KS (2012) Xenin-25 amplifies GIP-mediated insulin secretion in humans with normal and impaired glucose tolerance but not type 2 diabetes. Diabetes 61:1793–1800

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wiederkehr A, Wollheim CB (2008) Impact of mitochondrial calcium on the coupling of metabolism to insulin secretion in the pancreatic β-cell. Cell Calcium 44:64–76

    PubMed  CAS  Google Scholar 

  • Winzell MS, Ahrén B (2004) The high-fat diet-fed mouse: a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes. Diabetes 53(Suppl 3):S215–S219

    PubMed  Google Scholar 

  • Winzell MS, Ahrén B (2007) G-protein-coupled receptors and islet functions – implications for treatment of type 2 diabetes. Pharmacol Ther 116:437–448

    PubMed  CAS  Google Scholar 

  • Xu G, Stoffers DA, Habener JF, Bonner-Weir S (1999) Exendin-4 stimulates both β-cell replication and neogenesis, resulting in increased β-cell mass and improved glucose tolerance in diabetic rats. Diabetes 48:2270–2276

    PubMed  CAS  Google Scholar 

  • Yada T, Itoh K, Nakata M (1993) Glucagon-like peptide-1-(7–36)amide and a rise in cyclic adenosine 3′,5′-monophosphate increase cytosolic free Ca2+ in rat pancreatic β-cells by enhancing Ca2+ channel activity. Endocrinology 133:1685–1692

    PubMed  CAS  Google Scholar 

  • Yaekura K, Yada T (1998) [Ca2+]i-reducing action of cAMP in rat pancreatic β-cells: involvement of thapsigargin-sensitive stores. Am J Physiol 274(Cell Physiol 43):C513–C521

    Google Scholar 

  • Yang Y, Gillis KD (2004) A highly Ca2+-sensitive pool of granules is regulated by glucose and protein kinases in insulin-secreting INS-1 cells. J Gen Physiol 124:641–651

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yang Y, Craig TJ, Chen X, Ciufo LF, Takahashi M, Morgan A, Gillis KD (2007) Phosphomimetic mutation of Ser-187 of SNAP-25 increases both syntaxin binding and highly Ca2+-sensitive exocytosis. J Gen Physiol 129:233–244

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yang Y, Shu X, Liu D, Shang Y, Wu Y, Pei L, Xu X, Tian Q, Zhang J, Qian K, Wang YX, Petralia RS, Tu W, Zhu LQ, Wang JZ, Lu Y (2012) EPAC null mutation impairs learning and social interactions via aberrant regulation of miR-124 and Zif268 translation. Neuron 73:774–788

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yi P, Park JC, Melton DA (2013) Betatrophin: a hormone that controls pancreatic β cell proliferation. Cell 153:747–758

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ying Y, Li L, Cao W, Yan D, Zeng Q, Kong X, Lu L, Yan M, Xu X, Qu J, Su Q, Ma X (2012) The microtubule associated protein syntabulin is required for glucose-stimulated and cAMP-potentiated insulin secretion. FEBS Lett 586:3674–3680

    PubMed  CAS  Google Scholar 

  • Yoshida M, Yamato S, Dezaki K, Nakata M, Kawakami M, Yada T, Kakei M (2012) Activation of nonselective cation channels via cAMP-EPAC2 pathway is involved in exendin-4 potentiated insulin secretion. European Association for the Study of Diabetes (EASD), annual meeting, Berlin. Abstract #488

    Google Scholar 

  • Yusta B, Baggio LL, Estall JL, Koehler JA, Holland DP, Li H, Pipeleers D, Ling Z, Drucker DJ (2006) GLP-1 receptor activation improves β cell function and survival following induction of endoplasmic reticulum stress. Cell Metab 4:391–406

    PubMed  CAS  Google Scholar 

  • Zhang CL, Katoh M, Shibasaki T, Minami K, Sunaga Y, Takahashi H, Yokoi N, Iwasaki M, Miki T, Seino S (2009) The cAMP sensor Epac2 is a direct target of antidiabetic sulfonylurea drugs. Science 325:607–610

    PubMed  CAS  Google Scholar 

  • Zhao AZ, Bornfeldt KE, Beavo JA (1998) Leptin inhibits insulin secretion by activation of phosphodiesterase 3B. J Clin Invest 102:869–873

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zippin JH, Chen Y, Straub SG, Hess KC, Diaz A, Lee D, Tso P, Holz GG, Sharp GW, Levin LR, Buck J (2013) CO2/HCO3 and calcium regulated soluble adenylyl cyclase as a physiological ATP sensor. J Biol Chem 288:33283–33291

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by American Diabetes Association Basic Science Awards to GGH (7-12-BS-077) and CAL (1-12-BS-109). National Institutes of Health funding was provided to GGH (DK069575) and MAH (DK090245, DK090816, DK084949, DK079637). GGH and OGC acknowledge the support of SUNY Upstate Medical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George G. Holz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Holz, G.G., Chepurny, O.G., Leech, C.A., Song, WJ., Hussain, M.A. (2015). Molecular Basis of cAMP Signaling in Pancreatic β Cells. In: Islam, M. (eds) Islets of Langerhans. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6686-0_25

Download citation

Publish with us

Policies and ethics